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ABSTRACT. — We aim to present in this note a self-contained overview of basic results of the
theory of brownian particle equations with some relevant results of the noncausal stochastic
calculus. We will also refer to possible applications of the theory to the problems in mathemat-
ical physics and finances.

Sulle equationi della particella browniana e sul calcolo stocastico anticipativo

SUNTO. — Si espongono i risultati fondamentali riguardanti il problema di Cauchy per le
equazioni della particella browniana, presentando la teoria di queste equazioni nel quadro del
calcolo stocastico anticipative e indicandone alcune possibili applicazioni alla fisica matematica
e alla finanza.

1. - BROWNIAN PARTICLES AS CARRIER

We are going to give in this note a brief but self-contained sketch of the theory of
Brownian particle equations, with possible applications to some important problems
in mathematical sciences. The Brownian particle equation is a class of stochastic par-
tial differential equations including the white noise as coefficients. The theory of the
SPDE of this type can serve as a mathematical framework for the study of transport
phenomena supported by Brownian particles.

It is known that among various phenomena of transportation those with finite
transport velocity may be represented by the partial differential equations (PDEs for
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short in what follows) of hyperbolic type. On the other hand, a transport phenomenon
called the diffusion can not be treated in such way since the velocity in this case is not
finite. In fact the diffusion is represented by the PDE of parabolic type. However
those two types of PDEs share the same character that they concern the transport phe-
nomena. We also notice here that the diffusion is a thermodynamical phenomenon
driven by the thermal agitation. Therefore it is quite natural to think about a stochas-
tic PDE (say SPDE for short) of hyperbolic type that is perturbed by the gaussian
white noise in the following way;

¯

¯t
u1 ]a(t , x)1eW

.
t(

¯

¯x
u4A(t , x) u1B(t , x), (t , x) � [0 , T]3R 1 .(1)

where W(t , v), (tF0, v�V) is the standard Brownian motion defined on a proba-
bility space (V , F, P) and the W

.
t is the Gaussian white noise derived by W ., namely

W
.

t4
d

dt
Wt .

As noted at the beginning the SPDE of this type is called the Brownian particle
equation (BPE for short). It was first introduced by the author in the early 70-ies
(cf. [12] - [10], and [8] etc.), as being a bridge connecting the parabolic equations to
those of hyperbolic type. Indeed it was shown that this SPDE appears as a hybrid type
of two PDEs of different types, hyperbolic and parabolic, in such sense that through
this SPDE we can construct a probabilistic solution of the parabolic equation by the
method of characteristics.

We aim to present in this note a self-contained overview of basic results of the BPE
theory with some relevant results of the noncausal stochastic calculus. We will also re-
fer to possible applications of the BPE theory to linear or nonlinear problems in math-
ematical sciences. In the next Section 2, we will begin by giving a necessary and mini-
mum summary of the stochastic calculus of noncausal type ([9]), since the BPE theory
is essentially constructed on this calculus.

In Section 3 and in Section 4, we will show some known results for the Cauchy
problem of linear or nonlinear BPEs, following [5] namely; in Section 3 we will give
the basic results on the Cauchy problem of linear BPE, especially the answers to the
question of existence and the uniqueness of solutions. In Section 4 we will study the
nonlinear problem cited above and give the recent relevant results. In the final section
5, we will give possible applications of the theory to the problems in mathematical
physics and finances.

2. - PRELIMINARIES - NONCAUSAL STOCHASTIC CALCULUS

As far as the white noise appears in the story, we must deal with the stochastic cal-
culus, which in usual situations means the so called Itô calculus. However as we will
see soon later, it is not the stochastic calculus of this type that we need for the con-
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struction of the theory of BPE. The calculus of noncausal type is the one that is best fit
to our case. We shall give a rapid review of this calculus following the author’s original
articles published in the early 80ies (1).

2.1. Causal functions and B-differentiability.

In itô’s theory the stochastic integral, say with respect to the Brownian motion
Wt (v) to fix idea � f (t , v) dWt , is defined only for such integrand f (t , v) that is
causal (or non anticipative) with respect to the history of the Brownian motion, na-
mely; the f (t , v) is supposed to be adapted to the filtration ]Ft , tF0( where the
Ft4s]Ws ; 0 G sG t(. This we like to call the hypothesis of the «causality». But in
many situations we meet the problems of noncausal character (cf. [9], [7], [6]), we
need another theory of stochastic calculus which is free from the restriction ofcausali-
ty. The noncausal calculus introduced by the author in 1979 [9] is one of such theo-
ries. As preliminary of the main subject, we give here a short review of this theory.
In what follows, we will fix the probability space once for all (V , F, P) on which is de-
fined the real or R d- valued Brownian motion. We will denote by H the totality of all
random functions f (t , v), measurable in (t , v) with respect to the field BR1

3 F, such

that P { �
0

T

Nf (t , v)N2 dtEQ}41, and by M the subset of all causal random functions,

that is;

(M.1) measurable in (t , v) with respect to the field BR1
3 F, and especially

(M.2) adapted to the family of s-fields ]Ft(, where Ft4s]Ws ; 0 G sG t(,

(M.3) belong to the class L 2 in t, P { �
0

T

Nf (t , v)N2 dtEQ}41.

An H-class random function g(t , v) is said to be differentiable with respect to the
Brownian motion Wt (or B-differentiable) provided that there exists an M-class ran-
dom function say g×(t , v) such that, for small enough hD0,

sup
t , s , Nt2 sNEh

ENg(t , v)2g(s , v)2�
s

t

g×(r , v) d 0 WrN
2
4o(h)

where the integral �d 0 W stands for the Itô’s stochastic integral. The function g× is
called the B-derivative of the g. It is not difficult to see that if the function g(t , v) is B-
differentiable then its B-derivative is uniquely determined (see [13]). The B-differen-
tiability of the random function with respect to the multi-dimensional Brownian mo-
tion is defined in a similar way.

(Remark 1) Let g(t , v) be a functional of the multi-dimensional Brownian motion,

(1) Only a small part of the relevant articles are listed in the references of this note. A rather
complete list of articles can be obtained in the references of the article [6].
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Wt4 (W 1
t , W 2

t , R , W n
t ) where the W i , (1 G iGn) are independent copies of the 1-

dim. Brownian motion Wt . Then the B-derivative of such function, say ˜w g, can be

defined in the following way: the ˜w g4 g ¯

¯W 1
t

g , ¯

¯W 2
t

g , R , ¯

¯W n
t

ght
is a causal ran-

dom vector such that,

sup
t , sNt2 sNEh

ENg(t , v)2g(s , v)2 !
k41

n

�
s

t
¯

¯W k
r

g(r , v) d 0 W k
r N

2
4o(h) .

We notice here that the Itô integral is defined for the causal random functions
f (t , v) �M and roughly speaking the symmetric integrals (i.e. I1/2 of Ogawa [13] and
Stratonovich-Fisk integral) are defined for the causal and B-differentiable func-
tions.

2.2. Noncausal stochastic integral.

Given a random function f (t , v) �H and an arbitrary complete orthonormal sys-
tem ]f n( in L 2 ( [0 , 1] ), we consider the formal random series

!
n

Q

�
0

1

f (t , v) f n (t) dt�
0

1

f n (t) dWt .

The stochastic integral of noncausal type was introduced by the author in 1979 ([9]),
in the following,

DEFINITION 2.1: A random function f (t , v) �H is said to be integrable with respect
to the basis ]f n( (or f-integrable) when the random series above converges in proba-

bility and the sum, denoted by �
0

1

f (t , v) df Wt , is called the stochastic integral of non-

causal type with respect to the basis ]f n(.

In general the way of convergence of the random series being conditional, the inte-
grability and the sum may depend on the basis. If the function is integrable with re-
spect to any basis ]f n( and the sum does not depend on the choice of the basis, we
will say that the function is universally integrable (or shortly u-integrable).

Here are some equivalent expressions and a possible variations of the above defi-
nition, which are worth to be remarked so that we may have better understanding of
the nature of our noncausal integral.

(a) As a limit of the sequence of random Stieltjes integrals; �
0

1

fdf Wt »4

4 lim�
0

1

fdWn
f (t) (limit in probability), where Wn

f (t) 4 !
k41

n

�
0

t

f k (s) ds�
0

1

f k (s) dWs is a

pathwise smooth approximation of the Brownian motion W(t , v).
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(b) Riemannian definition: As a special case of the above expression, let us take
the Haar functions ]Hn , i (t), 0 G iG2n21, 0 Gn( as basis ]f n(. Then we easily see
that,

�
0

1

fdH Wt4 lim
nKQ

!
i40

2n21

2n �
22n i

22n (i11)

f (s) ds Q ]W(22n (i11) )2W(22n i)( .

This type of definition is mentioned in the recent publications of some authors. But as
we notice here, this is a special case of our integral.

(c) Let Dn (t , s) be the kernel given by, Dn (t , s) 4 !
k41

n

f k (t)f k (s),

(t , s� [0 , 1] ). Then we have the following representation for the noncausal integral,

�
0

1

fdf W(t) 4 lim
nKQ

�
0

1

dt�
0

1

f (t , v) Dn (t , s) dWs (limit in probability). For the case of

trigonometric functions, the kernel Dn (t , s) is the Dirichlet kernel appearing in the
theory of Fourier series.

(d) A generalization of the above view: Replace the kernels ]Dn (t , s)( in the
above interpretation by any d- sequences say ]Kn (t , s)(, then we will get a generalized
formula for the noncausal integral.

2.3. Condition for integrability.

Let H0 be the totality of all random functions f (t , v) �H such that,

E�
0

1

Nf (t , v)N2 dtEQ. By Wiener-Itô’s theory of Homogeneous Chaos, we know that

such function f�H0 can be decomposed into the sum of multiple Wiener integrals,
that is:
There exists a set of kernels, say ]k f

n (t ; t1 , R , tn )(n40
Q , such that k f

n�L 2 ( [0 , 1]n11 )
with !

n
n!Vk f

n V

2
n11EQ, symmetric in n-parameters (t1 , Q , tn ) � [0 , 1]n and that,

f (t , v) 4 !
n40

Q

In (k f
n (t ; Q) ), In (k f

n (t ; Q) ) 4��R�k f
n (t ; t1 , R , tn ) dWt1

dWt2
R dWtn

where V QVn stands for the norm in L 2 ( [0 , 1]n )-space.
We will denote by H1 the totality of all H0- functions f (t , v) such that,

!
n41

Q

nn!Vk f
n Vn11

2 EQ. Given a function f�H1 we introduce its stochastic derivative f
A

by the following formula,

f
A(t , s) 4 !

n41

Q

nIn21 (k f
n (t ; s , Q) ) .

Since E�
0

1

�
0

1

( f
A(t , s) )2 dt ds4!nn!Vk f

n V

2
n11 , we notice that the stochastic derivative
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f
A(t , s) is well defined for the f�H1 . Now we can state the condition for the f-integra-
bility of the H1-class functions in the following theorem which was established by the
author in 1984.

THEOREM 2.1 (1984 [7]): Let f�H1 and let ]f n( be an arbitrary c.o.n.s basis. Then
the necessary and sufficient condition for the random function f to be f-integrable is

that the lim
nKQ

�
0

1

�
0

1

f
A(t , s) Dn (t , s) dt ds exists in probability.

2.4. Relation between symmetric and noncausal integrals.

We call a random function f (t , v) quasi martingale when it admits the decomposi-

tion, f (t , v) 4a(t , v)1�
t

f×d 0 Wt where f× �M and a(t) is such that almost every

sample path is of bounded variation in t over [0 , 1]. Notice that if sup
t , sNt2 sNEh

ENa(t)2

2a(s)N24o(h) then f is B-differentiable.
The followings are the basic results concerning the relation between the symmetric

integrals with the noncausal integral.

THEOREM 2.2 ([8]): Every causal B-differentiable function is integrable in non-
causal sense with respect to the system of Haar functions and the sum coincides with
that of the symmetric integrals:

�
0

1

fdH W4�
0

1

fd 0 W1
1

2
�

0

1

f×dt .

We say that a c.o.n.s basis ]f n( is regular provided that it satisfies the next
condition:

sup
n

Vun V2EQ , un (t) 4 !
kGn

f k (t)�
0

t

f k (s) ds(2)

THEOREM 2.3 ([8]): Every quasi martingale (causal or not) becomes f-integrable, iff
the basis ]f n( is regular. In this case the noncausal integral coincides with the symmet-
ric integrals.

Related to this result is a natural and interesting question asking whether there can
or can not be a basis ]f n( which is not regular. This question is affirmatively an-
swered by P. Mejer and M. Mancino [2]. We can proceed more. The next result shows
that a smoothness in Wt of the integrand assures the integrability with respect to any
orhtonormal basis.
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THEOREM 2.4 ([8]): Every quasi martingale which is twice B-differentiable, namely
the B-derivative f× is again a quasi martingale, is u-integrable.

So far for the simplicity we are concerned only with the case of the stochastic integral
of noncausal type with respect to the Brownian motion process. But the discussion can
be extended to the case of more general quasi-martingales (eg. [1], [3], [6] etc).

3. - CASE OF LINEAR BPE

We will review in this section some known results about the Cauchy problem of
the linear BPE (1). For the use in later discussion, we are going to study the case of a
slightly more general BPE as follows;

(3)
.
/
´

¯

¯t
u1]a(t, x)1eW

.
t(

¯

¯x
u4A(t, x)u1nW

.
tB(t, x)1C(t, x), (t, x)�[0, T]3R 1

u(0, x, v)4f (x) .

3.1. Existence of the solution.

In the first article [12] the solution of the problem was defined as a solution in the
weak sense, as we see below;

DEFINITION 3.1: A random function u(t , x , v), (t , x , v) � [0 , T]3R 13V , is
called the (weak) solution of the Cauchy problem provided that,

(s.1) Measurable in (t , x , v) with respect to the B[0 , T]3 BR Q 3 F.

(s.2) For each R 1�xKu(Q , x , Q) �M

(s.3) Moreover, for each x�R 1 fixed, the random function u(t , x , v)(�M) is B-
differentiable (i.e. differentiable with respect to the Brownian motion Wt ).

(s.4) For an arbitrary smooth test function f(t , x) with compact support in the
domain [0 , T]3R 1, it holds the next relation,

�
0

T

dt�
R 1

dx]f t1 (af)x1Af(u1�
0

T

dWt �
R 1

]ef x u1nBf( dx1�
0

T

dt�
R 1

Cf dx1

1�
R 1

f(0 , x) f (x) dx40, P-a.s.

(Remark 2) Here and throughout this article the stochastic integral terms �dW should
be understood in the sense of the integral of the noncausal type, while the symbol
�d 0 W stands for the Itô’s integral. As we have noticed in the preceding section 2, for
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the causal functions the noncausal integral coincides with the symmetric integral or so
called Stratonovich integral.

The classical solution can be defined in a similar way, as follows:

DEFINITION 2 (classical solution): A causal random function u, which is differen-
tiable in x in the L 2-sense, is called the classical solution provided that it satisfies the
conditions (s.1), (s.2), (s.3) and the following (s.4)8 instead of (s.4).

(s.4)8 u(t , x)2 f (x) 4�
0

t

{2e
¯u

¯x
(s , x)1nB(s , x)} dWs1

1�
0

t

]A(s , x) u(s , x)1C(s , x)( ds .

The SPDE of this type stands as a bridge connecting the hyperbolic PDEs with
parabolic ones. This remarkable feature is observed in the next theorem, insisting that
the solution can be constructed through the method of characteristics.

THEOREM 3.1 ([12]): Suppose that the coefficients a(t , x), A(t , x), B(t , x), C(t , x)
and f (x) are all smooth in (t , x) �R13R 1. Then there exists a weak solution
u(t , x , v) for the Cauchy problem (3), and that a solution can be constructed as being
the solution of the following integral equations;

u(t , x)2 f (X (t , x) (0 ) ) 4�
0

t

]Au(s , X (t , x) (s) )1C(s , X (t , x) (s) )( ds

1n�
0

t

B(s , X (t , x) (s) ) dWs(4)

42�
s

t

a(r , X (t , x) (r) ) dr2e(Wt2Ws ), (sG tGT)X (t , x) (s)2x

(Remark 3) (1) It is not difficult to see that the solution constructed in this theorem is
also a classical solution.

(2) In the article [12] the result was first shown for the case that «B40», but it is
easy to see that the result still holds for the general case including the term «B».

3.2. Uniqueness of Solutions.

A partial result concerning the uniqueness property of the weak solution was first
appeared in the article [11], and then a satisfactory result was established in the article
[10] in the framework of the theory of generalized random processes. We will say that
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a random process u(t , x , v) is of S8-class, provided that the application: S �f(t , x) K

KENau , fbN2 is continuous with respect to the topology of the Schwartz space S of
rapidly decreasing functions. Now following the same discussion developed in the
preceding article [10], we can establish the next

THEOREM 3.2: The solution constructed through the method of stochastic character-
istics in the Theorem 3.1 is unique among the S8-class solutions.

(Remark 4) As it was so in the previous subsection 3.1, the result was obtained for
the case «B40». But since the uniqueness property of solutions is not affected by the
existence of the terms, W

.
B(t , x), C(t , x)», the result (3.2) holds true for the present

case. Moreover we can see without serious difficulty the next,

COROLLARY 3.1: The solution u(t , x , v) constructed by the integral equations (4) is
the unique classical solution.

4. - CASE OF NONLINEAR BPE

Let us consider the nonlinear problem as follows:

¯

¯t
u1 ]a(u(t , x) )1eW

.
t(

¯

¯x
u4nB(u ) QW

.
t1C(t , x), (t , x) � [0 , T]3R 1 .(5)

where u(t , x) 4Eu is the mean of the solution u(t , x , v).
We notice that the mean u(t , x) 4Eu of the solution, supposing it exists, would

become a solution of the Cauchy problem of the nonlinear diffusion equation as
follows:

.
/
´

¯

¯t
u1{a(u)

¯

¯x
u1

e Qn

2

¯

¯x
B(u)}4

e 2

2

¯ 2

¯x 2
u1C(t , x)

u(0 , x) 4 f (x)

(6)

Formally this can be easily seen in the following way;

(i) First notice that the white noise term like W
.

g is interpreted in the sense of
noncausal stochastic integral (which gives the same result as the symmetric or
Stratonovich integrals for all such causal and B-differentiable quasi-martingales

g(t , v)) and thus we have the symbolic relation E]W
.

g( 4
1

2
E m ¯

¯W
gn.

(ii) On the other hand, for the solution u(t , x , v) of the problem (5), we have
the relation u× 4nB(u)2e¯x u, which combined with the fact (i) above would yield

that, E]eW
.

¯x u( 4e
e

2
E]¯x u×( 4

e

2
]n¯x B(u)2e¯ x

2 u(.
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(iii) Keeping the above facts in mind, we can get the conclusion by taking the
expectation on both sides of the equation (5).

For the generality and also for the simplicity of the discussion, henceforth we will
suppose the following

Hypothesis. All the coefficients, a(x), B(t , x), C(t , x), f (x), are supposed to be
sufficiently regular so that the Cauchy problem (6) has one and only one classic sol-
ution, which is smooth in (t , x).

EXAMPLE 4.1: There are two BPE models for the so-called Burgers equation.

(Model 1) Put a(x) 4x , B40, C40 in the equation (5) or

(Model 2) put a(x) 40, B(x) 4x 2 , C40, and e Qn41.

In both cases, the average u of the solution u, if exists, becomes the solution of the
Burgers equation below,

¯

¯t
u1u

¯

¯x
u 4

e 2

2

¯ 2

¯x 2
u , u(0 , x) 4 f (x) .(7)

Under the hypothesis it is easy to establish the following result,

THEOREM 4.1: The Cauchy problem for the nonlinear BPE (5), with the initial con-
dition, u(0 , x , v) 4 f (x), has one and only one solution in the class S8 , which can be
constructed by the method of stochastic characteristics, namely as a solution of the fol-
lowing integral equations:

u(t , x , v)2x4�
0

t

]A(s , X (t , x)
s ) u(s , X (t , x)

s , v)1C(s , X (t , x)
s )( ds

1n�
0

t

B(u(s , X (t , x)
s ) ) dWs(8)

X (t , x)
s 2x4 2�

s

t

a(u)(r , X (t , x)
r ) dr2e(Wt2Ws ) .

(Proof) Let v be the solution of the problem (6) and let us consider the Cauchy
problem of the linear BPE as follows:

(9)

¯

¯t
u1]a(v(t, x))1eW

.
t(

¯

¯x
u4nB(v(t, x)) Q W

.
t1C(t, x), (t, x)�[0, T]3R 1.

u(0, x, v)4f (x) P-a.s.

Because the v is smooth enough by hypothesis, we can apply the classic result Theo-
rem 3.1 to this case of the linear BPE (9) and we know the existence and the unique-
ness of the S8-class solution u.
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On the other hand, we see that the average u of the solution satisfies the
followings,

.
/
´

¯

¯t
u1{a(v)

¯

¯x
u1

e Qn

2

¯

¯x
B(v)}4

e 2

2

¯ 2

¯x 2
u1C(t , x)

u(0 , x) 4 f (x)

(10)

Since the function v also solves the problem above, the uniqueness property of the
solution of this linear problem implies that v4 u, and this completes the
proof. r

(Remark 5) The above Theorem 4.1 is relying on the result in the theory of PDE, in
the form of the «Hypothesis» assuring the existence and uniqueness properties of sol-
ution of the Cauchy problem (6). However in a recent article [4], S. Ogawa & A. Ko-
hatsu-Higa have established the same result, for the Burgers’ equation case (Model 2)
in a purely probabilistic way, namely without assuming the Hypothesis.

5. - APPLICATIONS

As applications of the BPE theory, we like to mention two topics, one is the appli-
cation to nonlinear problems in mathematical physics and another is a simpler deriva-
tion of the so-called «Girsanov’s theorem» which is now familiar to those who are
concerned with mathematical finances.

5.1. Reaction - Diffusion equation.

We like to show in this section a BPE model of the Reaction-Diffusion problem
and a method of getting the numerical estimation of the solution. The idea and discus-
sion we are to present here is essentially due to a pioneering paper of Gerald Rosen
[14], where he developed the discussion in a very intuitive way. Because then the the-
ory of BPE introduced by the author in earlier years was not familiar to those who
were concerned with applications of stochastic calculus, he might not have the knowl-
edge about the theory. So we would add to his result nothing essentially new but a dis-
cussion based on the framework of BPE theory which can give us a rigorous explica-
tion and justification of his idea.

Given the standard 3-dim Brownian motion, Wt4 (W 1 , W 2 , W 3 )t, we consider
the BPE of multi dimensional parameter as follows:

¯

¯t
u(t , x)1W

.
Q˜u(t , x) 4g(u(t , x) ), (t , x) �R13R n ,

u(0 , x) 4 f (x) ,

(11)
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where g(x) is a positive or negative valued function which is twice differentiable with
d 2

dx 2
g(x) G0 for all xF0.

The solution of the above problem is defined as being the causal random function
(causal with respect to the 3-dim Brownian motion Wt ) satisfying the following
relation,

u(t , x)2 f (x) 4 !
i41

3

�
0

t
¯

¯xi u(s , x) dW i
s 1�

0

t

g(u)(s , x) ds .(12)

Again the solution can be constructed by the method of stochastic characteris-
tics,

u(t , x)2 f (x) 4�
0

t

g(u)(s , X (t , x) (s) ) ds

where X (t , x)
s 4 (X1

(t , x1 ) (s), X2
(t , x2 ) (s), X3

(t , x3 ) (s) )t ,

and Xi
(t , xi ) (s) 4xi2 (W i

t 2W i
s ) (i41, 2 , 3 ).

(13)

The equation above can be written in a implicit formula as follows:

t4 �
f (X(t , x) (0 ) )

u(t , x)

dr

g(r)
.(14)

The application rK�
Q

r
dt

g(t)
being monotone, we immediately see that, for every fixed

(t , x) the relation uniquely determines the value u(t , x) of the solution.
Now associated to this, we like to consider the BPE as follows,

¯

¯t
u(t , x)1W

.
Q˜u(t , x) 4g(u), (t , x) �R13R n ,

u(0 , x) 4f(x) ,

(15)

where, u(t , x) 4Eu.

Since, ˜w u»4 g ¯

¯W 1
u ,

¯

¯W 2
u , R ,

¯

¯W n
uht

42˜u, it is immediate to see that, if the

solution u exists, the average u(t , x) 4Eu becomes the solution of the following Reac-
tion-Diffusion equation:

¯

¯t
u 4Du1g(u) u(0 , x) 4f(x) .(16)

Let u2 be the average of the solution u of the equation (11). Then, since d 2

dx 2
g(x) G0
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implies that Eg(u) Gg(Eu) 4g(u2 )(u24Eu) by Jensen’s inequality, we have the
inequality,

¯

¯t
u2G

1

2
Du21g(u2 ) .(17)

Hence we see that the u2 is a lower solution of the Reaction- Diffusion equation (16),
namely: u2G u.

This established, we now consider the function u1 determined by the following
implicit formula:

t4 �
Ef (X(t , x) (0 ) )

u1 (t , x)

dr

g(r)
.

Then following the discussion given in G. Rosen’s article [14] we see that,

¯

¯t
u1F

1

2
Du11g(u1 ) .

Hence, by maximum principle, we see that u Gu1, that is the u1 is an upper solution
of the u. So if the difference Nu1 (t , x)2u2 (t , x)N happens to be small enough, the

mean 1

2
(u21u1 ) can be a good estimate to the real solution u of the Reaction-Diffu-

sion equation. Such was the idea of G. Rosen developed in his article.

5.2. Girsanov’s theorem.

As another application of the BPE theory, we will show an elementary derivation
of the so-called Girsanov’s theorem which is now becoming more familiar to those
who are concerned with the mathematical theory of finance.

Let us consider the following Cauchy problem.

¯

¯t
u1W

. ¯

¯x
u4B(t) uW

.
, u(0 , x , v) 4u0 (x) (t , x) � (0 , T]3R 1 .(18)

It is easy to see that the solution is given by,

u(t , x) 4u0 (X (t , x) (0 ) ) exp { �
0

t

B(s) dWs} , where X (t , x) (s) 4Wt2Ws1x .(19)

On the other hand, knowing that u× 4B(t) u2¯x u, we can see after a simple computa-
tion that the mean u(t , x) 4Eu of the solution of (18) becomes the solution of the fol-
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lowing Cauchy problem,

¯

¯t
u1B(t)

¯

¯x
u 4

1

2

¯ 2

¯x 2
u2

1

2
B 2 (t) u, u(0 , x) 4u0 (x) .(20)

Now put, v(t , x) 4 u(t , x) exp {2
1

2
�

0

t

B 2 (s) ds}.

Then we see from (20) that this v(t , x) is the solution of the following,

¯

¯t
v1B(t)

¯

¯x
v4

1

2

¯ 2

¯x 2
v , v(0 , x) 4u0 (x) .(21)

But from (19) we have,

v(t , x) 4E {u0 (Wt1x) exp { �
0

t

B(s) dWs2
1

2
�

0

t

B 2 (s) ds}} .

Comparing this with the fact that, E]u0 (Wt1x)( is the solution of the standard heat
equation, we see that we have derived the Girsanov’s theorem.

RESUME: We are to give some applications of the theory of Brownian particle equa-
tion (BPE), a class of stochastic partial differential equations (SPDE) containing the
Gaussian white noise as coefficients. We will also give a brief review of the noncausal
stochastic calculus on which the theory of the SPDE should be constructed.
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