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ABSTRACT. — We consider a class of nonlinear variational problems involving pointwise
constraints on the second derivatives. We describe the set of data for which these problems
have solutions and, for these data, we analyze the structure of the set of solutions (comparison
properties of the solutions, existence of a minimal solution and its properties, number of solu-
tions, etc.) under suitable assumptions on the asymptotic behaviour of the nonlinear term. No-
tice that the results presented in this paper show that the presence of constraints of this kind
produces some phenomena which are typical of well known problems for semilinear elliptic
equations with «jumping» nonlinearities. We also discuss the reasons which explain why this
analogy with «jumping» problems occurs.

Molteplicità di soluzioni per disequazioni variazionali
con vincoli puntuali sulle derivate

SUNTO. — Si considera una classe di problemi variazionali non lineari con vincoli puntuali
sulle derivate seconde. Si descrive l’insieme dei dati per cui tali problemi hanno soluzioni e, per
tali dati, si analizza la struttura dell’insieme delle soluzioni (proprietà di confronto tra soluzio-
ni, esistenza di una soluzione minima e sue proprietà, numero di soluzioni, ecc.) sotto opportu-
ne ipotesi sul comportamento asintotico del termine non lineare. Si osserva che i risultati pre-
sentati in questo lavoro mostrano che la presenza di vincoli di questo tipo produce alcuni feno-
meni che sono tipici di ben noti problemi per equazioni ellittiche semilineari con nonlinearità di
tipo «jumping». Si discutono inoltre le ragioni che spiegano perché si riscontra questa analogia
con i problemi di tipo «jumping».
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1. - INTRODUCTION

Let V be a bounded connected domain of Rn , c�H0
1 (V), h�L 2 (V) and g : V3

3RKR be a given Carathéodory function.
Let us set

Kc4 ]u�H0
1 (V)NDuGDc ( in weak sense)(

and consider the following problem: find u�Kc such that

�
V

[Du D(v2u)2g(x , u)(v2u)1h(v2u) ] dxF0 (v�Kc .

Our aim is to study the solvability of this problem for a generic pair (c , h) and es-
timate the number of solutions under suitable assumptions on the behaviour of the

lim
tK1Q

g(x , t) /t with respect to the eigenvalues l 1El 2Gl 3 R of the Laplace operator

in H0
1 (V).

If lim
tK1Q

g(x , t) /tEl 1 , it is easy to prove that the problem has at least one solution

for every c�H0
1 (V) and h�L 2 (V) (exactly one solution under some additional as-

sumptions on g). On the contrary, if lim
tK1Q

g(x , t) /tDl 1 , then there exist some pairs

(c , h) for which the problem has no solution, while for other pairs there exist at least
two solutions. For example, if we fix c�H0

1 (V) and consider a term h of the form
h4 h1te1 , where h is a fixed function in L 2 (V), t a real parameter and e1 a positive
eigenfunction related to the first eigenvalue l 1 , under the assumption that

lim
tK1Q

g(x , t) /tDl 1 , there exists t �R such that the problem has no solution for

tE t, has at least one solution for t4 t and at least two solutions for tD t.
In the particular case that g(x , u) 4lu , this problem has been studied in [14]. The

general case, in which g(x , Q) is not necessarily a linear function, is treated in [15] by
using topological methods of Calculus of Variations applied in a non-smooth
setting.

In the present paper we improve the results obtained in [15] by using more refined
methods which gives new information on the structure of the set of pairs (c , h) for
which our problem has solutions as well as on the properties of the set of solutions. In
particular, under a natural monotonicity assumption on g(x , Q), we prove some com-
parison properties of the solutions (mainly Theorem 4.1), which allow us to obtain im-
proved multiplicity results and to evaluate the number of solutions. Also in this work
an important tool is the notion of a new type of supersolution, different from the clas-
sical one, introduced in [14] because it seems appropriate to handle constraints on the
derivatives.

The results we present in this paper show that the presence of the constraint Kc

gives rise to some phenomena which are typical of nonlinear elliptic equations with
«jumping» nonlinearity, that have been investigated in a large number of papers (see,
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for example, [1, 2, 3, 8, 11] and references therein). In particular, Theorems 5.1, 5.10,
5.12 and 5.14 point out an evident analogy with a well known result, stated by Am-
brosetti and Prodi in [2], concerning semilinear elliptic equations of the form

Du1g(u) 4h in V , u40 on ¯V ,

where the nonlinear term satisfies a «jumping» condition involving the first eigenva-
lue, namely

lim
tK2Q

g(t)

t
El 1E lim

tK1Q

g(t)

t
El 2 .

Indeed, although the result in [2] is obtained by using deeply different (non variation-
al) methods, a comparison of the corresponding functionals shows that, in some sense,
the presence of the constraint in our problem plays the same role as the condi-
tion

lim
tK2Q

g(t)

t
El 1

in [2]. This observation explains the analogies with the problems with «jumping»
nonlinearities.

The paper is organized as follows: in section 2 we state the problem, characterize
its solutions as the lower critical points of a suitable functional and introduce some
equivalent obstacle problems which, in particular, give information on the pointwise
properties of the solutions; in section 3 we report the definition of supersolution (in-
troduced in [14] and [15]) and some properties of the supersolutions which are used
in section 4 to study the structure of the set of solutions and the set of data (c , h) for
which there exist solutions; finally, section 5 is devoted to prove existence, nonexis-
tence and multiplicity results.

The following notations will be used throughout this paper.

Notations 1.1

– We denote by e1 the positive eigenfunction related to the first eigenvalue l 1 of
2D in H0

1 (V), satisfying s
V

e1
2 dx41 (l 1 is a simple eigenvalue since V is assumed to

be a connected domain).

– For all t�R , we set

Pt4 {u�L 2 (V) N�
V

ue1 dx4 t} and Ht4 {u�L 2 (V) N�
V

ue1 dxG t} .

– The Hilbert space we shall consider in this paper will be H0
1 (V). We shall de-

note by V QV and V QVp the usual norms in H0
1 (V) and in L p (V) respectively.
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– For any set E we denote by IE the indicator function of E (i.e. IE (u) 40
if u�E and IE (u) 41Q if u�E).

2. - PRELIMINARY RESULTS

Let V be a bounded domain of Rn and c a function in H 1
0 (V); set

Kc4 {u�H0
1 (V) N�

V

Du Dw dxF�
V

Dc Dw dx (w�C0
Q (V), wF0}(2.1)

(note that Kc is a convex cone with vertex in c).
The following lemma shows that the solutions we obtain when we introduce the

constraint Kc in an elliptic problem, solve a suitable obstacle problem (i.e. a variation-
al inequality involving only pointwise unilateral constraints on the solution and not on
its derivatives).

LEMMA 2.1: Assume c�H0
1 (V) and k�L q (V), with qD1 and qF2n/(n12) if

nD2.
Let us set

K 4 ]u�H0
1 (V) N uFD21 k a.e. in V( .

Then a function u�H0
1 (V) solves the problem

.
/
´

u�Kc

�
V

Du D(v2u) dx1�
V

k(v2u) dxF0 (v�Kc
(2.2)

if and only if it is solution of the variational inequality

.
/
´

u� K

�
V

Du D(w2u) dx2�
V

Dc D(w2u) dxF0 (w� K .(2.3)

PROOF: Suppose that u�Kc solves problem (2.2).
If, for d�C0

Q (V), dF0 in V , we put v4u2D21 d , then v�Kc and so inequality
(2.2) implies

�
V

(u2D21 k) ddxF0 (d�C0
Q (V), dF0 .

Therefore u� K.
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Now, if w is in K, then

(2.4) �
V

Du D(w2u) dx2�
V

Dc D(w2u) dx4

4�
V

(Du2Dc) D(w2u) dxF�
V

(Du2Dc) D(D21 k2u) dx ,

where the last inequality is true because DuGDc (in weak sense) and wFD21 k . It
holds

�
V

(Du2Dc) D(D21 k2u) dx4�
V

Du D(c2u) dx1�
V

k(c2u) dx ,

which is nonnegative by assumption (notice that c�Kc).
Conversely, let u� K be a solution of problem (2.3).
If, for a�C0

Q (V), aF0 in V , we put w4u1a , then w� K; therefore inequality
(2.3) implies

�
V

(Du2Dc) Da dxF0 (a�C0
Q (V), aF0 ,

that is u�Kc .
Now, if v is in Kc , then

(2.5) �
V

Du D(v2u) dx1�
V

k(v2u) dx4

4�
V

D(u2D21 k) D(v2u) dxF�
V

D(u2D21 k) D(c2u) dx ,

where the last inequality is true because uFD21 k and D(c2u) FD(v2u), in weak
sense. It holds

�
V

D(u2D21 k) D(c2u) dx4�
V

Du D(D21 k2u) dx2�
V

Dc D(D21 k2u) dx ,

which is nonnegative because u solves problem (2.3) and D21 k� K. q.e.d.

Let g : V3RKR be a Carathéodory function such that, for almost all x�V ,

Ng(x , t)NGa(x)1bNtNp21 (t�R ,(2.6)

for suitable p , b�R , pD1, a�L p/(p21) (V), with pG2*42n/(n22) if nD2.



— 166 —

DEFINITION 2.2: Assume that the function g satisfies condition (2.6). Then, for all
h�L 2 (V) and c�H0

1 (V), we say that u is solution of problem Pc (h) if

Pc (h)
.
/
´

u�Kc

�
V

[Du D(v2u)2g(x , u)(v2u)1h(v2u) ] dxF0 (v�Kc .

REMARK 2.3: Notice that Lemma 2.1 gives also information on the pointwise prop-
erties of the solutions of variational inequalities involving pointwise constraints on the
laplacian. In fact, a function u which solves problem (2.2) must solve also the varia-
tional inequality (2.3), whose pointwise meaning is the following: uFD21 k a.e. in V
and Du4Dc where uDD21 k.

In analogous way, if we set

Ku4 ]w�H0
1 (V)NwF2D21 ( g(x , u)2h) a.e. in V( ,

then we can say that a function u solves problem Pc (h) if and only if

.
/
´

u� Ku

�
V

Du D(w2u) dx2�
V

Dc D(w2u) dxF0 (w� Ku ,(2.7)

which means that uF2D21 ( g(x , u)2h) a.e. in V and Du4Dc where uD2

2D21 ( g(x , u)2h).

Now let us introduce some notions of non-smooth analysis (see, for example,
[4, 7, 9]), we shall use to describe the variational nature of problem Pc (h).

Let H be an Hilbert space with inner product (Q , Q) and norm V QV.
For all f : HKRN ]1Q( let us define the domain of f to be the set

D( f ) 4 ]u�H N f (u) E1Q( .

As usual, for all c�R we denote by f c the sublevel of f:

f c4 ]u�H N f (u) Gc( .

For all u� D, we call subdifferential of f at u the set ¯2 f (u) of all a in H such
that

lim inf
vKu

f (v)2 f (u)2 (a , v2u)

Vv2uV

F0 .

If ¯2 f (u) c¯, then we call subgradient of f at u, and denote it by grad2 f (u), the
element of ¯2 f (u) having minimal norm (it is easy to check that ¯2 f (u) is a closed and
convex subset of H).
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We say that u is a lower critical point for f if 0�¯2f (u), that is if grad2f (u)40.

DEFINITION 2.4: Assume that the function g satisfies condition (2.6). Then, for all
c�H0

1 (V) and h�L 2 (V), we consider the functionals fh , fh , c : H0
1 (V) KRN ]1Q(

defined by

fh (u) 4
1

2
�

V

(NDuN22G(x , u) ) dx1�
V

hu dx ,

where G(x , t) 4 s
0

t

g(x , s) ds , and fh , c4 fh1 IKc
(see Notations 1.1).

Notice that condition (2.6) implies that there exist A�L 1 (V) and B�R such that,
for almost all x�V,

NG(x , t)NGA(x)1BNtNp .(2.8)

Hence, under this condition, fh is a C 1 functional and fh , c is lower semicontinuous
(because Kc is a closed subset of H0

1 (V)). Moreover it is easy to verify that a function
u�H0

1 (V) solves problem Pc (h) if and only if 0 �¯2 fh , c (u).

3. - PROPERTIES OF THE SUPERSOLUTIONS

In this section we report (for the convenience of the reader) the definition of su-
persolution introduced in [14, 15] and some properties will be used in next sections.
Notice that these properties allow us to use these supersolutions of new type as the
classical ones. In particular, Propositions 3.6 and 3.7 show that they can be used as
«upper ficticious obstacle» in our problem and that the existence of a supersolution c
implies the existence of a solution uG c.

DEFINITION 3.1: Let h�L 2 (V) and g : V3RKR be a Carathéodory function sat-
isfying condition (2.6). We say that c �H0

1 (V) is a supersolution for the operator
I1D21 ( g(x , Q)2h) if

�
V

(Dc Dw2g(x , c) w1hw) dxF0 (w�K0 .

REMARK 3.2: It is evident that every solution of problem Pc (h) is a supersolution
for the operator I1D21 ( g(x , Q)2h). One could not say that it is a supersolution in
the classical sense, i.e. for the operator D1g(x , Q)2h.

REMARK 3.3: If c is a supersolution for the operator I1D21 ( g(x , Q)2h) and
h 8Fh, then it is easy to verify that c is a supersolution for the operator
I1D21 ( g(x , Q)2h 8 ) too.
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An easy computation shows the following statement.

PROPOSITION 3.4: Let g satisfy condition (2.6); then the function c is a supersolu-
tion for the operator I1D21 ( g(x , Q)2h) if and only if c1D21 ( g(x , c)2h) F0 a.e.
in V .

PROPOSITION 3.5: Assume that the function g satisfies condition (2.6) and that

g(x , Q) is a non-decreasing function for a.a. x�V .(3.1)

Let c1 , c2 be supersolutions for the operator I1D21 ( g(x , Q)2h). Then c1Rc2 is
a supersolution too.

PROOF: Proposition 3.4 and assumption (3.1) guarantee that

c1F2D21 ( g(x , c1 )2h) F2D21 ( g(x , c1Rc2 )2h) a.e. in V

c2F2D21 ( g(x , c2 )2h) F2D21 ( g(x , c1Rc2 )2h) a.e. in V .

Therefore

c1Rc2F2D21 ( g(x , c1Rc2 )2h) a.e. in V

that is, again by Proposition 3.4, c1Rc2 is a supersolution. q.e.d.

PROPOSITION 3.6: Let g satisfy conditions (2.6) and (3.1) and c �Kc be a supersolu-
tion for the operator I1D21 ( g(x , Q)2h). Set K4 ]u�Kc NuG c a.e. in V( and as-
sume that w is a lower critical point for fh1 IK . Then w is a solution of problem
Pc (h).

PROOF: First of all, let us remark that c F2D21 ( g(x , c)2h) a.e., by Proposition
3.4. Moreover g(x , w)2hGg(x , c)2h , because w�K and (3.1) holds. So we
obtain:

2D21 ( g(x , w)2h) G2D21 ( g(x , c)2h) G c.(3.2)

The function w verifies

�
V

[DwD(v2w)2g(x , w)(v2w)1h(v2w) ] dxF0 (v�K ;

therefore, if we put

f
A(u) 4

1

2
�

V

NDuN2 dx1�
V

[h2g(x , w) ] u dx ,(3.3)
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w is a lower critical point for f
A

1IK . The functional f
A

1IKc
is strictly convex, lower

semicontinuous and coercive; so there exists only one minimum point for f
A on Kc ; let

us call it wA.
The function wA verifies

�
V

DwA D(v2wA) dx2�
V

( g(x , w)2h)(v2wA) dxF0 (v�Kc .(3.4)

The functional f
A

1IK admits only one lower critical point (its unique minimum point),
because it is strictly convex; so, if we show that wA G c, then we have wA 4w and (3.4)
gives us the desired conclusion.

Applying Lemma 2.1 with k42g(x , w)1h , we have that wA is a lower critical
point for the functional F : H0

1 (V) KR defined by

F(u) 4
1

2
�

V

NDuN2 dx2�
V

Dc Du dx(3.5)

and constrained on the set

K 4 ]u�H0
1 (V)NuF2D21 ( g(x , w)2h) a.e. in V( .

The function c is in the set K by (3.2) and it verifies Dc GDc (in weak sense) by as-
sumption; then it is a supersolution for the operator F 8 (in the usual sense: see, for
example, [16, 17]).

Therefore, as it is stated in [16], the functional F1 IK has a lower critical point,
that we call w 8 , satisfying w 8G c; but F1 IK has only one critical point, because it is
strictly convex, so wA 4w 8 . This implies that wA G c and so wA 4w , which completes
the proof. q.e.d.

We can now prove the following assertion.

PROPOSITION 3.7: Let g satisfy conditions (2.6) and (3.1). If c �Kc is a supersolu-
tion for the operator I1D21 ( g(x , Q)2h), then problem Pc (h) has at least one solu-
tion w such that wG c a.e. in V .

PROOF: In this proof we use the notations introduced in Proposition 3.6. It is clear
that to prove the assertion it is sufficient to find a minimum point w for the functional
fh1 IK and then apply Proposition 3.6. Such a minimum point there exists because
K% ]u�H0

1 (V)NcGuG c( with c and c in H0
1 (V); taking also into account condi-

tion (2.6), it follows that the sublevels of fh1 IK are bounded in H0
1 (V); hence every

minimizing sequence for fh1 IK converges, up to a subsequence, weakly in H0
1 (V) and

strongly in L p (V); since fh1 IK is weakly lower semicontinuous, the limit point gives
the minimum of fh1 IK , as desired. q.e.d.
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4. - PROPERTIES OF THE SET OF SOLUTIONS

The following theorem will play a crucial role to analyse the structure of the set of
solutions and to evaluate their number.

THEOREM 4.1: Let g satisfy conditions (2.6) and (3.1). If u1 and u2 are solutions of
Pc (h) and u1Gu2 a.e. in V , then Du1FDu2 in weak sense in V .

To prove this theorem, we need the following lemma.

LEMMA 4.2: Under the assumptions of Theorem 4.1 we have:

u1Fu22D21 ( g(x , u1 )2g(x , u2 ) ) a.e. in V .

PROOF: Let us define

K14 ]u�H0
1 (V)NuF2D21 ( g(x , u1 )2h) a.e. in V(

and set

uA 4u22D21 ( g(x , u1 )2g(x , u2 ) ) .

Since u2 is a solution of Pc (h), then we have u2F2D21 ( g(x , u2 )2h) and so it fol-
lows immediately that uA � K1 .

The function u1 is the unique minimum point of the functional F (see (3.5)) con-
strained on the closed convex set K1 , because F is strictly convex and (by Lemma 2.1)
the solution u1 is a critical point for F constrained on K1 .

The functional F has a unique minimum point, we call u 8 , on the convex closed set
]u� K1 NuF uA a.e. in V(; if we show that u 84u1 , then u1D uA and the lemma will be
proved.

For every w�H0
1 (V), let us define P

A(w) 4wSuA. Now suppose w� K1 ; since
uA � K1 , then P

A(w) � ]u� K1 NuF uA(.
From the convexity of F we infer that

F(w) FF(PA(w) )1F 8 (PA(w) )[w2P
A(w) ](4.1)

and that

F(PA(w) ) FF(u 8 )1F 8 (u 8 )[P
A(w)2u 8] .(4.2)

Since u 8 is the minimum point for F on ]u� K1 NuF uA( and P
A(w) � ]u� K1 NuF

F uA(, it follows that

F 8 (u 8 )[P
A(w)2u 8] F0 .(4.3)
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Furthermore we claim that

F 8 (PA(w) )[w2P
A(w) ] F0 .(4.4)

In fact, since P
A(w) 4 uA where w2P

A(w) c0, we have

F 8 (PA(w) )[w2P
A(w) ] 4�

V

DP
A(w) D(w2P

A(w) ) dx2�
V

DcD(w2P
A(w) ) dx4

4�
V

DuA D(w2P
A(w) ) dx2�

V

DcD(w2P
A(w) ) dx4�

V

Du2 D(w2P
A(w) ) dx1

1�
V

[g(x , u1 )2g(x , u2 ) ](w2P
A(w) ) dx2�

V

DcD(w2P
A(w) ) dx .

Now observe that u21 (w2P
A(w) ) F2D21 ( g(x , u2 )2h), as one can easily verify

taking into account that u2 is a solution of problem Pc (h), and wF2D21 ( g(x , u1 )2

2h) since w� K1 .
Moreover we have also

u22 (w2P
A(w) ) F2D21 ( g(x , u2 )2h)

because w2P
A(w) G0 and u2 solves Pc (h). Therefore, from Lemma 2.1 we infer

that

�
V

Du2 D(w2P
A(w) ) dx2�

V

Dc D(w2P
A(w) ) dx40 .

On the other hand condition (3.1) and the assumption u1Gu2 imply that

�
V

[ g(x , u1 )2g(x , u2 ) ](w2P
A(w) ) dxF0

because (w2P
A(w) ) G0. Thus (4.4) is proved.

By (4.1), R ,(4.4), we can conclude that

F(w) FF(u 8 ) (w� K1 ;

so u 84u1 , since u1 is the unique critical point for F on K1 . q.e.d.

PROOF OF THEOREM 4.1: In this proof we use the notations introduced in the proof
of Lemma 4.2.

Define Q : H0
1 (V) KR by

Q(u) 4
1

2
�

V

ND(u2u2 )N2 dx ;
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our assertion is that

Q 8 (u1 )[a] 4�
V

D(u12u2 ) Da dxG0 (a�H0
1 (V), aF0 a.e. in V .(4.5)

Now consider a fixed a�H0
1 (V), aF0 a.e. in V; from the convexity of Q we

infer

Q(u12a) FQ(PA(u12a) )1Q 8 (PA(u12a) )[u12a2P
A(u12a) ](4.6)

and

Q(PA(u12a) ) FQ(u1 )1Q 8 (u1 )[P
A(u12a)2u1 ) ] .(4.7)

The assumption u1Gu2 and condition (3.1) imply

(4.8) Q 8 (PA(u12a) )[u12a2P
A(u12a) ] 4Q 8 (uA)[u12a2P

A(u12a) ] 4

4�
V

D(uA 2u2 ) D(u12a2P
A(u12a) ) dx4

4�
V

[ g(x , u1 )2g(x , u2 ) ][u12a2P
A(u12a) ] dxF0 ,

because u12a2P
A(u12a) G0.

Furthermore

(4.9) Q 8 (u1 )[P
A(u12a)2u1 ) ] 4�

V

D(u12u2 ) D(PA(u12a)2u1 ) dx2

2�
V

Dc D(PA(u12a)2u1 ) dx1�
V

Dc D(PA(u12a)2u1 ) dx4

4F 8 (u1 )[P
A(u12a)2u1 ]2F 8 (u2 )[P

A(u12a)2u1 ] ,

with

2F 8 (u2 )[P
A(u12a)2u1 ] F0(4.10)

because u2�Kc and 2[P
A(u12a)2u1 ) ] F0 (since uA Gu1 by Lemma 4.2).

Now we claim that

F 8 (u1 )[P
A(u12a)2u1 ] 40 ;(4.11)

indeed, arguing as before, we infer that

2F 8 (u1 )[P
A(u12a)2u1 ] F0 ;(4.12)
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moreover we have

F 8 (u1 )[P
A(u12a)2u1 ] F0(4.13)

because u1 is the minimum point for F constrained on K1 and P
A(u12a) � K1 (since

uA � K1).
From (4.6), R ,(4.11) it follows that

Q(u12a) FQ(u1 ) (a�H0
1 (V), aF0 a.e. in V ;

this implies (4.5) and completes the proof. q.e.d.

In next propositions we use also the supersolutions to describe some properties of
the set of solutions and of the set of data for which the problem has solutions.

PROPOSITION 4.3: Under the same assumptions as in Proposition 3.7, if problem
Pc (h) has solution, then there exists a solution for every problem Pc 8 (h 8 ) such that
h 8Fh a.e. in V and Dc 8FDc in weak sense.

The proof follows easily from Proposition 3.7, taking into account Remarks 3.2
and 3.3.

Another consequence of Proposition 3.7 is the following result, which can be easi-
ly proved using Proposition 3.5.

PROPOSITION 4.4: Under the same assumptions as in Proposition 3.7, if u1 and u2 are
solutions of problem Pc (h), then there exists a solution u such that uGu1Ru2 .

In the proof of next proposition, we need also the following result (see [7], for
example).

LEMMA 4.5: Let H be an Hilbert space and f : HKRN ]1Q( a lower semicon-
tinuous function. Suppose that there exists c�R such that

f (v) F f (u)1 (a , v2u)2cVv2uV

2 (u , v� D( f ), (a�¯2 f (u) .

Let (um )m and (am )m be two sequences such that um� D( f ), am�¯2 f (um ) for every
m�N , lim

mKQ
um4u and am �a weakly in H .

Then u� D( f ), lim
mKQ

f (um ) 4 f (u) and a�¯2 f (u).

PROPOSITION 4.6: Assume that g satisfies conditions (2.6) and (3.1) and, in addition,
there exists l�R such that, for almost all x�V ,

g(x , t1 )2g(x , t2 )

t12 t2

Gl for t1c t2 .(4.14)

If problem Pc (h) has solution, then there exists a solution u such that
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i) Du FDu in weak sense in V , for every u solution of Pc (h)

(hence u is the minimal solution, i.e.

ii) u Gu a.e. in V , for every u solution of Pc (h)).

PROOF: It is clear that property (i) could be sufficient to obtain also (ii).
However, in this proof we need to prove first (ii) and then (i) will be a direct con-

sequence of (ii) and Theorem 4.1.
Notice that condition (4.14) implies

(4.15) fh , c (v) F fh , c (u)1 fh , c8 (u)[v2u]1
1

2
Vv2uV

22
l

2
Vv2uV

2
2F

F fh , c (u)1 (a , v2u)1
1

2
Vv2uV

22
l

2
Vv2uV

2
2

(u , v�Kc (a�¯2 fh , c (u) .

Therefore, since

Vv2uV

2
2Gc(V)Vv2uV

2 (u , v�H0
1 (V)

for a suitable constant c(V), we can apply Lemma 4.5 with H4H0
1 (V) and

f4 fh , c .
Let (um )m be a sequence of solutions of Pc (h) such that

lim
mKQ

�
V

um dx4 inf { �
V

udxNu solution of Pc (h)}
(notice that this infimum is finite because there exists at least one solution and
Kc% ]u�H0

1 (V)NuFc().
Let us fix v�Kc . By (4.14) and (4.15) we obtain

(4.16) fh (v) F fh (um )2
l

2
Vv2um V

2
2F

F
1

2
�

V

NDumN2 dx2�
V

Ng(x , 0 )NNumNdx2
l

2
�

V

um
2 dx1�

V

hum dx2
l

2
Vv2um V

2
2 ,

with g(Q , 0 ) �L p/(p21) (V) because of condition (2.6).
We claim that sup

m�N
Vum V2E1Q . Contrary to our claim, suppose that, up to a sub-

sequence, lim
mKQ

Vum V241Q . Let us set zm4um /Vum V2 ; from (4.16) we deduce that

sup
m�N

Vzm VE1Q and, consequently, (zm )m (or a subsequence) converges in L 2 (V) and

a.e. in V to a function z�H0
1 (V) with the properties that VzV241 and zF0 because
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umFc . Hence

lim
mKQ

�
V

zm dx4�
V

zdxD0 .

But this is impossible, since

lim
mKQ

�
V

zm dx4 lim
mKQ

1

Vum V2

�
V

um dxG0

because lim
mKQ

s
V

um dxE1Q and lim
mKQ

Vum V241Q .

So (um )m must be bounded in L 2 (V) and, using (4.16), we obtain that it is bound-
ed in H0

1 (V) too. Then, up to a subsequence, (um )m converges in L 2 (V) and weakly in
H0

1 (V) to a function u.
Now consider (4.16) with v replaced by u. Then, taking into account (2.6), (4.14)

and Fatou’s Lemma, it is a simple matter to see that

lim sup
mKQ

�
V

NDumN2 dxG�
V

NDuN2 dx .

This implies that, really, umK u in H0
1 (V).

Hence, applying Lemma 4.5, we have that u is a solution of Pc (h).
It is easily seen that

�
V

u dx4 min { �
V

u dxNu solution of Pc (h)} ;(4.17)

so we deduce that u is a solution verifying (ii): suppose, arguing by contradiction, that
there is a solution u such that uRuc u; then there exists another solution wG uRu ,
by Proposition 4.4; therefore s

V
w dxE s

V
u dx , in contradiction with (4.17).

Thus property (ii) is proved (and (i) follows immediately taking into account
Theorem 4.1). q.e.d.

Also next assertion follows from Lemma 4.5 in a straightforward way.

PROPOSITION 4.7: Assume that g satisfies conditions (2.6) and (4.14), for a l�R . If
h�L 2 (V) and c�H0

1 (V), then the set of the solutions of Pc (h) is closed in
H0

1 (V).

REMARK 4.8: Actually, the set of the solutions of problem Pc (h) is closed in L 2 (V)
too. To see this, we have to consider the functional fh defined on L 2 (V) instead of
H0

1 (V), setting fh41Q on L 2 (V)0H0
1 (V).

Another consequence of the properties of the supersolutions is the following re-
sult, that holds when g(x , Q) is convex.
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PROPOSITION 4.9: Under the same assumptions of Proposition 3.7, if we assume in
addition that

g(x , Q) is a convex function for a . a . x�V ,(4.18)

then the set of the pairs (c , h) such that Pc (h) has solution is convex.

PROOF: It suffices to observe that, if ui is a solution of problem Pc i
(hi ), i41, 2 ,

then tu11 (12 t)u2 is in Ktc11 (12 t)c2
and is a supersolution for the operator

I1D21 ( g(x , Q)2 th12 (12 t)h2 ) for all t� [0 , 1], because of the convexity of
g(x , Q). Hence we can complete the proof using Proposition 3.7. q.e.d.

Now, using supersolutions, let us describe some closure properties of the set of
data c and h for which Pc (h) has solution.

LEMMA 4.10: Let g satisfy conditions (2.6) and (4.14) and assume, in addition, that
there exist l �R and c�L 2 (V) such that, for almost all x�V ,

g(x , t) F l t2c(x) (tF0 .(4.19)

Then for every u�Kc and a�¯2 fh , c (u) we have:

�
V

[ (l 12l) u 12 (l 12l) u 21c1h]e1 dxF (a , e1 ) .

PROOF: Set v4u1e1 (note that v�Kc). Then, for every a�¯2 fh , c (u), it
holds

(4.20) (a , e1 ) 4 (a , v2u) G f 8h (u)[v2u] 4

4�
V

[Du De12g(x , u) e11he1 ] dx4�
V

[l 1 u2g(x , u)1h] e1 dx .

Furthermore, if V14 ]x�VNu(x) F0(, then

�
V

g(x , u) e1 dx4 �
V1

g(x , u) e1 dx1 �
V0V1

g(x , u) e1 dxF

F �
V1

(lu2c) e1 dx1 �
V0V1

(lu2c) e1 dx4�
V

(lu 12lu 22c) e1 dx ,

which, together with (4.20), completes the proof. q.e.d.

PROPOSITION 4.11: Suppose that g satisfy conditions (2.6), (4.14) and (4.19) with
l Dl 1 . Let (cm )m and (hm )m be two sequences such that, for all m�N , cm�H0

1 (V),
hm�L 2 (V) and Pcm

(hm ) has at least one solution um . Furthermore assume that cmK
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Kc in H0
1 (V) and hmKh in L 2 (V), as mKQ . Then:

a) the sequence (um )m is bounded in H0
1 (V);

b) if (um )m (or a subsequence) converges to u in L 2 (V) and weakly in H0
1 (V),

then u solves problem Pc (h);

c) problem Pc (h) has at least one solution.

PROOF: Taking into account (4.15), we have

(4.21) fhm
(cm ) F fhm

(um )2
l

2
Vcm2um V

2
2F

F
1

2
�

V

NDumN2 dx2�
V

Ng(x , 0 )NNumNdx2
l

2
�

V

um
2 dx1�

V

hm um dx2
l

2
Vcm2um V2

2

with s
V

Ng(x , 0 )NNumNdxGc1 Vum V , for a suitable c1�R , because of condition (2.6).

Let us prove that the sequence (um )m is bounded in L 2 (V). In fact assume by contra-
diction that, up to a subsequence, lim

mKQ
Vum V241Q . If we put zm4um /Vum V2 , from

(4.21) we deduce that (zm )m is bounded in H0
1 (V); so, up to a subsequence, it con-

verges in L 2 (V) and a.e. in V , to a function z�H0
1 (V). The function z verifies:

VzV241 and zF0 in V(4.22)

(since umFcm a.e. in V and cmKc in H 1
0 (V)).

By Lemma 4.10 we have

1

Vum V2

�
V

[ (l 12l) u 1
m 2 (l 12l) um

21c1hm ] e1 dxF0 ,

from which, as mKQ , we obtain (l 12l) s
V

ze1 dxF0, that is impossible because

l Dl 1 and (4.22) holds. So the sequence (um )m must be bounded in L 2 (V) and then,
from (4.21), it follows that it is bounded in H0

1 (V) too. Thus (a) is proved.
Let us prove (b). For all v�Kc , set vm4v1cm2c; then vm�Kcm

(m�N and
so, by (4.15),

fhm
(vm ) F fhm

(um )2
l

2
Vvm2um V

2
2 (m�N .(4.23)

Now let mKQ in (4.23); since vmKv in H0
1 (V), we get

fh (v) F fh (u)2
l

2
Vv2uV

2
2 (v�Kc

and this gives (b).
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Assertion (c) is a direct consequence of (a) and (b). q.e.d.

Let us remark that in Proposition 4.11 the condition l Dl 1 cannot be removed, as
shown by the following example.

EXAMPLE 4.12: Let g(x , t) 4l 1 t; choose c�H0
1 (V) such that sup

V
(c/e1 ) 41Q

and set cm4c and hm4e1 /m for all m�N. Then Theorem 6.1 of [14] guarantees
that Pcm

(hm ) has a unique solution um for all m�N, while the limit problem Pc (0) has
no solution. In fact, by Theorem 6.1 of [14], every solution of Pc (0) should be an
eigenfunction related to the first eigenvalue l 1 (which cannot belong to Kc under our
assumptions). In this case the sequence of solutions (um )m is not bounded in
H0

1 (V).

5. - EXISTENCE AND MULTIPLICITY RESULTS

In this section we use mini-max arguments and topological methods of Calculus of
Variations for non-smooth functionals in order to evaluate the number of solutions of
problem Pc (h).

THEOREM 5.1: Let g satisfy conditions (2.6), (3.1) and (4.14); let c�H0
1 (V) and

h �L 2 (V). Then there exists t 1� [2Q , 1Q[ such that problem Pc (h1te1 ) has at
least one solution for every tDt 1 , while it has no solution if tEt 1 .

Furthermore, if we assume in addition that condition (4.19) holds with l Dl 1 , then
t 1D2Q , Pc (h1t 1 e1 ) has solution and there exists t 2Ft 1 such that problem Pc (h1

1te1 ) has at least two solutions for every tDt 2 .

REMARK 5.2: Without the additional assumption that condition (4.19) holds with
l Dl 1 , we cannot say that problem Pc (h1t 1 e1 ) has solution. In fact, arguing as in
Example 4.12, it is simple to give an example in which Pc (h1t 1 e1 ) has no solution: it
suffices to choose c as in Example 4.12; then, for g(x , t) 4l 1 t and h 40, we have
t 140 (as one can easily verify) and problem Pc (0) has no solution.

In order to prove Theorem 5.1, we need some preliminary results. In particular,
Lemma 5.4 gives us a compactness property for the (non-smooth) functional fh , c ,
which is analogous to the Palais-Smale condition.

LEMMA 5.3: Let c�H0
1 (V), h �L 2 (V) and g satisfy conditions (2.6) and (4.14).

Then, for all t�R such that KcOHtc¯ (see Notations 1.1), the sublevels of the func-
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tional fh, c1 IHt
are bounded in H0

1 (V) (hence the minimum of fh, c on any closed subset
of Ht is achieved).

PROOF: Condition (4.14) implies

(5.1) fh (u)F
1

2
�

V

NDuN2 dx2
l

2
�

V

u 2 dx2�
V

Ng(x , 0 ) uNdx1�
V

hu dx (u�H0
1 (V)

with s
V

Ng(x , 0 ) uNdxGc1 VuV because of (2.6).

By (5.1), in order to prove the lemma it is sufficient to show that the sublevels of
fh, c1 IHt

are bounded in L 2 (V). Suppose, contrary to our claim, that there exists a se-
quence (um )m in a sublevel of fh, c1 IHt

such that lim
mKQ

Vum V241Q and set zm4

4um /Vum V2 . Inequality (5.1) implies

lim sup
mKQ

�
V

NDzmN2 dxE1Q .

Hence there exists a function z�H0
1 (V) such that (up to a subsequence) zmKz in

L 2 (V) and a.e. in V. Furthermore

VzV241 and zF0 (because umFc) .(5.2)

On the other hand we have

lim
mKQ

1

Vum V2

�
V

um e1 dx4 lim
mKQ

�
V

zm e1 dx4�
V

ze1 dx ,

which is not possible, because �
V

um e1 dxG t implies

lim
mKQ

1

Vum V2

�
V

um e1 dxG0 ,

while s
V

ze1 dxD0 by (5.2). q.e.d.

LEMMA 5.4: Let g satisfy conditions (2.6) and (4.14) and assume that condition
(4.19) holds with l Dl 1 . If (um )m is a sequence in Kc such that ¯2 fh , c (um ) c¯ (m�N
and sup

m�N
Vgrad2 fh , c (um )VE1Q , then (um )m is bounded in H0

1 (V).

If we assume in addition that lim
mKQ

Vgrad2 fh , c (um )V40, then the sequence (um )m

is relatively compact in H0
1 (V).
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PROOF: Set am4 grad2 fh , c (um ) and fix u �Kc . Then, arguing as in (4.15), we
have

(5.3) fh , c (u) F fh , c (um )1 (am , u2um )2
l

2
Vu2um V2

2F
1

2
�

V

NDumN2 dx2

2
l

2
�

V

um
2 dx2�

V

Ng(x , 0 ) um Ndx1�
V

hum dx1 (am , u2um )2
l

2
Vu2um V2

2 .

Let us prove that (um )m is bounded in L 2 (V). Arguing by contradiction, assume
that (up to a subsequence) lim

mKQ
Vum V241Q .

Set zm4um /Vum V2 . From (5.3) it follows that (zm )m is bounded in H0
1 (V); so there

is a subsequence (still denoted by (zm )m) converging in L 2 (V) and a.e. in V to a func-
tion z�H0

1 (V). Furthermore

VzV241 and zF0 in V ( because umFc) .(5.4)

On the other hand, from Lemma 4.10 it follows that

(l 12l)�
V

ze1 dxF0

which is not possible because l Dl 1 and (5.4) holds.
Hence (um )m is bounded in L 2 (V) and, by (5.3), in H0

1 (V) too.
Now, to prove the second claim, suppose also that amK0 in H0

1 (V). Since (um )m

is bounded in H0
1 (V), up to a subsequence we have that umKu in L 2 (V) and weakly

in H0
1 (V) and L p (V), for a suitable u�H0

1 (V). By (4.15) it is

fh , c (u) F fh , c (um )1 (am , u2um )2
l

2
Vu2um V2

2 ,

with (am , u2um ) K0 (as Vam VK0 and (Vum V)m is bounded).
Therefore

lim sup
mKQ

fh , c (um ) G fh , c (u) .

Taking into account (2.6) and (4.14), by Fatou’s Lemma, we infer

lim sup
mKQ

�
V

NDum N2 dxG�
V

NDuN2 dx ,

which implies umKu in H0
1 (V). q.e.d.

PROOF OF THEOREM 5.1: Taking into account Proposition 4.3, we have only to
prove that there exists t�R such that problem Pc (h1te1 ) has solution.

Choose t�R such that tD s
V

ce1 dx . Since the functional fh , c is weakly lower semi-

continuous, Lemma 5.3 implies that, for all h�L 2 (V), the minimum of fh , c con-
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strained on the subsets Ht and Pt is achieved. Moreover, for t sufficiently large, we
have

(5.5) min ] fh1te1 , c (u)Nu�Ht( G fh1te1 , c (c) 4 fh (c)1t�
V

ce1 dxE

E min ] fh, c (u)Nu�Pt(1tt4 min ] fh1te1 , c (u)Nu�Pt( .

Hence a solution of problem Pc (h1te1 ) can be obtained as minimum point of the
functional fh1te1 , c on the open subset Ht 0Pt .

Now let us prove the second part of the theorem.
Assume, contrary to our claim, that t 142Q . Then problem Pc (h2me1 ) has a

solution um for every m�N .
Let us fix u �Kc . By (4.14) we have

(5.6) fh (u)2m�
V

ue1 dx4 fh2me1
(u) F

F fh2me1
(um )2

l

2
Vu2um V2

2F
1

2
�

V

NDumN2 dx2�
V

Ng(x , 0 )umNdx2

2
l

2
�

V

um
2 dx1�

V

(h2me1 ) um dx2
l

2
Vu2um V2

2 .

Call zm4um /m; by (5.6), taking also into account (2.6), it is easy to verify that
there exists a constant c2D0 such that

�
V

NDzmN2 dxGc2u11�
V

zm
2 dxv (m�N .(5.7)

Now, if (zm )m is bounded in L 2 (V), it follows from (5.7) that it is bounded in H0
1 (V)

too. So, up to a subsequence, it converges in L 2 (V) and a.e. in V to a function
z�H0

1 (V) such that zF0 (because umFc). Then Lemma 4.10 yields

(l 12l)�
V

ze1 dx2�
V

e1
2 dxF0 ,

which is not possible because l Dl 1 , zF0 and s
V

e1
2 dx41.

Hence let us consider the other case, i.e. (zm )m not bounded in L 2 (V). Up to a sub-
sequence we can assume that lim

mKQ
Vzm V241Q .

Set zm84zm /Vzm V2 ; from (5.7) it follows that (zm8 )m is bounded in H0
1 (V); so, up to a

subsequence, it converges in L 2 (V) and a.e. in V to a function z 8�H0
1 (V) such that
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Vz 8 V241 and z 8F0. Then Lemma 4.10 yields

(l 12l)�
V

z 8 e1 dxF0 ,

which is not possible because lDl 1 and s
V

z 8 e1 dxD0 (since z 8F0 and Vz 8V241).

So it must be t 1D2Q .
The solvability of problem Pc (h1t1 e1 ) is a straightforward consequence of

Proposition 4.11.
Our next claim is the existence of two distinct solutions, for t sufficiently

large.
Choose t 2 large enough in such a way that (5.5) holds for all tDt 2 and set h4 h1

1te1 for a fixed tDt 2 . Let u be a minimum point for the functional fh , c on the set
KcOHt . Since De1E0 on V , u1se1�Kc for all sF0. Let us prove that

lim
sKQ

fh , c (u1se1 ) 42Q .(5.8)

In fact condition (4.19) implies

fh , c (u1se1 ) G
1

2
�

V

ND(u1se1 )N2 dx2
l

2
�

V

(u1se1 )2 dx1

1�
V

c(u1se1 )1 dx1�
V

uh dx1 s�
V

he1 dx1k1G

G
l 1

2
s 22

l

2
s 21k2 s1k3 (sF0 ,

where k1 , k2 and k3 are suitable positive numbers, which do not depend on s (recall
that 2c2G2v 2G0 for every v�Kc). Hence (5.8) follows since l Dl 1 .

Let us set

d14 min ] fh , c (u)Nu�Pt( ;(5.9)

(5.5) implies fh , c (u) Ed1; (5.8) allows us to choose s such that, if we put v4 u1 se1 ,
then

fh , c (v) E fh , c (u) .(5.10)

Now set

d24 sup
s� [0 , s]

fh , c (u1se1 ) .(5.11)

Notice that d2Fd1 . In fact s
V

ue1 dxE t by the definition of u and s
V

ve1 dxD t by (5.10);

hence there exists sA �]0 , s[ such that s
V

(u1 sA e1 ) e1 dx4 t .

Let us prove that there exists a lower critical value c� [d1 , d2] for the functional fh , c .
Arguing by contradiction, assume that [d1 , d2 ] does not contain any lower critical
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value. Taking into account the Palais-Smale type condition given by Lemma 5.4, it fol-
lows that, for all eD0 small enough, the sublevel fh , c

d12e is a deformation retract of fh , c
d2

(see, for example, [7, 9, 10, 13, 17]). Then, if we choose eD0 small enough in such a
way that fh , c (u) Ed12e , we get a contradiction. In fact fh , c

d12e contains u and v , but
does not contain any continuous path connecting this two points, because
fh , c

d12eOPt4¯ . On the contrary fh , c
d2 contains the segment ]u1se1 Ns� [0 , s](. There-

fore fh , c
d12e cannot be a deformation retract of fh , c

d2 , which is a contradiction.
Summarizing, the local minimum point u and the lower critical level c that we have

found satisfy fh , c (u) Ed1Gc . This implies the existence of two distinct lower critical
points for fh , c , hence of two distinct solutions of Pc (h1te1 ), for all
tDt 2 . q.e.d.

Let us remark that, if in Theorem 5.1 we remove the assumption that condition
(4.19) holds with l Dl 1 , the solvability of Problem Pc (h) does not present an analog-
ous «folding type» behaviour (as in «jumping» problems). For example, if g(x , t) 4lt
with lEl 1 , then it is easy to see that problem Pc (h) has exactly one solution for every
h in L 2 (V) and c in H0

1 (V) (see [14]). When g has such an asymptotic growth, the
following existence result holds.

PROPOSITION 5.5: Let g satisfy condition (2.6) and assume in addition that there
exist c2�L 1 (V) and l 8El 1 such that, for almost all x�V ,

G(x , t) Gc2 (x)1
l 8

2
t 2 for tF0 .

Then problem Pc (h) has at least one solution for all h�L 2 (V) and
c�H0

1 (V).

PROOF: It is sufficient to show that the sublevels of the functional fh , c are bounded
in H0

1 (V); if it is so, in fact, one solution of Pc (h) can be found by minimizing fh , c

(which is weakly lower semicontinuous).
For all u�Kc , we have:

fh , c (u) 4 fh , c (u 1 )1 fh , c (2u 2 ) F

F
1

2
�

V

NDu 1N2 dx2
l 8

2
�

V

(u 1 )2 dx2�
V

c2 (x) dx1�
V

hu 1 dx1

1
1

2
�

V

NDu 2N2 dx2�
V

G(x , 2u 2 ) dx2�
V

hu 2 dxF

F
1

2
u12

l 8

l 1

v�
V

NDu 1N2 dx1�
V

hu 1 dx1
1

2
�

V

NDu 2 N2 dx2c
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for a suitable constant c independent of u (because u 2Gc2 and (2.8) holds). It fol-
lows that the sublevels of fh , c are bounded in H0

1 (V), which is the desired
conclusion. q.e.d.

REMARK 5.6: If we assume that condition (4.14) holds with lEl 1 , then the solu-
tion given by Proposition 5.5 is the unique solution, since in this case the functional fh

is strictly convex, so the unique minimum point of fh , c is the unique lower critical
point. It is easy to verify that this case occurs if, under the assumptions of Proposition
5.5, we assume in addition that convexity condition (4.18) holds.

Now, under suitable assumptions, we study problem Pc (h) by using mini-max
methods. In particular, these methods allow us to prove that in Theorem 5.1 we have
t 14t 2 .

DEFINITION 5.7: Let c�H0
1(V), h�L 2(V) and g satisfy conditions (2.6) and (4.14).

Taking into account Lemma 5.3, we can consider the function Sh : RKRN ]1Q(

defined by

Sh (t) 4 min
u�Pt

fh , c (u)(5.12)

(here we set min ¯41Q).

REMARK 5.8: Let t �R be such that Sh (t) E1Q; if condition (4.14) holds with
lEl 2 , then the minimum Sh (t) in (5.12) is achieved by a unique function u �Pt . In
fact, if lEl 2 , the functional fh , c is strictly convex on Pt .

LEMMA 5.9: Let c�H0
1 (V), h�L 2 (V) and g satisfy conditions (2.6) and (4.14).

Let Sh be the function introduced in Definition 5.7. Then:

a) Sh is lower semicontinuous and D(Sh ) 4 [s
V

ce1 dx , 1Q[;

b) if u�Kc is a minimum point for fh , c1 IPt
and if k�¯2 Sh (t), then

ke1�¯2 fh , c (u);

c) if condition (4.14) holds with lGl 2 and ke1�¯2 fh , c (u), then:

i) u is a minimum point for fh , c1 IPt
with t 4 s

V
ue1 dx ,

ii) k�¯2 Sh (t).

PROOF: a) The lower semicontinuity of Sh follows easily from Lemma 5.3 and the
weak lower semicontinuity of fh , c .

To find D(Sh ) it suffices to remark that uFc , for every u in Kc , and that c1 te1 is
in Kc , for every tF0.

b) It is a straightforward consequence of the definition of Sh .

c) To prove (i) it suffices to observe that fh , c1 IPt
is convex if lGl 2 and that

0 �¯2 ( fh , c1 IPt
)(u) if ke1�¯2 fh , c (u).
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To prove (ii), let us remark that

fh (v) F fh (u)1 fh8 (u)[v2u]1
1

2
Vv2uV

22
l

2
Vv2uV2

2 (v�H0
1 (V) .

Then, if lGl 2 ,

(5.13) fh , c (v)Ffh , c (u)1k�
V

(v2u) e1 dx2
l2l 1

2
u �

V

(v2u) e1 dxv2

(v�H0
1 (V) .

Taking into account (i), by (5.13) we obtain

Sh (t) FSh (t)1k(t2 t)2
l2l 1

2
(t2 t)2 (t�R ,

which obviously implies (ii). q.e.d.

Notice that Lemma 5.9 shows in particular that, if condition (4.14) holds with
lGl 2 , then problem Pc (h) is equivalent to find lower critical points for Sh .

In this way we shall prove the following result.

THEOREM 5.10: Let c�H0
1 (V), h �L 2 (V) and g satisfy condition (2.6). Moreover

assume that (4.14) holds with lGl 2 and (4.19) with l Dl 1 .
Then there exists t 4 t(c , h) �R such that problem Pc (h1te1 ) has

i) no solution for tE t,

ii) at least one solution for t4 t,

iii) at least two solutions for all tD t.

To prove Theorem 5.10 we need some properties of the function Sh .

LEMMA 5.11: Suppose that the hypotheses of Theorem 5.10 are fulfilled and set
h4 h1te1 , for t�R . If Sh is the function introduced in Definition 5.7, then:

a) Sh (t)1
l2l 1

2
t 2 is convex;

b) Sh is continuous on its domain and ¯2 Sh (t) c¯ for every tD s
V

ce1 dx ;

c) lim
tK1Q

Sh (t) 42Q .

PROOF: a) This assertion follows easily taking into account that the functional

fh , c (u)1
l2l 1

2
(s
V

ue1 dx)2 is convex if condition (4.14) holds with lGl 2 .

b) It is a straightforward consequence of (a) and (a) of Lemma 5.9.
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c) It suffices to remark that, arguing as for (5.8), we obtain

lim
tK1Q

fh , c (c1 te1 ) 42Q . q.e.d.

PROOF OF THEOREM: 5.10: Define

(5.14) t 4 inf ]t N Pc (h1te1 ) has a solution( 4

4 inf ]t N Sh1te1
has a lower critical point( .

Arguing as in the proof of Theorem 5.1, we can see that t D2Q and Pc (h1te1 )
has at least one solution.

Then Sh1te1
has at least one lower critical point t; this means that

lim inf
tK t

Sh1te1
(t)2Sh1te1

(t)

t2 t
F0

and hence, for every lD0, there exists tlD t such that

Sh1te1
(tl )2Sh1te1

(t) D2l(tl2 t) .(5.15)

From (5.15) it follows that

Sh1te1
(t)1 l t ESh1te1

(tl )1 ltl ,

which is equivalent to

Sh1(t1l)e1
(t) ESh1(t1l) e1

(tl ) .(5.16)

Taking into account Lemma 5.11 and (a) of Lemma 5.9, from (5.16) it is a simple
matter to show that Sh1(t1l) e1

has at least two critical points: a local minimum point
t1E tl and a local maximum point t2F tl (where, indeed, Sh8 (t2 ) 40). q.e.d.

Under the additional assumption that g(x , Q) is convex, we can specify the result
given by Theorem 5.10.

THEOREM 5.12: Let c�H0
1 (V), h �L 2 (V) and g satisfy conditions (2.6), (3.1),

(4.14) with lEl 2 and (4.19) with l Dl 1 . If assumption (4.18) holds, then there exists
t 4 t(c , h) �R (see Theorem 5.10) such that, for h4 h1te1 , we have:

i) if tE t, then problem Pc (h) has no solution;

ii) if t4 t, then problem Pc (h) either has a unique solution, or there exist two
solutions u1 and u2 such that u1Gu2 and the set of the solutions is S4 ]u11u(u22

2u1 )N0 GuG1(;

iii) if tD t, then problem Pc (h) has exactly two solutions.

For the proof we need the following lemma.
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LEMMA 5.13: Assume c�H0
1 (V), h�L 2 (V) and let g satisfy conditions (2.6), (3.1)

and (4.18). If u1 and u2 are solutions of problem Pc (h) and u1Gu2 , then the function
uO fh (u11u(u22u1 ) ) is non-decreasing in [0 , 1].

PROOF: Let us remark that

d

du
fh (u11u(u22u1 ) ) 4 fh8 (u11u(u22u1 ) )[u22u1 ] .

Now, arguing as in Proposition 4.9, we can say that u11u(u22u1 ) is a supersolution
for the operator I1D21 ( g(x , Q)2h) for every u� [0 , 1]. So the conclusion follows
taking into account Theorem 4.1. q.e.d.

PROOF OF THEOREM 5.12: In this proof we use the notations introduced for Theo-
rem 5.10.

At first, let tD t (see (5.14)); by Theorem 5.10 we have two solutions, we call u1

and u2 , such that fh (u1 ) E fh (u2 ). Taking into account Proposition 4.6 and Lemma
5.13, we can assume that u1 is the minimal solution, so u1Gu2 and Du1FDu2 in weak
sense in V .

Set ti4 s
V

ui e1 dx , for i41, 2; we have that t1E t2 and t1 , t2 are lower critical

points for Sh (t) (see Lemma 5.9).
Now our goal is to prove that there is not any other solution of Pc (h). Suppose,

contrary to our claim, that there exists a solution u3 different from u1 and u2 . Set t34

4 s
V

u3 e1 dx; by Remark 5.8 we have that t3 is different from t1 and t2 and, using Lemma

5.13 and Proposition 4.6, we have that t1E t3 , since u1 is the minimal solution.
We will show that under these assumptions there exist constants a , b , c�R such

that the function

S(t) 4Sh (t)1a
t 2

2
1bt1c

satisfies the following property: there exist g 2 , g 3 , g 4�R and a solution uA3 of Pc (h)
such that

t1Eg 2Eg 3Eg 4 , �
V

uA3 e1 dx4g 3 ,

S(t1 ) E0, S(g 2 ) D0, S(g 3 ) E0, S(g 4 ) D0 .

Suppose for the moment that this is true and set

f (u) 4 fh , c (u)1
a

2
u �

V

ue1 dxv2

1bu �
V

ue1 dxv1c .
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We have S(t) 4 min
Pt

f (u) and so f (u1 ) 4S(t1 ) E0, f (uA3 ) 4S(g 3 ) E0, while

f (u) FS(g 2 ) D0 (u�Pg2
,(5.17)

f (u) FS(g 4 ) D0 (u�Pg4
.(5.18)

Notice that, because of (5.17) and (5.18), there exists a minimum point u3 for f
constrained on

{v�Ku1Ng 2E�
V

ve1 dxEg 4}
(see Lemma 5.3). Remark that uA3 belongs to this set because u1 is the minimal solution
and uA3 is a solution of Pc (h). Therefore we have

f (u3 ) E0, f 8 (u3 )[v2u3 ] F0 (v�Ku1
.(5.19)

Analogously, there exists a minimum point u1 for f constrained on

{v�Ku1NDvFDu3 , �
V

ve1 dxEg 2} .

Remark that u1 belongs to this set; so

f (u1 ) E0, f 8 (u1 )[v2u1 ] F0 (v� ]v�Ku1
NDvFDu3( ;(5.20)

in particular this inequality holds for v4 u3 .
For every u� [0 , 1] set uu4 u11u(u32u1 ); by convexity, taking into account

(5.19) and (5.20), we have

d

du
f (uu ) 4 f 8 (uu )[u32u1 ] F (12u) f 8 (u1 )[u32u1 ]1u f 8 (u3 )[u32u1 ] F0

that is the function uO f (uu ) is non-decreasing on [0 , 1]. This is not possible be-
cause f (u3 ) E0 and f (uu2

) FS(g 2 ) D0 for

u 24
g 22s

V
u1 e1 dx

s
V

(u32u1 ) e1 dx
� (0 , 1 ) .

Now we have to prove the existence of the constants a , b , c satisfying the desired
property.

There are two possible cases: (1) t3D t2 ; (2) t1E t3E t2 .

Case (1) - We assume

Sh (t2 ) 4 max ]Sh (t)NtF t1((5.21)
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(see the proof of Theorem 5.10 and Lemma 5.13); so we must have Sh (t) GSh (t2 ) for
every t� [t2 , t3 ]. Furthermore the function uO fh (u11u(u32u1 ) ) is non-decreasing
in [0 , 1] by Lemma 5.13; hence, if we set

u 284 (t22 t1 ) /(t32 t1 ) � (0 , 1 ) ,

we have

Sh (t3 ) 4 fh (u3 ) F fh (u11u 28 (u32u1 ) ) FSh (t2 )

and, as a consequence, we can say that Sh (t2 ) 4Sh (t3 ); an analogous argument shows
that Sh is constant on the interval [t2 , t3 ]. Thus it is now clear that there exist suitable
constants a , b , c , with aD0, and a solution uA3 satisfying the desired properties.

Case (2) - Since the functions uO fh (u11u(ui2u1 ) ) (i42, 3) are non-decreasing
on [0 , 1] by Lemma 5.13, we must have Sh (t1 ) GSh (t3 ) GSh (t2 ) (recall also
(5.21)).

If Sh (t3 ) 4Sh (t2 ) we conclude arguing as in the case (1).
If Sh (t3 ) 4Sh (t1 ), then Sh is constant on the interval [t1 , t3 ]. In fact, since

uO fh (u11u(u32u1 ) ) is non-decreasing on [0 , 1], we obtain Sh (t) GSh (t3 ) for every
t� [t1 , t3 ]. Moreover, if we suppose that there exists t � [t1 , t3 ] such that
Sh (t) ESh (t3 ), then there is a solution uA of Pc (h), which is a minimum point for fh , c on
Ht3

(see Notations 1.1) and verifies fh (uA) ESh (t3 ) 4 fh (u1 ); but this is not possible be-
cause u1 is the minimal solution and so, by Lemma 5.13, we must have fh (uA) F fh (u1 ).
Thus also in this case we can get the desired conclusion as before (now with
aE0).

Finally suppose Sh (t1 ) ESh (t3 ) ESh (t2 ). Since t3 is a lower critical point for Sh ,
there exists eD0 small enough to have

Sh (t3 )2Sh (t32e)

e
E min { Sh (t2 )2Sh (t3 )

t22 t3

,
Sh (t3 )2Sh (t1 )

t32 t1

} .

Hence the existence of the desired constants a , b and c clearly follows (now we can
choose a40).

Now let us prove the second claim of the theorem.
In the proof of (ii) of Theorem 5.10 the function Sh is non-increasing, because oth-

erwise problem Pc (h1(t2e)e1 ) would have two solutions for an eD0 sufficiently
small (indeed, for such an e the function Sh (t)2et would have again a local minimum
and a local maximum in the interior of the domain, where the derivative of Sh is
zero).

Let us call u1 the minimal solution of Pc (h).
If there is another solution u2 , by Lemma 5.13 we have fh (u1 ) G fh (u2 ); so, if we set
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ti4 s
V

ui e1 dx for i41, 2 , we must have

Sh (t1 ) 4 fh (u1 ) 4Sh (t2 ) 4 fh (u2 ) ;

therefore Sh is constant on the interval [t1 , t2 ]. Moreover the function uO fh (u11

1u(u22u1 ) ) is non-decreasing on [0 , 1], so

fh (u11u(u22u1 ) ) 4Sh (t11u(t22 t1 ) ) 4Sh (t1 ) ;

therefore u11u(u22u1 ) is a solution of Pc (h) for every u� [0 , 1].
Finally, taking into account (c) of Lemma 5.11 and Proposition 4.17, choose the

solution u2 in such a way that

�
V

u2 e1 dx4 t2 with t24 max ]t�RNSh (t) 4Sh (t1 )( .

Thus the conclusion of the proof of (ii) follows easily from Remark
5.8. q.e.d.

THEOREM 5.14: Under the same assumptions of Theorem 5.12, but with l4l 2 in
(4.14), there exists t 4 t(c , h) �R (see Theorem 5.10) such that, for h4 h1te1 , we
have:

I) if tE t, then problem Pc (h) has no solution;

II) if t4 t, then problem Pc (h) either has a unique solution or there exists a
convex set S 2 such that the set S of the solutions of problem Pc (h) is

S4 ]u11u(u22u1 )Nu� [0 , 1], u2�S 2(

where u1 is the minimal solution (see Proposition 4.6); furthermore fh is constant on S ;

III) if tD t, then the set of solutions of problem Pc (h) is ]u1(NS 2 , where u1 is
the minimal solution and S 2 is a convex set; furthermore fh is constant on S 2 and
fh (u1 ) E fh (u2 ) for every u2�S 2 .

PROOF: Arguing as in the proof of Theorem 5.12, for tD t we obtain that the func-
tion Sh (t) has exactly two lower critical points, we call t1 and t2 , such that t1E t2 and
Sh (t1 ) ESh (t2 ). By Lemma 5.9 the set of the solutions of Pc (h) is equal to S 1NS 2 ,
where S i , for i41, 2 , is the set of the minimum points of ( fh , c1 IPti

). It is easy to see
that S i are closed and convex sets.

Of course the minimal solution u1 belongs to S 1 . Let us prove that S 14 ]u1(; in
fact, if u�Pt1

is a solution of Pc (h), then u2u1F0 because u1 is the minimal solution,
and s

V
(u2u1 )e1 dx40 because u1 , u�Pt1

; therefore we have u4u1 .
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Now consider the case t4 t. Let u1 be the minimal solution, set t14

4 s
V

u1 e1 dx ,

t24 max ]t�RNSh (t) 4Sh (t1 )(

and define S 2 to be the set of the minimum points of fh , c1 IPt2
. Then, as in the proof

of Theorem 5.12, we obtain that u11u(u22u1 ) is a solution of Pc (h) for every
u� [0 , 1] and u2�S 2 ; moreover fh (u11u(u22u1 ) ) 4 fh (u1 ) (u� [0 , 1].

So we have to show that every solution u of Pc (h) is in this form, that is if ucu1

then t1E s
V

ue1 dxG t2 and

u11 t(u2u1 ) �S 2 for t 4
t22 t1

s
V

ue1 dx2 t1

.(5.22)

First notice that u11 t(u2u1 ) �Kc (tF0 because of Theorem 4.1. Let us consider
the function tO fh (u11 t(u2u1 ) ), for tF0; by Lemma 5.13 and since Sh (t) is non-in-
creasing, we have

fh (u11 t(u2u1 ) ) 4 fh (u1 ) for t� [0 , 1] .(5.23)

Therefore Sh (t1 ) 4 fh (u1 ) 4 fh (u) 4Sh (s
V

ue1 dx) , from which we obtain s
V

ue1 dxG t2 .

Moreover, if ucu1 , we have s
V

ue1 dxD t1 arguing as before (u1 is the unique minimum

point for fh , c on Pt1
).

In order to get (5.22) it is sufficient to prove that the function tO fh (u11 t(u2

2u1 ) ) is non-increasing for tF0. Indeed, if this is true, the function ut 4u11 t(u2u1 ),
which belongs to KcOPt2

, verifies fh (ut ) G fh (u1 ). Actually (see the definition of S 2)
we must have fh (u) F fh (u1 ) for every u�KcOPt2

, so fh (ut ) 4 fh (u1 ) 4Sh (t2 ), that is
ut �S 2 .

To prove our claim let us remark that

d

dt
fh (u11 t(u2u1 ) ) 4 f 8h (u11 t(u2u1 ) )[u2u1 ] ;(5.24)

furthermore, by (5.23), f 8h (u11 t(u2u1 ) )[u2u1 ] 40 for t� (0 , 1]. Thus, if we fix
t 8� (0 , 1 ), we have

(5.25) fh8 (u11 t(u2u1 ) )[u2u1 ] 4

4fh8 (u11t(u2u1))[u2u1]2fh8 (u11t 8 (u2u1))[u2u1]4(t2t 8)�
V

ND(u2u1)N2dx2

2�
V

[ g(x , u11 t(u2u1 ) )2g(x , u11 t 8 (u2u1 ) ) ](u2u1 ) dx .
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For t41, (5.23) implies

(12t 8 )�
V

ND(u2u1 )N2 dx2�
V

[ g(x , u)2g(x , u11t 8 (u2u1 ) ) ](u2u1 ) dx40 ;(5.26)

from the convexity of g(x , Q) we infer that, for every tF1,

(5.27)
1

t2 t 8
[ g(x , u11 t(u2u1 ) )2g(x , u11 t 8 (u2u1 ) ) ] F

F
1

12 t 8
[ g(x , u)2g(x , u11 t 8 (u2u1 ) ) ] .

So, using (5.26) and (5.27) in (5.25), we obtain fh8 (u11 t(u2u1 ) )[u2u1 ] G0 for
tF0, that is the desired conclusion. q.e.d.

PROPOSITION 5.15: The function t : H0
1 (V)3L 2 (V) KR introduced in Theorems

5.10, 5.12 and 5.14 satisfies the following properties:

(i) if Dc 8FDc in weak sense and h 8Fh a.e. in V , then t(c 8 , h 8 ) G

G t(c , h);

(ii) if assumption (4.18) holds, then t is a convex function.

PROOF: Property (i) is a straightforward consequence of Proposition 4.3, while (ii)
follows easily from Proposition 4.9. q.e.d.

REMARK 5.16: The proof of Theorems 5.1, 5.10, 5.12 and 5.14 make evident that the
deep reason, which explains why the «jumping» type phenomena described by these
theorems occur in problem Pc(h), is that the sublevels of the functional fh , c have the
same topological properties as the ones of the functional fh when we assume that

lim
tK2Q

g(x , t)

t
El 1 .(5.28)

In this sense we can say that the presence of the constraint Kc in our problem plays
the same role as condition (5.28) in the «jumping» problems.

Notice that similar phenomena have been also pointed out in some problems with
unilateral pointwise constraints on the function (see [12, 16, 17, 18, 19, 20]); on the
contrary, no phenomenon of this kind arises when we consider unilateral constraints
on the first derivatives (as in [5] and [10]).

Finally let us mention that constraints on the second derivatives have been
considered, for example by Brezis and Stampacchia in [6], for problems involving
the biharmonic operator while only obstacles on the function or on its first
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derivatives have been usually considered in the literature for problems involving
the Laplace operator.

Acknowledgments. This paper was mainly developed during the Concentration
Period on Nonlinear Elliptic Problems, organized in Rome on May 2001, sponsored
by the Istituto Nazionale di Alta Matematica «Francesco Severi» and by the CEE-
TMR Programme on Nonlinear Partial Differential Equations - Methods and Applica-
tions. The results reported in this paper have been presented in some lectures held at
the University of Rome «La Sapienza» (in the general framework of the CEE-TMR
Programme) and at the University of Rome «Tor Vergata».

The research of the authors is also supported by M.U.R.S.T. project «Metodi varia-
zionali e topologici nello studio di fenomeni non lineari».

REFERENCES

[1] A. AMBROSETTI, Elliptic equations with jumping nonlinearities, J. Math. Phys. Sci., 18
(1984), 1-12.

[2] A. AMBROSETTI - G. PRODI, On the inversion of some differentiable mappings with singulari-
ties between Banach spaces, Ann. Mat. Pura Appl., 93 (1972), 231-246.

[3] M. S. BERGER - E. PODOLAK, On the solutions of a nonlinear Dirichlet problem, Indiana
Univ. Math. J., 24 (1975), 837-846.

[4] H. BREZIS, Opérateurs maximaux monotones et semigroupes des contractions dans les espaces
de Hilbert, North-Holland Mathematics Studies 5, Notas de Matematica 50, Amsterdam -
London (1973).

[5] H. BREZIS - G. STAMPACCHIA, Sur la régularité de la solution d’inéquations elliptiques, Bull.
Soc. Math. France, 96 (1968), 153-180.

[6] H. BREZIS - G. STAMPACCHIA, Remarks on some fourth order variational inequalities, Ann.
Scuola Norm. Sup. Pisa Cl. Sci (4), 4 n. 2 (1977), 363-371.

[7] G. ČOBANOV - A. MARINO - D. SCOLOZZI, Multiplicity of eigenvalues for the Laplace operator
with respect to an obstacle, and non-tangency conditions, Nonlinear Analysis T. M. A., vol.
15, 4 (1990), 199-215.

[8] E. N. DANCER, Multiple solutions of asymptotically homogeneous problems, Ann. Mat. Pura
Appl., IV-152 (1988), 63-78.

[9] E. DE GIORGI - A. MARINO - M. TOSQUES, Problemi di evoluzione in spazi metrici e curve di
massima pendenza, Atti Accad. Naz. Lincei, Rend. Cl. Sc. Fis. Mat. Natur., 68 (1980),
180-187.

[10] M. DEGIOVANNI - A. MARINO - C. SACCON, A pointwise gradient constraint for the Laplace op-
erator. Eigenvalues and bifurcation, Nonlinear Analysis - A tribute in honour of G. Prodi,
Quad. Scuola Norm. Sup. Pisa (1991), 189-203.

[11] A. C. LAZER - P. J. MCKENNA, On the number of solutions of a nonlinear Dirichlet problem,
J. Math. Anal. Appl., 84 (1981), 282-294.

[12] A. MARINO - D. PASSASEO, A jumping behaviour induced by an obstacle, Progress in Varia-
tional Methods in Hamiltonian Systems and Elliptic Equations (M. Girardi, M. Matzeu, F.
Pacella Ed.) Pitman (1992), 127-143.

[13] A. MARINO - D. SCOLOZZI, Punti inferiormente stazionari ed equazioni di evoluzione con vin-
coli unilaterali non convessi, Rend. Sem. Mat. e Fis. di Milano, 52 (1982), 393-414.



— 194 —

[14] R. MOLLE - D. PASSASEO, An elliptic problem with pointwise constraint on the laplacian,
Topological Methods in Nonlinear Analysis, 8-1 (1996), 1-23.

[15] R. MOLLE - D. PASSASEO, Variational problems with pointwise constraints on the derivatives,
J. of Convex Analysis, 6-2 (1999), 215-233.

[16] D. PASSASEO, Molteplicità di soluzioni per certe disequazioni variazionali di tipo ellittico,
Boll. U.M.I., 7 3-B (1989), 639-667.

[17] D. PASSASEO, Molteplicità di soluzioni per disequazioni variazionali non lineari di tipo ellitti-
co, Rend. Acc. Naz. Sci. detta dei XL, Memorie di mat., 109o Vol. XV, fasc. 2 (1991),
19-56.

[18] A. SZULKIN, On a class of variational inequalities involving gradient operators, J. Math. Anal.
Appl., 100 (1984), 486-499.

[19] A. SZULKIN, On the solvability of a class of semilinear variational inequalities, Rend. Math., 4
(1984), 121-137.

[20] A. SZULKIN, Positive solutions of variationals inequalities: a degree-theoretic approach, J. Dif-
ferential Equations, 57 (1985), 90-111.

Direttore responsabile: Prof. A. BALLIO - Autorizz. Trib. di Roma n. 7269 dell’8-12-1959
« Monograf » - Via Collamarini, 5 - Bologna


