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ABSTRACT. — In this paper some results have been obtained which could provide methods to
measure the rate of growth of the maximum modulus of GBASP. These measures of the rate of
growth are obtained in terms of the maximum term, the rank, the coefficients and even polyno-
mial approximation errors. The main advantage of our approach is that it carries over to the
non-entire case also.

Crescita generalizzata e approssimazione polinomiale
per potenziali biassialmente simmetrici

SUNTO. — Si ottengono risultati applicabili alla misurazione della velocità di crescita del
massimo modulo per potenziali biassialmente simmetrici in senso generalizzato.

1. - INTRODUCTION

Let F a , b be a real valued regular solution to the generalized biaxisymmetric potent-
ial equation
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where (a , b) are fixed in a neighbourhood of the origin and the analytic Cauchy data
Fx

a , b (0 , y) 4Fy
a , b (x , 0 ) 40 is satisfied along the singular lines in the open unit hy-
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pershere Sa , b. Such functions with even harmonic functions are referred to as gener-
alized biaxisymmetric potentials (GBASP) having local expansions of the form

F a , b (x , y) 4 !
n40

Q

an Rn
a , b (x , y)(1.2)

such that

Rn
a , b (x , y) 4 (x 21y 2 )n Pn

a , b ( (x 22y 2 ) /(x 21y 2 ) ) /Pn
a , b (1) , n40, 1 , 2 , R

where the Pn
a , b are Jacobi polynomials [1].

The GBASP are natural extensions of harmonic / analytic functions. Hence we an-
ticipate properties similar to those of the harmonic function found from associated
analytic f, by taking Ref, the real part of f.

The purpose of this paper is to obtain some theorems which could provide
methods to measure the rate of growth of the maximum modulus of GBASP defined
by (1.2). These measures of the rate of growth are obtained in terms of the maximum
term, the rank, the coefficients an , s and even polynomial approximation errors.

The motivation for this work came from the papers of several authors, [3-17]. But
primarily this work is influenced by the results of Seremeta [15]. Although our work
does not include Seremeta’s results, it is complementary to his work. Seremeta obtains
formulas for generalized orders and types separately, but our results provides general-
ized orders and types simultaneously. Also, McCoy [12], obtains his results for orders
and types of GBASP, s in terms of coefficients and even polynomial approximation er-
rors. Using methods and hypothesis quite different than Seremeta [15] and McCoy [12],
we have acquired much more than expected. In some ways our hypothesis are more use-
ful than those. For example, although Seremeta [15] and McCoy [12], have obtained re-
sults for multivariate case but the main advantage of our approach is that it carries over
to the multivariate case with greater ease and simplicity and it also carries over to the
non-entire case. Thus the scope of our work in this paper is much broader than the
scope of the earlier work in that it deals with both entire and non-entire analytic func-
tions /GBASP’s of one or more complex variables in the same framework.

Let f (z) 4 !
k40

Q

ak z 2nk be analytic in the open unit disc Df ]z : NzNE1(, n040

and ]nk(Q
k41 being the strictly increasing sequence of positive integers such that akc0

for k41, 2 , R.
Let m(r , F a , b ) denote the maximum term of GBASP, F a , b , y(r , F a , b ) the rank of

m(r , F a , b) and M(r , F a , b) the maximum modulus as in complex function theory [4].
Let the operator mapping unique associated even analytic function f on to

GBASP, F a , b (x , y) 4 !
n40

Q

an Rn
a , b (x , y). Following McCoy [12] for Koorn winder in-
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tegral for Jacobi polynomials

F a , b (x , y) 4Ka , b ( f ) 4�
0

1

�
0

p

f (z) ma , b (t , s) ds dt

ma , b (t , s) 4ga , b (12 t 2 )a2b21 t 2b11 ( sin s)2a

s 24x 22y 2 t 22 i2xyt cos s

ga , b42G(a11)/G(1/2) G(a2b) G(b11/2) .

The inverse operator applies orthogonality of Jacobi polynomials ([1], p. 8) and
Poisson kernel ([1], p. 11) to uniquely define the transform,

f (z) 4K 21
a , b (F a , b ) 4 �

21

11

F a , b (tj , r(12j 2 )1/2 ) ya , b ( (z/r)2 , j) dj

ya , b (t , j) 4Sa , b (t , j)(12j)a (11j)b

Sa , b (z , j)4ha , b

12t

(11t)a1b12
F u a1b12

2
;

a1b13

2
; b11;

2t(11j)

(11t)2
v

ha , b4G(a1b12)/2a1b11 G(a11) G(b11) .

The normalizations Ka , b (1) 4K 21
a , b (1) are taken. The kernel Sa , b (t , j) is analytic

on VtVE1 for 21 GjG1. The local function elements F a , b and f are continued har-
monically/analytically by contour deformation using the envelope method [2]. It was
proved [2], that GBASP F a , b is regular in the open unit hypersphere Sa , b if and only
if its associate f is analytic in the unit disc. Further we have

f (x1 io) 4F a , b (x , o), NxNE1

which can be analytically continued as

f (z) 4F a , b (z , o) , NzNE1 .

Let j(x) and h(x) be functions of real variables x with the following properties:

(i) j(x) is defined, positive, continuous, and strictly increasing to 1Q for all x
such that xFxoD0.

(ii) h(x) is defined, positive, continuous, and strictly decreasing from 1Q for
all value of x such that 0 GxGx1 . Further h(0) 41Q ; x1D0.

(iii) j(cx) `j(x) as xKQ for each cD0,
h(cx) 40 [h(x) ] as xK01 for each cD0,
h[x1o(x) ] 4h(x) as xK01, when o(x) D0.

(iv) j( log x) 4o[j(x) ] as xKQ .



— 4 —

j(1/x) 4O[h(x) ] as xK01.

(v)
j21 [ch(x) ]

j21 [ (c1e) h(x) ]
4o(x) as xK01 for each cDo ; and each eDo .

Further we define

U4
.
/
´

lim sup
rK12

j( log m(r , F a , b ) )

h(2log r)
,

0

if m(r , F a , b ) K1Q as rK12

Otherwise ,

u4
.
/
´

lim inf
rK12

j( log m(r , F a , b ) )

h(2log r)
,

0

if m(r , F a , b ) K1Q as rK12

Otherwise ,

V4
.
/
´

lim sup
rK12

j( log y(r , F a , b ) )

h(2log r)
,

0

if y(r , F a , b ) K1Q as rK12

Otherwise ,

v4
.
/
´

lim inf
rK12

j( log y(r , F a , b ) )

h(2log r)
,

0

if y(r , F a , b ) K1Q as rK12

Otherwise ,

M4
.
/
´

lim sup
rK12

j( log M(r , F a , b ) )

h(2log r)
,

0

if M(r , F a , b ) K1Q as rK12

Otherwise ,

m4
.
/
´

lim inf
rK12

j( log M(r , F a , b ) )

h(2log r)
,

0

if M(r , F a , b ) K1Q as rK12

Otherwise ,

Also,

A4 lim sup
kKQ

j(2nk )

h[ log1NakN1/2nk ]
; a4 lim inf

kKQ

j(2nk )

h[ log1NakN1/2nk ]
;

In above definitions the letters U , u , V , v , M , m , A , a designate the measures of
the rate of growth in terms of maximum term, the rank, the maximum modulus and
the coefficients in the expansion of GBASP F a , b.
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2. - AUXILIARY RESULTS

In this section we prove some lemmas which have been used in the sequel.

LEMMA 1: From properties (i) and (iii) of the function j(x) we may deduce that for
any number CD1 we shall have

j[a1b] GC[j(a)1j(b) ]

Provided aDN(C) or bDN(C).

PROOF: Let CD1 and a and b in the domain of j(x) and suppose that aGb.
Then

j[a1b] G
j(2b)

j(b)
]j(a)1j(b)( .

But j(2b) Aj(b) as bK1Q. Hence for sufficiently large b,

j(2b)

j(b)
GC .

Hence the result follows.

LEMMA 2: For real valued GBASP F a , b and 0 G rE tE1, we have

M(r , F a , b ) Gm(r , F a , b )]y( (t , F a , b )1 t/(t2 r)( .

PROOF: Let 0 G rE tE1 and set N4nk4 ]y( (t , F a , b ). Then

M(r , F a , b ) G !
j40

Q

NajNr 2nj GNm(r , F a , b )1 { m(r , F a , b )

NakNr 2N
} !

j40

Q

NajNr 2njG

GNm(r , F a , b )1m(r , F a , b ) !
j4k

Q NajNt 2nj

NakNt 2N
(r/t)2(nj2N)Gm(r , F a , b )]N1 t/(t2 r)( .

Hence the proof is completed.

LEMMA 3: If uF1 and vF1, then exp (uv) Fu exp (v).

PROOF: Obvious

LEMMA 4: If both uF2 and vF2, then exp (uv) Fexp (u) exp (v).

PROOF: Let r*4u1v . Then uv4 (r*2u) u42r*24 when u42. But 2r*2

24 4r*1 (r*24) Fr* when uF2 and vF2. Therefore by symmetry for a fixed
sum r*F4 the parabola (r*2u) u lies above the line y4r* when uF2 and
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r*2uF2. Now the result can be easily proved.

LEMMA 5: Let y(t , F a , b ) be an increasing integrable function and set

log m(r , F a , b ) 4 log m(ro , F a , b )1�
ro

r

y(t , F a , b ) dt , 0 E roE rE1 ,

and define

U4 lim sup
rK12

log log m(r , F a , b )

2 log log (1/r)
4 lim sup

rK12

log y(r , F a , b )

2log (12 r)

V4 lim sup
rK12

log log y(r , F a , b )

2 log log (1/r)
4 lim sup

rK12

log y(r , F a , b )

2log (12 r)
,

then V4U11, when UD0 or VD1 and VG1 when U40.

PROOF: We have

1

(12 r)
A

1

log 1/r
and log [1/(12 r) ] A2 log log (1/r) as rK12 .

Set r 84 (r11)/2 and assume that log m(r , F a , b ) D1.

log m(r , F a , b ) F�
r

r 8

(y(t , F a , b ) /t) dtFy(r , F a , b )[ (r 82 r) /r 8](2.1)

Fy(r , F a , b ) u 12 r

2
v .

Now, since
log (1/r 8 )

log (1/r)
K1/2 as rK12, so

2log log (1/r 8 ) A2 log log (1/r) as rK12 .

Thus from relation (2.1) we find that

log log m(r , F a , bF log y(r , F a , b )2 log (1/12 r)2 log 2(2.2)

Since 2log log (1/r 8 ) A2 log log (1/r) A log [1/(12 r) ], dividing (2.2) by
2 log log (1/r 8 ), we get

UFV21 or VGU11 .
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Now if VEU11 then for some U 8 such that 0 EU 8EU and rF roF r(U 8 ), we
have

log y(r , F a , b )

log (1/12 r)
E11U 8E11U .(2.3)

So we have

log m(r , F a , b ) G log m(ro , F a , b )1�
r0

r

(1/12 t)11U 8 dt

t
,(2.4)

or

log m(r , F a , bG log m(ro , F a , b )1
1

r0

�
r0

r

(12 t)212U dt ,

G log m(ro , F a , b )1
1

r0

(12 r)2U 8

U 8
.

Then

log log m(r , F a , b ) GK1U 8 log (1/12 r) .

Whence UGU 8EU , which is impossible. Hence the proof is completed.

3. - MAIN RESULTS

THEOREM 1: For real valued GBASP, F a , b if m(r , F a , b ) K1Q as rK12,
then

(i) M4U4V4A ,

(ii) uGv and uGm ,

(iii) u4m if U is finite.

If m(r , F a , b) is bounded above then M4m4U4u4V4v4o .

PROOF: Let m(r , F a , b ) K1Q as rK12 and let

A4 lim sup
kKQ

j(2nk )

h[log1NakN1/2nk ]
E1Q .

Therefore for any eD0 and sufficiently large k, we have

j(2nk )

h[ log1 NakN1/2nk ]
G (A1e) 4A *
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or

j(2nk ) GA * h[ log1 NakN1/2nk ] , h21{ j(2nk )

A *
}F log1 NakN1/2nk F logNakN1/2nk .

Hence for kFk(e) and for all r, we get

logNakN1/2nk Fh21{ j(2nk )

A *
}1 log r .(3.1)

But

h21{ j(2nk )

A *
}1 log rEQ , whenever(3.2)

2nkDj21]A * h( log (1/r) )( and rK1 .(3.3)

Further, since m(r , F a , b ) K1Q as rK12 so y(r , F a , b ) K1Q as rK12, hence by
Lemma 1, we have

log m(r , F a , b )

y(r , F a , b )
K0 .(3.4)

The relations (3.1), (3.2), (3.3) and (3.4) together give for rK1,

m(r , F a , b ) Gy(r , F a , b ) j21]A * h( log (1/r) )( .(3.5)

In view of the relations (3.1) and (3.2) we observe that the terms in the series are
bounded above by 1 for nkDj21]A * h( log (1/r) )( and kDk(e). Since m(r , F a , b ) K

K1Q as rK12 we must conclude that for r near 1 the rank y(r , F a , b ) precedes
j21]A * h( log (1/r) )(. Applying the function j to (3.5) we get UGVGA. Clearly
these inequalities hold if A41Q.

Let U4 lim sup
rK12

j( log m(r , F a , b ) )

h( log (1/r) )
be finite.

Then for eD0, e 8D0 and rD r(e), we have

m(r , F a , b ) Gexp ]j21 [U * h( log (1/r) ]( ,(3.6)

where U *4 (U1e). Therefore,

Nak r 2nk NGexp ]j21 [U * h( log (1/r) ]( for all k and rD r(e) .(3.7)

So

NakNG (1/r)2nk exp ]j21 [U * h( log (1/r) ]((3.8)
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or

log1 NakN1/2nk G log (1/r)1
j21 [U * h( log (1/r) ) ]

2nk

.(3.9)

It is easy to see that we may use log1 in the left hand side of (3.9) as the right hand
side is non-negative.

Setting r4 rk , for sufficiently large value of k,

log (1/rk ) 4h21{ j(2nk )

U *1e 8
} ,

so that as kK1Q, nkK1Q , and rkK12. Also for these large values of k, 2nk4

4j21 [ (U *1e) h( log (1/rk ) ] and rkD r(e).
Therefore in view of (3.9), we get

log1 NakN1/2nk G log (1/rk )1
j21 [U * h( log (1/rk ) ) ]

j21 [ (U *1e) h( log (1/rk ) ) ]
.(3.10)

Using the property (v), (3.10) can be rewritten as

log1 NakN1/2nk QG log (1/rk )1o[ log (1/rk ) ] .(3.11)

In view of property (iii) h[x1o(x) ] Ah(x), we obtain

h log1 NakN1/2nk G [110(1) ] h( log (1/rK ) ] 4 [110(1) ]
j(2nK )

U *1e 1
(3.12)

or

(U *1e 1 ) F [110(1) ]
j(2nk )

h( log1 NakN1/2nk )
.(3.13)

Hence AGU. It also holds if U41Q . Thus we have shown that if m(r , F a , b ) K

K1Q , the U4V4A .
We have been proved earlier that if m(r , F a , b ) K1Q , as rK12 then

log m(r , F a , b )

y(r , F a , b )
K0 .(3.14)

Therefore it is easy to see that uGv . Further from Cauchy inequality, we
have

m(r , F a , b ) GM(r , F a , b )

Which gives

uGm .
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Now it is easily seen that we may actually show that U4V4A provided
m(r , F a , b ) is eventually D1 and log m(r , F a , b ) is bounded above we may multiply to
GBASP F a , b by a positive constant C to ensure that these conditions are satisfied.
Then we consider the fuction g a , b (z , o) 4CF a , b (z , o) and apply our reasoning to
g a , b (z , o) to obtain

O4UF a , b 4Ug a , b 4Vg a , b 4Ag a , b(3.15)

where the subscripts refer to the functions of F a , b and g a , b.
For the second part of the proof, we have to show that in all cases M4U , and

u4m when U is finite. It is clear from Cauchy inequality that UGM and uGm .
Further, if U4KQ then U4M . So taking UEKQ and for t4 (11 r) /2 it is

easy to show that

log (1/(12 r) A log (1/log (1/r) ) as rK12(3.16)

and

log (1/t)

log (1/r)
K

1

2
as rK12(3.17)

Using Lemma 2, we get

M(r , F a , b ) Gm(r , F a , b ) {y(t , F a , b )1
2

12 r
} .(3.18)

Then for rK1 with an arbitrary constant K, we find that

log M(r , F a , b ) G log1 m(r , F a , b )1 log1 y(t , F a , b )1 log u 1

12 r
v1K ,(3.19)

We see that the inequality (3.19) holds in all cases:

(a) m(r , F a , b ) and y(r , F a , b ) both are bounded,

(b) m(r , F a , b ) bounded and y(r , F a , b ) unbounded,

(c) m(r , F a , b ) and y(r , F a , b ) both are unbounded.

Now first, we shall take the Case (c). Choose CD1, and applying Lemma 2 to
(3.19) as rK1, we get

(3.20) j( log M(r , F a , b ) EC]j( log m(r , F a , b ) )1

1j( log y(t , F a , b )1j( log 1/(12 r) )1j(K) ,
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or

(3.21) lim
rK12

j[ log (1/12 r) ]

h( log (1/r) )
4

4 lim
rK12

{ j[ log (1/12 r) ]

j[ log ]1/log (1/r)(]

j[ log ]1/log (1/r)(]

j[1/log (1/r) ]

j(1/log (1/r) )

y( log (1/r) )
}40

since j( log y(t , F a , b ) ) 4o]j(y(t , F a , b ) )(,

lim sup
tK12

j(y(t , F a , b ) )

h( log (1/t) )
4V4UEQ ,

and

h( log (1/t) ) 4O]h( log (1/r) ) as rK12 .

Dividing (3.20) by h( log (1/r) ) and passing to limits, we get MGCU and
mGCu .

The other cases (a) and (b) can be proved in a similar manner. Hence the proof of
theorem 1 is completed.

THEOREM 2: For the real valued function GBASP, F a , b , aGu , whenever

lim
kKQ

u nk

nK11

v4CD0 .

PROOF: Let u4 lim
rK12

j( log m(r , F a , b ) )

h( log (1/r) )
E1Q .

Therefore, for any eD0 and for a sequence rjK12 we have for jD j(e)

Nak rj
2nkNGm(rj , F a , b )Gexp [j21]u * h( log (1/r) )(] , u *4(u1e), for all k .(3.22)

or

NakNG (1/rj )2nk exp [j21]u * h( log (1/r) )(], for all k and jD j(e) .(3.23)

Now for all large j we choose nk and nk11 such that

2nkEj21]u *1�) h( log (1/r) )( E2nk11 .(3.24)

Here k and k11 depend on j. Hence

j(2nk ) G (u *1�) h( log (1/r)(3.25)
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and

h21{ j(2nk )

(u *1e)
}F log (1/rj ) Dh21{ j(2nk11 )

u *1e
} .(3.26)

Since g nk

nk11
h4CD0, so we may choose eD0 so that

nk

nk11

DC2eD0 , for k is sufficiently large .

Since nk and nk11 depend upon j, so for sufficiently large j, we have

(C2e) nk11Enk .(3.28)

Further, if j is large enough all the relations (3.22), (3.23) and (3.28) will hold.
Therefore (3.23) becomes,

log1 NakN1/2nk G log (1/rj )1
j21 [u * h( log (1/rj ) ) ]

2nk

(3.29)

In view of relations (3.24), (3.25), (3.26) and (3.28) we have

log1 NakN1/2nk Eh 21{ j(2nk )

u *1e
}1

j21 [u * h( log (1/rj ) ) ]

(C2e) j21 [u *1e) h( log (1/rj ) ) ]
.(3.30)

Let x4 log (1/rj ) and y4h21m j(2nk )

u *1e
n, then from (3.26) we have

xGy .

Also from (v), the second term on the right of (3.20) is o(x) as xK01 and hence
also o(y).

Further, since h[y1o(y) ] Ah(y) as yK01, applying the function h to both sides
of (3.20) we get

h( log1 NakN1/2nk ) F [11o(1) ]
j(2nk )

u *1e
(3.31)

or

lim
kKQ

j(2nk )

h( log1 NakN1/2nk )
Gu *1e .(3.32)

Hence the proof is completed.

Applications

1. Let j(x) 4 logn (x) 4 logn21 ( log x), where log(o) (x) 4x , and h(x) 4 log 1/x
then Theorems 1 and 2 are applicable when nF2.



— 13 —

PROOF: Properties (i) through (iv) will hold. Let eD0 and CD0, then with kK0,
we have

j21 (Ch(x) )

j21 ( (C1e) h(x) )
4

expn21 (x 2C )

expn21 (x 2e x 2C )
G

exp ( expn22 (x 2C ) )

exp (x 2C expn22 (x 2C ) )
4

4 ( expn21 (x 2C ) )12x 2e
G (x C )x 2C214o(x) .

To obtain the first inequality we used Lemma 3 and 4, we note that for n41,
property (v) fails to exists.

2. If j(x) 4 logn21 (x) and h(x) 4x 2K for 0 EKEQ and nF2, then Theo-
rems 1 and 2 are applicable.

PROOF: Properties (i) through (iv) will hold. Let eD0 and C40 with xK0, then
for sufficiently large N

j21 (Ch(x) )

j21 ( (C1e) h(x) )
4

expn21 (C(x 2k ) )

expn22 ( exp (e(x 2k ) ) exp (C(x k ) ) )
G

G
expn21 (C(x 2k ) )

exp (e(x 2k ) expn21 (C(x 2k ) )
4exp (2e(x 2k ) ) EN!/(e(x 2k ) )N4o(x) .

The first inequality above was obtained by repeated use of Lemma 3 and 4.
The classical case occurs when j(x) 4 log x and h(x) 4 log 1/x . Here property (v)

fails to exists for each eD0. However, the argument encompassing equation (3.1)
through (3.5) still supplies and we obtain UGVGA . Now we shall prove that
A4V4U11, which is the content of folloing result.

3. If j(x) 4 log x and h(x) 4 log 1/x then A4V4U11, when UD0.

PROOF: In veiw of Lemma 5 and Theorem 1, UGV4U11 GA . Now, although
the property (v) fails to hold we do have for j(x) 4 log x and h(x) 4 log 1/x .

j21 [Ch(x) ]

j21 [ (C11) h(x) ]
4

exp (2C log x)

exp [ (2C21) log x]
4

x 2C

x 2C21
4x .

Since h(Cx) Ah(x), we may repeat the argument involving equations (3.6) through
(3.13) e 841 to obtain AGU *11 or AGU11. Finally then the classical case is ob-
tained case is obtained. In this case it may be shown as before that U4M . Further if
U4O4M then VGAG1, and VF1 when m(r , F a , b ) K1Q . Hence the proof is
completed.

REMARK 1: Application 2, yields the generalized types corresponding to the gener-
alized orders of Application 1.
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Polynomial approximation of GBASP.

Let C(D) deonote the algebra of analytic functions on the unit disc D. Let the
Chebyshev norm be defined for f�C(D) and F a , b�C(Sa , B ) as follows:

En (F a , b ; Sa , b ) fEn (F a , b ) 4 inf ]VF a , b2G a , b
V , G a , b�Hn

a , b(, n40, 1 , 2 , R

VF a , b2G a , b
V4 sup

x 21y 241

NF a , b (x , y)2G a , b (x , y)N .

The set Hn
a , b contains all real biaxisymmetric harmonic polynomials of degree at

most 2n.
Now we define

A **4 lim sup
kKQ

j(2nk )

h[ log1 (Ek (F a , b ) )1/2nk ]
;

a **4 lim inf
kKQ

j(2nk )

h[ log1 (Ek (F a , b ) )1/2nk ]
;

REMARK 2: Theorems 1 and 2 are also hold for A** and a** in place of A and a.
The verification of above remark is quite easy so we omit the details.

REFERENCES

[1] R. ASKEY, Orthogonal Polynomials and Special Functions, Regional Conference Series in
Applied Mathematics, SIAM, Philadelphia (1975).

[2] R. P. GILBERT, Function Theoretic Methods in Partial Differential Equations, Math. in Sci-
ence and Engineering, Vol. 54, Academic Press, New York (1969).

[3] K. GOPAL - G. P. KAPOOR, Coefficient characterizations for functions analytic in the unit disc
having fast rates of growth, Bull. Math. Soc. Sci. Math. R. S. Roumanie Tome 25 (73), No. 1
(1981), 367-380.

[4] O. P. JUNEJA - G. P. KAPOOR - S. BAJPAI, On the (p , q)-order and lower (p , q)-order of an en-
tire function, J. Reine Angew. Math., 290 (1977), 180-190.

[5] O. P. JUNEJA - G. P. KAPOOR - S. K. BAJPAI, On the (p , q)-type and lower (p , q)-type of an en-
tire function, J. Reine Angew. Math., 290 (1977), 180-190.

[6] G. P. KAPOOR, On the coefficients of functions analytic in the disc having fast rates of growth,
Notices Amer. Math. Soc., 21 (1974), A-539.

[7] O. P. JUNEJA - G. P. KAPOOR - S. K. BAJPAI, On the lower order of functions analytic in the
unit disc, Mathematica Japonica, 17 (1972), 49-54.

[8] G. P. KAPOOR - A. NAUTIYAL, Polynomial approximation of an entire function of slow
growth, J. Approx. Theory, 32 (1981), 64-75.

[9] D. KUMAR - H. S. KASANA, On the approximation of generalized bi-axially symmetric poten-
tials, Soochow J. Math., 21, No. 4 (1995), 365-376.



— 15 —

[10] H. S. KASANA - D. KUMAR, Approximation of generalized bi-axially symmetric potentials with
fast growth, Acta mathematica Scientia (Wuhan-China), 15, No. 4 (1995), 458-467.

[11] D. KUMAR - H. S. KASANA, Approximation and interpolation of generalized biaxisymmetric
potentials, Panamerican Math. J., 9, No. 1 (1999), 55-62.

[12] P. A. MCCOY, Approximation of generalized biaxisymmetric potentials, J. Approx. Theory,
25 (1979, 153-168.

[13] D. SATO, On the rate of growth of entire functions of fast growth, Bull. Amer. Math. Soc., 69
(1963), 411-414.

[14] A. SCHONAGE, Über das Wachstum zusammengesetzter funktionen, Math. Zeit., 73 (1960),
22-44.

[15] M. N. SEREMETA, On the connection between the growth of the maximum modulus of an en-
tire function and the modulii of the coefficients of its power series expansion, Amer. Math.
Soc. Translation, 88 (1970), 291-301.

[16] S. M. SHAH, Polynomial approximation of an entire function and generalized orders, J. Ap-
prox. Theory, 19 (1977), 315-324.

[17] G. S. SRIVASTAVA, On the growth and polynomial approximation of generalized biaxisymmet-
ric potentials, Soochow J. Math., 23, No. 4 (1997), 345-358.



Direttore responsabile: Prof. A. BALLIO - Autorizz. Trib. di Roma n. 7269 dell’8-12-1959
« Monograf » - Via Collamarini, 5 - Bologna


