Rendiconti
Accademia Nazionale delle Scienze detta dei XL
Memorie di Matematica e Applicazioni 119° (2001), Vol. XXV, fasc. 1, pagg. 111-124

M. BAHAJ - O. SIDKI (*)

On the Existence of Solutions
 of Nonautonomous Neutral Functional Differential Equations ${ }^{(* *)}$

Аbstract. - Existence and uniqueness of the solution of a class of nonlinear nonautonomous neutral functional differential equations is proved, in the case the initial value space is $W^{1,1}$. The proof uses the contraction mapping principle.

Sull'esistenza delle soluzioni per certe equazioni differenziali funzionali non autonome

Sunto. - Usando il principio delle contrazioni, si dimostrano alcuni risultati di esistenza e di unicità per le soluzioni di una certa classe di equazioni differenziali funzionali non autonome e non lineari.

1. - Introduction

This paper deals with a class of functional differential equation of neutral type with values in a Banach space. A neutral functional differential equation (N.F.D.E) is an equation of the form

$$
x^{\prime}(t)=G\left(x_{t}\right),
$$

where G is defined on a subset D of the space of functions from $[-r, 0]$ into X. Here

$$
D=W^{1,1}([-r, 0] ; X) .
$$

(*) Indirizzi degli Autori: M. Bahaj, Faculty of Sciences and Technology, Settat, Morocco; O. Sidki: Faculty of Sciences and Technology, Fez Saïss, Fez, Morocco.
(**) Memoria presentata il 18 giugno 2001 da Giorgio Letta, uno dei XL.

A special class of (N.F.D.E) is the class of (retarded type). In this case

$$
D=C([-r, 0] ; X) .
$$

Most papers in this domain traited the case $X=\mathbb{R}^{n}$ (see Hale [6], [7], Webb [12]). The case of infinite dimension has been considered by Dyson and Villella-Bressan [4], Plant [9], and Flaschaka and Leitman [5]. In [9] Plant used the nonlinear semigroup theory to study the (N.F.D.E)

$$
x^{\prime}(t)=G\left(x_{t}\right), \quad x_{0}=\varphi \in C^{1}([-r, 0] ; X), \quad 0 \leqslant t \leqslant T
$$

where $G: C^{1}([-r, 0] ; X) \rightarrow X$, is Lipschitz continuous. Many authors have used the semigroup approach to neutral equations (see Kunisch [8], Salomon [10]).

In this paper we consider the following nonlinear nonautonomous neutral differential equation:

$$
\begin{equation*}
\dot{x}(t)=F\left(t, x_{t}\right), \quad x_{0}=\varphi \in W^{1,1}([-r, 0] ; X), \quad 0 \leqslant t \leqslant T \tag{1.1}
\end{equation*}
$$

where $x:[-r, T] \rightarrow X, 0<r<+\infty$ is the delay and X is a Banach space with norm
 fined pointwise by

$$
x_{t}(\theta)=x(t+\theta) \text {, for } \theta \in[-r, 0] .
$$

Throughout this paper we shall assume:
$H_{(F)}: F:[0, T] \times W^{1,1}([-r, 0] ; X) \rightarrow X$ is continuous in (t, φ) and
Lipschitz continuous for all $t \in[0, T]$, that is,

$$
|F(t, \varphi)-F(t, \psi)| \leqslant \gamma(t)\|\varphi-\psi\|_{1,1},
$$

for some bounded $\gamma(t) \in \mathbb{R}$ and for all $\varphi, \psi \in W^{1,1}$.
At this stage note that the evolution equation associated with (1.1) was studied by J. Dyson and R. Villella-Bressan [4] using the theory of nonlinear operators. They proved the existence and regularity of solutions of (1.1) if F satisfies $H_{(F)}$ and $H_{(F)}^{\prime}$: There exists a continuous function $b:[0, T] \rightarrow X$ which is of bounded variation and a monotone increasing function $L:[0,+\infty) \rightarrow[0,+\infty)$ such that:

$$
\left|F\left(t_{1}, \varphi\right)-F\left(t_{2}, \varphi\right)\right| \leqslant\left|b\left(t_{1}\right)-b\left(t_{2}\right)\right| L\left(\|\varphi\|_{1,1}\right),
$$

for $0 \leqslant t_{1}, t_{2} \leqslant T$ and $\varphi \in W^{1,1}$. The method used in [4] has been to describe an evolution operator starting from the infinitesimal generator, using the Crandall and Pazy theorem [2]. Our approach of these problems is based on a direct method by means of an integral equation. For further details on nonlinear autonomous neutral functional differential equation (see the earlier work [11], and for nonlinear operators see ([3], [9]). We start with the following definition.

Definition 1.1.: [1] A function $f:[0, T] \rightarrow X$ belongs to $W^{1, p}([0, T] ; X)$ if and only if there exists a function $g \in L^{p}([0, T] ; X)$ such that $f(t)=f(0)+\int_{0}^{t} g(s) d s$ for all $t \in[0, T]$.

For more details on these spaces, we refer the reader to [1].
The main result of this paper is the following theorem:

Theorem 1.1: Let F satisfy $H_{(F)}, \varphi \in W^{1,1}$ and $E_{\varphi}=\left\{x \in W^{1,1}([-r, T] ; X): x=\right.$ $=\varphi$ on $[-r, 0]\}$. Then, the equation (1.1) bas a unique solution $\bar{x} \in E_{\varphi}$, for all $T>0$ and $\varphi \in W^{1,1}$.

The following mapping will be used in the proof of theorem 1.0.1:

$$
(K x)(t)=\left\{\begin{array}{cc}
\varphi(0)+\int_{0}^{t} F\left(s, x_{s}\right) d s & \text { if } t>0 \tag{1.2}\\
\varphi(t) & \text { if } t \in[-r, 0]
\end{array}\right.
$$

Finally we also give an example of integro-differential satisfie $H_{(F)}$. This equation was studied by J. Dyson and R.Villella-Bressan in [4].
2. - Preliminary results

Denote by $W^{1,1}([-r, 0] ; X)$ the Banach space defined by:

$$
W^{1,1}([-r, 0] ; X)=\left\{\begin{array}{c}
\varphi \in L^{1}([-r, 0] ; X), \varphi \text { is absolutely continuous, } \\
\dot{\varphi} \text { exists a.e, } \dot{\varphi} \in L^{1}([-r, 0] ; X) \text { and } \\
\varphi(\theta)=\varphi(0)+\int_{0}^{\theta} \dot{\varphi}(s) d s, \text { for all } \theta \in[-r, 0]
\end{array}\right\}
$$

We shall denote the norm in $L^{1}=L^{1}([-r, 0] ; X)$ by $\|$.$\| and in W^{1,1}=$ $=W^{1,1}([-r, 0] ; X)$ by $\|.\|_{1,1}$. So,

$$
\|\varphi\|_{1,1}=\|\varphi\|+\|\dot{\varphi}\|
$$

Note that from [1] if $\operatorname{dim}(X)<+\infty$, or X is a reflexive Banach space, then each ab-
solutely continuous function $x:[a, b] \rightarrow X$, is a.e. differentiable and

$$
x(t)=x(a)+\int_{a}^{t} \dot{x}(s) d s
$$

In $W^{1,1}([-r, 0] ; X)$, we define the norm $\|.\|_{0}$ by:

$$
\|\varphi\|_{0}=|\varphi(0)|+\int_{-r}^{0}|\dot{\varphi}(\theta)| d \theta
$$

for all $\varphi \in W^{1,1}$.
In ordre to prove the theorem 1.1 we need to prove the three following lemmas:

Lemma 2.1: $\|.\|_{0}$ and $\|.\|_{1,1}$ are two norms equivalents in $W^{1,1}$:

$$
\frac{r}{1+2 r}\|\cdot\|_{0} \leqslant\|\cdot\|_{1,1} \leqslant(1+r)\|\cdot\|_{0} .
$$

Proof: Let $\varphi \in W_{0}^{1,1}$, then $\varphi(\theta)=\varphi(0)-\int_{\theta}^{0} \dot{\varphi}(\tau) d \tau, \quad-r \leqslant \theta \leqslant \tau \leqslant 0$. So: $|\varphi(\theta)| \leqslant|\varphi(0)|+\int_{-r}^{0}|\dot{\varphi}(\tau)| d \tau$. By integrating this previous inequality on $[-r, 0]$, we get:

$$
\int_{-r}^{0}|\varphi(\tau)| d \tau \leqslant r|\varphi(0)|+r \int_{-r}^{0}|\dot{\varphi}(\tau)| d \tau
$$

and we add $\int_{-r}^{0}|\dot{\varphi}(\tau)| d \tau$ both sides of this last inequality we have

$$
\int_{-r}^{0}|\dot{\varphi}(\tau)| d \tau+\int_{-r}^{0}|\varphi(\tau)| d \tau \leqslant r|\varphi(0)|+(r+1) \int_{-r}^{0}|\varphi(\tau)| d \tau
$$

Hence,

$$
\begin{equation*}
\|\varphi\|_{1,1} \leqslant(1+r)\|\varphi\|_{0} \tag{2.1}
\end{equation*}
$$

To get the other inequality in Lemma 2.1 we write, $\varphi(0)=\varphi(\theta)+\int_{\theta}^{0} \dot{\varphi}(\tau) d \tau$, for $-r \leqslant \theta \leqslant \tau \leqslant 0$. So: $|\varphi(0)| \leqslant|\varphi(\theta)|+\int_{-r}^{0}|\dot{\varphi}(\tau)| d \tau$. Again by integration on [$-r, 0]$:

$$
r|\varphi(0)| \leqslant \int_{-r}^{0}|\varphi(\tau)| d \tau+r \int_{-r}^{0}|\dot{\varphi}(\tau)| d \tau
$$

and we add $r \int_{-r}^{0}|\dot{\varphi}(\tau)| d \tau$ both sides of this last inequality we have

$$
r|\varphi(0)|+r \int_{-r}^{0}|\dot{\varphi}(\tau)| d \tau \leqslant\|\varphi\|_{1,1}+2 r\|\varphi\|_{1,1}
$$

Thus,
(2.2)

$$
r\|\varphi\|_{0} \leqslant(1+2 r)\|\varphi\|_{1,1}
$$

It follows, using (2.1) and (2.2), that:

$$
\frac{r}{1+2 r}\|\varphi\|_{0} \leqslant\|\varphi\|_{1,1} \leqslant(1+r)\|\varphi\|_{0} .
$$

Lemma 2.2: Let a, b, c be real numbers with $a \leqslant c \leqslant b$. If $u \in W^{1,1}([a, c] ; X)$ and $v \in W^{1,1}([c, b] ; X)$ such that: $u(c)=v(c)$. Then,

$$
w= \begin{cases}u \text { on }[a, c] \\ v \text { on }[c, b]\end{cases}
$$

belongs to $W^{1,1}([a, b] ; X)$.
Proof: Let $u \in W^{1,1}([a, c] ; X)$. We have: $u(c)=u(a)+\int_{a}^{c} \dot{u}(x) d x$ and for $\tau \in] c, b], v(\tau)=v(c)+\int_{c}^{\tau} \dot{v}(x) d x$.

Hence

$$
u(c)+v(\tau)=u(a)+v(c)+\int_{a}^{c} \dot{u}(x) d x+\int_{c}^{\tau} \dot{v}(x) d x
$$

Since $u(c)=v(c)$, we have for $\tau>c$

$$
\begin{aligned}
w(\tau) & =v(\tau)=u(a)+\int_{a}^{c} \dot{u}(x) d x+\int_{c}^{\tau} \dot{v}(x) d x \\
& =w(a)+\int_{a}^{\tau} \dot{w}(x) d x
\end{aligned}
$$

and consequently $w \in W^{1,1}([a, b] ; X)$.
Lemma 2.3: For all $\varphi \in W^{1,1}([-r, 0] ; X), E_{\varphi}=E_{0}+\{\tilde{\varphi}\}$, where $E_{0}=$ $=\left\{x \in W^{1,1}([-r, T] ; X): x=0\right.$ on $\left.[-r, 0]\right\}$ and $\tilde{\varphi}=\left\{\begin{array}{l}\varphi \text { on }[-r, 0] \\ \varphi(0) \text { on }[0, T] .\end{array}\right.$

Proof: For all $x \in E_{\varphi}$, we have $x=(x-\tilde{\varphi})+\tilde{\varphi}$ and $(x-\tilde{\varphi})_{\mid[-r, 0]}=\varphi-\varphi=0$, and then $(x-\tilde{\varphi}) \in E_{0}$.

3. Local exittence of solutions

Proposition 3.1: Let $x \in E_{\varphi}$. Then, the following properties are satisfied
i) $x_{s} \in W^{1,1}([-r, 0] ; X)$, for all $s \in[0, T]$.
ii) The map: $s \in[0, T] \rightarrow x_{s} \in W^{1,1}([-r, 0] ; X)$ is continuous on $[0, T]$.
iii) $K x \in E_{\varphi}$ and K is continuous, Lipschitz on E_{φ} with Lipschitz constant $\gamma T(T+1)$, where $\gamma=\sup _{t \in[0, T]} \gamma(t)$.

Proof: i) The result is a consequence of Lemma 2.2.
ii) Let $s_{1}, s_{2} \in[0, T]$, with $s_{2}>s_{1}$, we have

$$
\left\|x_{s_{2}}-x_{s_{1}}\right\|_{0}=\left|x_{s_{2}}(0)-x_{s_{1}}(0)\right|+\int_{-r}^{0}\left|\dot{x}_{s_{2}}(\theta)-\dot{x}_{s_{1}}(\theta)\right| d \theta
$$

$\left|x_{s_{2}}(0)-x_{s_{1}}(0)\right|=\left|x\left(s_{2}\right)-x\left(s_{1}\right)\right| \rightarrow 0$, as $s_{2} \rightarrow s_{1}$.
We consider two cases $1 / T \leqslant r$. Let $0 \leqslant s_{1}<s_{2} \leqslant T$ then $-r \leqslant-s_{2}<-s_{1} \leqslant 0$, so

$$
\begin{aligned}
\int_{-r}^{0}\left|\dot{x}_{s_{2}}(\theta)-\dot{x}_{s_{1}}(\theta)\right| d \theta= & \int_{-r}^{-s_{2}}\left|\dot{x}_{s_{2}}(\theta)-\dot{x}_{s_{1}}(\theta)\right| d \theta+\int_{-s_{2}}^{-s_{1}}\left|\dot{x}_{s_{2}}(\theta)-\dot{x}_{s_{1}}(\theta)\right| d \theta+ \\
& \int_{-s_{1}}^{0}\left|\dot{x}_{s_{2}}(\theta)-\dot{x}_{s_{1}}(\theta)\right| d \theta .
\end{aligned}
$$

We denote by $\mathcal{C}([-r, 0] ; X)$ the space of continuous functions which is dense in $L^{1}([-r, 0] ; X)$, and we put:

$$
\begin{aligned}
& I_{1}\left(s_{1}, s_{2}\right)=\int_{-r}^{-s_{2}}\left|\dot{x}_{s_{2}}(\theta)-\dot{x}_{s_{1}}(\theta)\right| d \theta \\
& I_{2}\left(s_{1}, s_{2}\right)=\int_{-s_{2}}^{-s_{1}}\left|\dot{x}_{s_{2}}(\theta)-\dot{x}_{s_{1}}(\theta)\right| d \theta \\
& I_{3}\left(s_{1}, s_{2}\right)=\int_{-s_{1}}^{0}\left|\dot{x}_{s_{2}}(\theta)-\dot{x}_{s_{1}}(\theta)\right| d \theta
\end{aligned}
$$

$I_{1}\left(s_{1}, s_{2}\right)=\int_{-r}^{-s_{2}}\left|\dot{x}_{s_{2}}(\theta)-\dot{x}_{s_{1}}(\theta)\right| d \theta=\int_{-r}^{-s_{2}}\left|\dot{\varphi}\left(s_{2}+\theta\right)-\dot{\varphi}\left(s_{1}+\theta\right)\right| d \theta, \quad$ for $\quad \dot{\varphi} \in$ $\in L^{1}([-r, 0] ; X)$. So, there exists a sequence of functions $\left\{\psi_{n}\right\}_{n} \subset \mathcal{C}([-r, 0] ; X)$ such that $\left\|\psi_{n}-\dot{\varphi}\right\|_{L^{1}} \rightarrow 0$, as $n \rightarrow+\infty$.

Then,

$$
\begin{aligned}
I_{1}\left(s_{1}, s_{2}\right) \leqslant & \int_{-r}^{-s_{2}}\left|\dot{\varphi}\left(s_{2}+\theta\right)-\psi_{n}\left(s_{2}+\theta\right)\right| d \theta+\int_{-r}^{-s_{2}}\left|\psi_{n}\left(s_{2}+\theta\right)-\psi_{n}\left(s_{1}+\theta\right)\right| d \theta \\
& +\int_{-r}^{-s_{2}}\left|\psi_{n}\left(s_{1}+\theta\right)-\dot{\varphi}\left(s_{1}+\theta\right)\right| d \theta \\
\leqslant & 2\left\|\dot{\varphi}-\psi_{n}\right\|+\int_{-r}^{-s_{2}}\left|\psi_{n}\left(s_{2}+\theta\right)-\psi_{n}\left(s_{1}+\theta\right)\right| d \theta
\end{aligned}
$$

and by density of \mathfrak{C} in L^{1}, we have $\left\|\psi_{n}-\dot{\varphi}\right\| \rightarrow 0$, as $n \rightarrow+\infty$. We also have

$$
\psi_{n} \in \mathcal{C}, \quad \text { so }\left|\psi_{n}\left(s_{2}+\theta\right)-\psi_{n}\left(s_{1}+\theta\right)\right| \rightarrow 0, \quad \text { as } s_{2} \rightarrow s_{1}
$$

Hence

$$
I_{1}\left(s_{1}, s_{2}\right) \rightarrow 0, \quad \text { as } s_{2} \rightarrow s_{1} .
$$

For the term I_{2}, we have

$$
I_{2}\left(s_{1}, s_{2}\right)=\int_{-s_{2}}^{-s_{1}}\left|\dot{x}_{s_{2}}(\theta)-\dot{x}_{s_{1}}(\theta)\right| d \theta=\int_{-s_{2}}^{-s_{1}}\left|\dot{x}\left(s_{2}+\theta\right)-\dot{\varphi}\left(s_{1}+\theta\right)\right| d \theta
$$

Since $I_{2}\left(s_{1}, s_{2}\right)$ is absolutely continuous with respect to the measure associated with $\dot{x}\left(s_{2}+\theta\right)-\dot{\varphi}\left(s_{1}+\theta\right)$ for the measure of Lebesgue. Hence $I_{2}\left(s_{1}, s_{2}\right) \rightarrow 0$, as $s_{2} \rightarrow s_{1}$. Finally, for the term I_{3}, we have

$$
I_{3}\left(s_{1}, s_{2}\right)=\int_{-s_{1}}^{0}\left|\dot{x}_{s_{2}}(\theta)-\dot{x}_{s_{1}}(\theta)\right| d \theta=\int_{-s_{1}}^{0}\left|\dot{x}\left(s_{2}+\theta\right)-\dot{x}\left(s_{1}+\theta\right)\right| d \theta
$$

By density of \mathcal{C} in L^{1}, we show in a similar argument can be used to prove that $I_{2}\left(s_{1}, s_{2}\right) \rightarrow 0$, as $s_{2} \rightarrow s_{1}$. Hence,

$$
s \rightarrow x_{s} \text { is continuous on }[0, T]
$$

$2 / T>r$. Let $s_{1}, s_{2} \in[r, T]$, with $s_{1}<s_{2}$, then $s_{2}+\theta>s_{1}+\theta \geqslant 0$.
Note that $s_{1}, s_{2} \in[0, r]$ was studied in case 1 .
So

$$
\int_{-r}^{0}\left|\dot{x}_{s_{2}}(\theta)-\dot{x}_{s_{1}}(\theta)\right| d \theta=\int_{-r}^{0}\left|\dot{x}\left(s_{2}+\theta\right)-\dot{x}\left(s_{1}+\theta\right)\right| d \theta
$$

By density of \mathcal{C} in L^{1}, we can show in a similar argument in this case that $\int_{-r}^{0} \mid \dot{x}_{s_{2}}(\theta)-$ $-\dot{x}_{s_{1}}(\theta) \mid d \theta$ goes to zero as $s_{2} \rightarrow s_{1}$.
iii) Let $x \in E_{\varphi}$, i.e., $x \in W^{1,1}([0, T] ; X)$ and $x=\varphi$ on $[-r, 0]$.

From (1.2) we have $K x_{[[-r, 0]}=\varphi$ and $(K x)(0)=\varphi(0)$. So, for $t \in[0, T]$:

$$
(K x)(t)=(K x)(0)+\int_{0}^{t} F\left(s, x_{s}\right) d s=(K x)(0)+\int_{0}^{t}(\dot{K} x)(s) d s
$$

Hence, $K x \in E_{\varphi}$. Finally, we prove that K is Lipschitz continuous on E_{φ}. Let $x, y \in E_{\varphi}$, then $x, y \in W^{1,1}([0, T] ; X)$ and $x=y=\varphi$ on $[-r, 0]$.

$$
\|K x-K y\|_{W^{1,1}([0, T] ; x)}=\int_{0}^{T}\left|\int_{0}^{t}\left(F\left(s, x_{s}\right)-F\left(s, y_{s}\right)\right) d s\right| d t+\int_{0}^{T}\left|F\left(t, x_{t}\right)-F\left(t, y_{t}\right)\right| d t
$$

By the hypothesis $H_{(F)}$ we obtain

$$
\begin{align*}
\|K x-K y\|_{W^{1,1}([0, T] ; X)} & \leqslant \gamma T \int_{0}^{T}\left\|x_{s}-y_{s}\right\|_{1,1} d s+\gamma \int_{0}^{T}\left\|x_{s}-y_{s}\right\|_{1,1} d s \tag{3.1}\\
& \leqslant \gamma(T+1) \int_{0}^{T}\left\|x_{s}-y_{s}\right\|_{1,1} d s
\end{align*}
$$

By definition of $W^{1,1}$ and x_{s}, we estimate $\left\|x_{s}-y_{s}\right\|_{1,1}$. We consider the following cases.

Case 1: $s \leqslant r$. In this case, we can write

$$
\begin{aligned}
\left\|x_{s}-y_{s}\right\|_{1,1}= & \int_{-r}^{0}\left|x_{s}(\theta)-y_{s}(\theta)\right| d \theta+\int_{-r}^{0}\left|\dot{x}_{s}(\theta)-\dot{y}_{s}(\theta)\right| d \theta= \\
& \int_{-s}^{0}|x(s+\theta)-y(s+\theta)| d \theta+\int_{-s}^{0}|\dot{x}(s+\theta)-\dot{y}(s+\theta)| d \theta
\end{aligned}
$$

and by a change of variable $s+\theta=\tau$, we have

$$
\begin{aligned}
\left\|x_{s}-y_{s}\right\|_{1,1} & =\int_{0}^{s}|x(\tau)-y(\tau)| d \tau+\int_{0}^{s}|\dot{x}(\tau)-\dot{y}(\tau)| d \tau \\
& \leqslant\|x-y\|_{W^{1,1}([0, T] ; X)}
\end{aligned}
$$

Case 2: $s>r$. Then $s+\theta>r+\theta \geqslant 0$ for all θ in $[-r, 0]$.
We can write

$$
\left\|x_{s}-y_{s}\right\|_{1,1}=\int_{-r}^{0}|x(s+\theta)-y(s+\theta)| d \theta+\int_{-r}^{0}|\dot{x}(s+\theta)-\dot{y}(s+\theta)| d \theta
$$

A change of variable gives

$$
\left\|x_{s}-y_{s}\right\|_{1,1}=\int_{s-r}^{s}|x(\tau)-y(\tau)| d \tau+\int_{s-r}^{s}|\dot{x}(\tau)-\dot{y}(\tau)| d \tau .
$$

Since $[s-r, s] \subset[0, T]$ we have

$$
\begin{aligned}
\left\|x_{s}-y_{s}\right\|_{1,1} & \leqslant \int_{0}^{s}|x(\tau)-y(\tau)| d \tau+\int_{0}^{s}|\dot{x}(\tau)-\dot{y}(\tau)| d \tau \\
& \leqslant \int_{0}^{T}|x(\tau)-y(\tau)| d \tau+\int_{0}^{T}|\dot{x}(\tau)-\dot{y}(\tau)| d \tau \\
& =\|x-y\|_{W^{1,1}([0, T] ; X)}
\end{aligned}
$$

Finally from all these estimates, we deduce that

$$
\begin{equation*}
\left\|x_{s}-y_{s}\right\|_{1,1} \leqslant \int_{0}^{s}|x(\tau)-y(\tau)| d \tau+\int_{0}^{s}|\dot{x}(\tau)-\dot{y}(\tau)| d \tau \tag{3.2}
\end{equation*}
$$

$$
\begin{equation*}
\leqslant\|x-y\|_{W^{1,1}([0, T] ; X)} \tag{3.3}
\end{equation*}
$$

It follows from (3.1) and (3.3), that

$$
\begin{aligned}
\|K x-K y\|_{W^{1,1}([0, T] ; X)} & \leqslant \gamma(T+1) \int_{0}^{T}\|x-y\|_{W^{1,1}([0, T] ; X)} d s \\
& =\gamma T(T+1)\|x-y\|_{W^{1,1}([0, T] ; X)} .
\end{aligned}
$$

The proof is completed.

The following theorem is a immediate consequence of the following fact: If $T<\frac{-\gamma+\sqrt{4 \gamma+\gamma^{2}}}{2 \gamma}, K$ is strict contraction from E_{φ} into E_{φ} and by the Banach fixed point theorem, there exists $\bar{x} \in E_{\varphi}$, such that $K \bar{x}=\bar{x}$. Thus \bar{x} is a solution of (1.1) for all $t \in\left[0, \frac{-\gamma+\sqrt{4 \gamma+\gamma^{2}}}{2 \gamma}[\right.$.

Theorem 3.1: Let F satisfy $H_{(F)}$. Then, (1.1) has one solution $\bar{x} \in E_{\varphi}$, for all $\varphi \in W^{1,1}([-r, 0] ; X) . \bar{x}$ is defined on $[0, T]$ with $T<\frac{-\gamma+\sqrt{4 \gamma+\gamma^{2}}}{2 \gamma}$.

4. - Global existence of solutions

Denote by

$$
\|f\|_{(0, a)}=|f(0)|+\int_{0}^{a}|\dot{f}(s)| d s
$$

Proposition 4.1: For all $n \geqslant 1$ and $x, y \in E_{0}$, we have

$$
\left\|K^{n} x-K^{n} y\right\|_{(0, T)} \leqslant \frac{\gamma^{n}(1+T)^{2 n}}{2^{n} \cdot n!}\|x-y\|_{(0, T)}
$$

Proof: If $x \in E_{0},(K x)(t)= \begin{cases}\int_{0}^{t} F\left(s, x_{s}\right) d s & \text { if } t \in[0, T] \\ 0 & \text { if } t \in[-r, 0]\end{cases}$
So, $K x \in E_{0}$. Since $x \in E_{0}$, then

$$
\|x\|_{(0, T)}=\int_{0}^{T}|\dot{x}(s)| d s
$$

Let $x, y \in E_{0}$, and by $H_{(F)}$ we have

$$
\begin{aligned}
& \|K x-K y\|_{(0, T)} \\
= & \int_{0}^{T}\left|\frac{d}{d t}(K x)(t)-\frac{d}{d t}(K y)(t)\right| d t \\
= & \int_{0}^{T}\left|F\left(t, x_{t}\right)-F\left(t, y_{t}\right)\right| d t \\
\leqslant & \gamma \int_{0}^{T}\left\|x_{t}-y_{t}\right\|_{1,1} d t
\end{aligned}
$$

and from (3.2) we have

$$
\left\|x_{t}-y_{t}\right\|_{1,1} \leqslant \int_{0}^{t}|x(\tau)-y(\tau)| d \tau+\|x-y\|_{(0, t)}
$$

Since

$$
|x(\tau)-y(\tau)| \leqslant|x(0)-y(0)|+\int_{0}^{\tau}|\dot{x}(s)-\dot{y}(s)| d s
$$

then, for $\tau \in[0, t]$, we have

$$
\begin{align*}
\left\|x_{t}-y_{t}\right\|_{1,1} & \leqslant \int_{0}^{t}\left[\int_{0}^{\tau}|\dot{x}(s)-\dot{y}(s)| d s\right] d \tau+\|x-y\|_{(0, t)} \tag{4.2}\\
& \leqslant \int_{0}^{t}\left[\int_{0}^{t}|\dot{x}(s)-\dot{y}(s)| d s\right] d \tau+\|x-y\|_{(0, t)} \\
& \leqslant \int_{0}^{t}\|x-y\|_{(0, t)} d \tau+\|x-y\|_{(0, t)} \\
& =(1+t)\|x-y\|_{(0, t)}
\end{align*}
$$

And from (4.1) and (4.2), we obtain

$$
\begin{align*}
\|K x-K y\|_{(0, T)} & \leqslant \gamma \int_{0}^{T}(1+t)\|x-y\|_{(0, t)} d t \tag{4.3}\\
& \leqslant \gamma\|x-y\|_{(0, T)} \frac{(1+T)^{2}}{2}
\end{align*}
$$

Then by the inequality (4.3), we have,

$$
\begin{aligned}
\left\|K^{2} x-K^{2} y\right\|_{(0, T)} & \leqslant \gamma \int_{0}^{T}(1+s)\|K x-K y\|_{(0, s)} d s \\
& \leqslant \gamma^{2} \int_{0}^{T}\left[(1+s) \int_{0}^{s}(1+t)\|x-y\|_{(0, t)} d t\right] d s \\
& \leqslant \gamma^{2}\|x-y\|_{(0, T)} \int_{0}^{T}(1+s)\left[\frac{(1+s)^{2}}{2}-\frac{1}{2}\right] d s \\
& \leqslant \gamma^{2}\|x-y\|_{(0, T)} \int_{0}^{T} \frac{(1+s)^{3}}{2} d s \\
& \leqslant \gamma^{2}\|x-y\|_{(0, T)}\left[\frac{(1+T)^{4}}{8}-\frac{1}{8}\right] \\
& \leqslant \gamma^{2} \frac{(1+T)^{4}}{8}\|x-y\|_{(0, T)}
\end{aligned}
$$

Thus, we prove easily by induction that

$$
\left\|K^{n} x-K^{n} y\right\|_{(0, T)} \leqslant \frac{\gamma^{n}(1+T)^{2 n}}{2^{n} \cdot n!}\|x-y\|_{(0, T)}
$$

We are now prepared to prove the main theorem of this paper
Proof of theorem 1.1: On E_{0} we define a mapping K_{0} by

$$
\left(K_{0} x^{0}\right)(t)=\left\{\begin{array}{ll}
\int_{0}^{t} F\left(s, x_{s}^{0}+\tilde{\varphi}_{s}\right) & \text { if } t \in[0, T] \\
0 & \text { if } t \in[-r, 0]
\end{array} \quad \text { for all } x^{0} \in E_{0} .\right.
$$

It is easy to verify that K_{0} maps E_{0} into itself. Using the same arguments as in the proof of proposition 4.1, we get that

$$
\left\|K_{0}^{n} x^{0}-K_{0}^{n} y^{0}\right\|_{(0, T)} \leqslant \frac{\gamma^{n}(1+T)^{2 n}}{2^{n} \cdot n!}\left\|x^{0}-y^{0}\right\|_{(0, T)}
$$

for all $x^{0}, y^{0} \in E_{0}$.
Then, for all $T>0$, there exists an integer $N>0$, such that for all $n \geqslant N$, we have $\frac{\gamma^{n}(1+T)^{2 n}}{2^{n} n!}<1$. So, K_{0}^{n} is a strict contraction from E_{0} into E_{0} and therefore there exists one $\bar{x}^{0} \in E_{0}$ such that $K_{0}^{n} \bar{x}^{0}=\bar{x}^{0}$. So \bar{x}^{0} is one fixed point of K in E_{0}. Now lemma 2.3 gives the existence of $\bar{x} \in E_{\varphi}$ such that $\bar{x}(t)=\bar{x}^{0}(t)+\varphi(0)$, for all $t \in[0, T]$. Recall that from (1.2) we have

$$
(K x)(t)=\left(K_{0} x^{0}\right)(t)+\varphi(0),
$$

where $x(t)=x^{0}(t)+\varphi(0)$. Then consequently,

$$
(K \bar{x})(t)=\left(K_{0} \bar{x}^{0}\right)(t)+\varphi(0)=\bar{x}^{0}(t)+\varphi(0)=\bar{x}(t) .
$$

Thus \bar{x} is fixed point of K in E_{φ} which completes the proof of theorem 1.1.

5. - An example

In this section we discuss an interesting example of theorem. We apply our results to the integro-differential equation

$$
\begin{cases}\dot{x}(t)=\int_{t-r}^{t} K_{1}(t, \tau, x(\tau)) d \tau+\int_{t-r}^{t} K_{2}(t, \tau, \dot{x}(\tau)) d \tau & \text { if } t \in[0, T] \tag{5.1}\\ x(t)=\varphi(t) & \text { if } t \in[-r, 0]\end{cases}
$$

where $\varphi \in W^{1,1}$ and $K_{i}:[0, T] \times[-r, T] \times X \rightarrow X$, satisfy the following hypothesis
(H) There are bounded functions $\gamma_{1}, \gamma_{2}:[0, T] \rightarrow \mathbb{R}$ such that for all $t \in[0, T]$,
$\tau \in[-r, T]$ and $x_{1}, x_{2} \in X:\left|K_{i}\left(t, \tau, x_{1}\right)-K_{i}\left(t, \tau, x_{2}\right)\right| \leqslant \gamma_{i}(t)\left|x_{1}-x_{2}\right|, \quad i=1,2$.
Define $F:[0, T] \times W^{1,1} \rightarrow X$ by

$$
\begin{equation*}
F(t, \varphi)=\int_{t-r}^{t} K_{1}(t, \tau, \varphi(\tau-t)) d \tau+\int_{t-r}^{t} K_{2}(t, \tau, \varphi(\tau-t)) d \tau \tag{5.2}
\end{equation*}
$$

for all $t \in[0, T], \varphi \in W^{1,1}$.
To prove $H_{(F)}$, we have, for all $t \in[0, T]$, from (H) that

$$
\begin{aligned}
|F(t, \varphi)-F(t, \psi)| \leqslant & \int_{t-r}^{t} \gamma_{1}(t)|\varphi(\tau-t)-\psi(\tau-t)| d \tau \\
& +\int_{t-r}^{t} \gamma_{2}(t)|\dot{\varphi}(\tau-t)-\dot{\psi}(\tau-t)| d \tau \\
\leqslant & \max \left\{\gamma_{1}(t), \gamma_{2}(t)\right\}\|\varphi-\psi\|_{1,1}
\end{aligned}
$$

Thus theorem 1.1 applies to equation (5.1) with F as in (5.2).

REFERENCES

[1] H. Brezis, Opérateurs maximaux monotones et semi-groupes de contractions sur les espaces de Hilbert, North Holland, Mathematics Studies (1973).
[2] M. G. Crandall - A. Pazy, Nonlinear evolution equations in Banach spaces, Israel J. Math. (1975), 57-94.
[3] J. Dyson - R. Villella-Bressan, Functional Differential Equations and Nonlinear Evolution Operators, Proc.Roy.Edinburgh Sect. A 75 (1976), 223-234.
[4] J. Dyson - R. Villella-Bressan, A Semigroup Approach to Nonlinear Nonautonomous Neutral Functional Differential Equations, Journal of differential equations, New-York, London. Vol. 59, N. 2 (1985), 206-228.
[5] H. FLaschaka - M. J. Leitman, On semigroup of nonlinear operators and the solution of the functional differential equation $x^{\prime}(t)=F\left(x_{t}\right)$, J. Math. Anal. Appl., 49 (1975), 649658.
[6] J. Hale, Functional differential equations, Applied Mathematics Series, Vol. 3, Springer Verlag, New-York (1971).
[7] J. Hale, Theory of functional differential equations, Springer-Verlag, New York, Vol. 3, A.M.S, (1977).
[8] K. Kunisch, Neutral differential equations in L^{p} spaces and averaging approximations, J. Nonlinear Anal. TMA 3 (1979), 419-448.
[9] A. T. Plant, Nonlinear Semigroups Generated by Neutral Functional Differential Equations, Fluid Mechanics Research Instute, Report 72, University of Essex, 1976.
[10] D. Salomon, Neutral Functional differential equations and semigroups of operators, Dynamische Systeme, Report 80, Universitat Bremen (1982).
[11] O. Sidki, Une approche par la théorie des semigroupes non linéaires de la résolution d'une classe d'équations différentielles fonctionnelles de type neutre, Application à une équation de dynamique de population, Thèse. N d'ordre 221, 1994, Université de Pau.
[12] G. F. Webb, Autonomous nonlinear functional differential equations and nonlinear semigroups, Math. Anal. Appl., 46 (1972), 1-12.

