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On the Existence of Solutions
of Nonautonomous Neutral Functional Differential Equations (**)

AsstracT. — Existence and uniqueness of the solution of a class of nonlinear nonau-
tonomous neutral functional differential equations is proved, in the case the initial value space
is Wi 1, The proof uses the contraction mapping principle.

Sull’esistenza delle soluzioni
per certe equazioni differenziali funzionali non autonome

Sunto. — Usando il principio delle contrazioni, si dimostrano alcuni risultati di esistenza e
di unicita per le soluzioni di una certa classe di equazioni differenziali funzionali non autonome
e non lineari.

1. - INTRODUCTION

This paper deals with a class of functional differential equation of neutral type
with values in a Banach space. A neutral functional differential equation (N.F.D.E) is
an equation of the form

x'(2) = Glx,),

where G is defined on a subset D of the space of functions from [—7, 0] into X.
Here

D=W"Y[-r,0]; X).
(*) Indirizzi degli Autori: M. Bahaj, Faculty of Sciences and Technology, Settat, Morocco;

O. Sidki: Faculty of Sciences and Technology, Fez Saiss, Fez, Morocco.
(**) Memoria presentata il 18 giugno 2001 da Giorgio Letta, uno dei XL.
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A special class of (N.F.D.E) is the class of (retarded type). In this case
D=C([-r,0]; X).

Most papers in this domain traited the case X = R” (see Hale [6], [7], Webb [12]).
The case of infinite dimension has been considered by Dyson and Villella-Bressan [4],

Plant [9], and Flaschaka and Leitman [5]. In [9] Plant used the nonlinear semigroup
theory to study the (N.F.D.E)

x'(¢) = Gx,), xo=@eCY([—r, 0]; X), 0<:<T

where G : C'([ -7, 0]; X) = X, is Lipschitz continuous. Many authors have used the
semigroup approach to neutral equations (see Kunisch [8], Salomon [10]).

In this paper we consider the following nonlinear nonautonomous neutral differ-
ential equation:

(1.1) x(t) = F(¢, x,), xo=q@eWh ([ —r, 0]; X), 0<¢<T

where x :[—7, T]—X, 0 <r < + o is the delay and X is a Banach space with norm
|.], F:[0, TIx W" ' ([—r, 0]; X) =X and finally x, is the history of x at time # de-
fined pointwise by

x,(0) =x(t+0), for Oe[—r, 0].

Throughout this paper we shall assume:
Hgpy: F:[0, TIx W Y([—r, 0]; X) > X is continuous in (¢, ¢) and
Lipschitz continuous for all ze [0, T1, that is,

|F(z, @) = F(t, p) | <yl — vl 1,

for some bounded y(¢) e R and for all ¢, e W1,

At this stage note that the evolution equation associated with (1.1) was studied by
J. Dyson and R. Villella-Bressan [4] using the theory of nonlinear operators. They
proved the existence and regularity of solutions of (1.1) if F satisfies Hp) and Hp:
There exists a continuous function 4 : [0, T] — X which is of bounded variation and a
monotone increasing function L :[0, + o) — [0, + ) such that:

|F(¢1, @) — F(ty, @) | < |b(ty) — b(2,) |L(||(P||1,1),

for0<#,t<Tand ¢ € W"'. The method used in [4] has been to describe an evo-
lution operator starting from the infinitesimal generator, using the Crandall and Pazy
theorem [2]. Our approach of these problems is based on a direct method by means of
an integral equation. For further details on nonlinear autonomous neutral functional
differential equation (see the earlier work [11], and for nonlinear operators see
([31, [9]). We start with the following definition.
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DerNimion 1.1, [1] A function f:10, T1— X belongs to W7 ([0, T1; X) if and
t

only if there exists a function g L?([0, T1; X) such that f(¢) = £(0) + [g(s) ds for all
trelo, T1. ’

For more details on these spaces, we refer the reader to [1].

The main result of this paper is the following theorem:

Tueorem 1.1: Let F satisfy Hp), g e W' and E, = {xe W" ' ([-r, T]; X): x =
=gqon[—r, 01}. Then, the equation (1.1) has a unique solution’x € E,,, for all T > 0 and
peWh!,

The following mapping will be used in the proof of theorem 1.0.1:

(p(O)—i-fF(s,xj)ds if 1>0
(12) (Kx)() = O

@(2) if te[—r,0].

Finally we also give an example of integro-differential satisfie Hr,. This equation was
studied by J. Dyson and R.Villella-Bressan in [4].

2. - PRELIMINARY RESULTS

Denote by W' ([ —7, 01; X) the Banach space defined by:

geL'([—r,0]; X), ¢ is absolutely continuous,

¢ exists a.e, e L'([—r, 0]; X) and
0
@(0) =@(0) + f(,‘b(s) ds, for all 6e[—7r, 0]
0

Whi([-r,0]; X) =

We shall denote the norm in L'=L'"([—7,0];X) by ||.]| and in W"'=
=W1'1([_7, O], X) by ”.”1’1. SO,

leoll, = lleell + ol

Note that from [1] if dim (X) < + o, or X is a reflexive Banach space, then each ab-



— 114 —

solutely continuous function x :[a, 6] = X, is a.e. differentiable and
x(t) = x(a) + jxm ds .

In WH ([ —r, 01; X), we define the norm ||.]|, by:

0
gl = 1g(0) | + [ |¢6)|d0,

for all pe W'
In ordre to prove the theorem 1.1 we need to prove the three following
lemmas:

Lemva 2.1: |||l and |||, are two norms equivalents in W'

r
1427

- llo < - Ml < 2o

0
Proor: Let @e W' then ¢(0)=¢(0)— [¢(r)dr, —r<O<7<0. So:
0

0
|p(0) | < |@(0) | -I—if | (1) |dr. By integrating this previous inequality on [ —7, 0],
we get:

0 0
[ 1ot |dr<r|@)] +7 [ () |dr

0
and we add 7f | 9(7) |dr both sides of this last inequality we have

0

0 0
[|¢(1)|dr+ j lo(1) |dr < 7| @(0) | +(r+1)j|(p(r)|dz.

-r

Hence,
(2.1) leplly, < (1 +7) flgello

0
To get the other inequality in Lemma 2.1 we write, ¢(0) = ¢@(0) + [¢(7) dr, for
0

0
—r<0<t<0. So: |@(0)| < |@®) |+ [|¢(r)|dr. Again by integration on
[—7, 0] -

0 0
r|@(0) | < j |¢(z>|dr+rj | o(z) |dr
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0
and we add 7. J | ¢(7) |dr both sides of this last inequality we have

0
rle(0) |+ [ 1) |de< gl 1 +27lglh 1

Thus,
(2.2) rllelly < (1427 lgl
It follows, using (2.1) and (2.2), that:

7

lelo <ll@ll 1< 1+ gly. =
1+2r

Lemma 2.2: Let a, b, ¢ be real numbers with a <c<b. If ue W+ ' ([a, cl; X) and
ve Wbh (e, bl; X) such that: u(c) = v(c). Then,

{u on la, c]
w:

v on [c, b]

belongs to W' ([a, b]; X).

C

Proor: Let e W' '([a, cl; X). We have: u(c) = u(a) + [u(x) dx and for
tele, b], v(t) = v(c) + [0(x) dx.

Hence
u(e) + o(t) = ula) + v(c) + Ji{(x) dx + Jb(x) dx .
Since #(c) = v(c), we have for 7> ¢

w(T) = (1) = ula) + j i(x) dx + j (x) dx

=wl(a) + jiu(x) dx |

and consequently we W' !([a, b]; X). =

Lemva 23: For all oeW N[ —r, 0]; X), E,=Ey+ {¢}, where E,=

_ L1 _ . e _ ~ _|g@on[—r0]
={xeW" ' ([-r,T1; X): x=0o0n [—7r, 01} and @ {@(0) on [0, T1.

Proor: For all xeE,, we have x = (x— @)+ @ and (x — @);_, y=¢ — @ =0,
and then (x —@)eE,. =
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3. - LOCAL EXISTENCE OF SOLUTIONS

Prorosition 3.1: Let xe E,. Then, the following properties are satisfied
) x,eWh ([ —r, 01; X), for all se[0, T1.
i) The map: se [0, T1—>x,e W ([ —r, 01; X) is continuous on [0, T1.

i) KxeE, and K is continuous, Lipschitz on E, with Lipschitz constant

yI(T + 1), where y = sup y(t).
re 0, T]

Proor: i) The result is a consequence of Lemma 2.2.
ii) Let sy, s,e€ [0, T1, with s, > s;, we have

0
s, = 2o = 12,(0) =, (O) | + [ |%,(0) = ,(0) |do

|x;,(0) — x, (0) | = |x(s;) —x(s;) | =0, as s,—>sy.
We Con51der two cases 1/T<r. Let 0<5;<s5,<T then —r< —5,<—5,<0, so

-5 -5

0
[ 15,000 =5, 0)1d0 = [ 5,00 = 5,(0) [d0 + [ |5,(0) = ,(0) |do +

0
[ 15,(0) (0|46 .

We denote by C([—r, 0]; X) the space of continuous functions which is dense in
LY ([—7r,0]; X), and we put:

1(s1, 55) J |xe —x,(0) 40,

5 (51, 52) f | x,,(0) — x,,(0)|d0,

-5

3(51, 55) J|xr2 — %, (6)|d6
LG, 52) = [ 15,000 = 5,(0)[d0 = [ [qls, + 0) = ¢(s, + 0)[do, for  ge

L'([—r, 01; X). So, there exists a sequence of functions {¥,},c C([—r, 0]; X)
— @1 —0, as n— + .
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Then,
) -2

(s, 5,) < j | (s, +0) — 1, (s, + 0) | dO + j |9, (524 0) — 1, (s, + 0) |6

+ j |y, (s, + 0) — s, + 0) | d6

-5

<2lg =y, ll+ [ [w.(s+0) =, (5 +0)|do

and by density of € in L', we have ||y, — @[ —0, as #— + o . We also have
Y,eC oso |Y,(s+0)—y,(s5,+0)| =0, as s,—s5.
Hence
I, (51, 5,) =0, as s,—s;.
For the term I,, we have
=51 =51

Lisi, ) = [ [5,(0) =i, (0) |0 = [ i, +6) = (s, + ) | 6.

—42

Since I, (s, s,) is absolutely continuous with respect to the measure associated with
x(s, + 0) — @(s; + 0) for the measure of Lebesgue. Hence L, (s, 5,) =0, as 5, —s,. Fi-
nally, for the term [;, we have

0 0
Lsi, 520 = [ |5,(0) = %,(0)|[d0 = [ | (s, +0) = &(s, + 0) |d6 .

1

By density of @ in L', we show in a similar argument can be used to prove that
L (s;, 5,) =0, as s,—s,;. Hence,

s—x, is continuous on [0, T].

2/T>r. Let s, s,e [r, T], with 5, <s,, then 5, + 0>5, + 6 =0.
Note that s;, s, [0, 7] was studied in case 1.

So
0 0
[ 15,(0) =5, (0) |do = [ | i(s,+ 0) = (s, +0) | 6.

0
By density of € in L', we can show in a similar argument in this case that [ |, (0) —
-r

—x,,(6) |dO goes to zero as s,—s;.
iii) Let xe E,, i.e., xe WV ([0, T]; X) and x=¢ on [—r, 0].

@
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From (1.2) we have Kx|[_, ¢;=¢ and (Kx)(0) = ¢(0). So, for ze [0, T1:
(Kx)(2) = (Kx)(0) + jF(;, x,) ds = (Kx)(0) + j(Kx)m ds .
0 0

Hence, Kx € E,,. Finally, we prove that K is Lipschitz continuous on E,,. Let x, ye E,,
then x, ye W' ([0, T]; X) and x=y=¢ on [—r, 0].

t

T T
||KX—KJ7||W111([O, T],X): J’ j(F(S,X:)_F(S,yS)) df df+f|F(t,Xt)—F(f,yt)|df.
0 0

0

By the hypothesis Hr we obtain

T T
G K= Koo, mon < T = 3l v+ [ = s
0 0

T
<yT+D) [l =ll, 1 ds.
0

By definition of W' ! and x,, we estimate |lx, — y,||; 1. We consider the following
cases.

Cuase 1: s<r. In this case, we can write

0 0
I = 3lh, = [ [(0) = 5.00) [0+ [ [5(0) = 5.(0) |0 =

0 0
[ 155+ 0) =35+ 0)|dO + [ | (s +0) =305 +0) b,
and by a change of variable s + 6 =7, we have
loes =3l v = [ 1%(0) =30 [de + [ [ 3(0) = 5(0) |dr
0 0
< [lx = llw 110, 7 30

Case 2: s>r. Then s+ 0>r+60=0 for all O in [—r, O].
We can write

0 0
[ j |x(s + 0) — (s + 0) | d6 + j | (s +6) — j(s+ 0) |d6 .
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A change of variable gives
b=yl = [ x@ =30 |de+ [ [2) =500 |dz.
Since [s—r, s]1c [0, T] we have

I = 3ell, o < [ 12(0) = y(2) | do + [ | i) = ji(2) | o
0 0

T T
sj|x<r>—y<r)|df+f|x(z)—y<r>|dr
0 0

= ||X - J’”WL L(To, T1; X) -

Finally from all these estimates, we deduce that
6.2) lbes =3l 1 < [ 1x(2) = 9(0) |dr + [ | ir) = 5(2) |dr
0 0

(3.3) S Hx —y||wl~1([o, T} X) -

It follows from (3.1) and (3.3), that
T
IKx = Kyllw. g0, 73, 30 S (T + 1) f”x ~yllwr 1o, 11, 30 ds
0

=yT(T + 1) |x = llwr. 1o, 1, -

The proof is completed. ®

The following theorem is a immediate consequence of the following fact: If

T< —y+\V4y+y?

2y
point theorem, there exists x € E
al e [0 Vi [

2y

, K is strict contraction from E, into E;, and by the Banach fixed

> such that Kx = x. Thus x is a solution of (1.1) for

Tureorem 3.1: Let F satisfy Hp). Then, (1.1) has one solution x € E,, for all

_ A/ 2
pe W N[ —r, 01; X). X is defined on [0, T] with T < V+2—4V+7
Y
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4. - GLOBAL EXISTENCE OF SOLUTIONS

Denote by

[ Alco. o) = |£(0) | +J|]}(x)|dx,
0

ProrositioN 4.1: For all n=1 and x, ye E,, we have

y" (14 T

IK”x = K" yllo, 1) < Py

ke = 3llo, 7 -

Proor: If xeE,, (Kx)(¢) = JJF(S’ x)ds it 1e [0, T

Lo if te[—r,0]
So, Kx e E,. Since x € E,, then

.
lxllio, 1) = J | x(s) | ds .
0

Let x, ye Ey, and by H) we have
IKx = Kyllo, 1

T
J J
=Oj ‘ = (Ka() = = (Ky)(0) ‘dz
T

=fwmmwwm%nﬁ

0
T
<y [l =l
0
and from (3.2) we have
:
b= 3ell < [ 10 = 300 [ + e =, .
0

Since
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then, for T [0, ¢], we have

t[ 7
(4.2) = yulle o< [ | [0 =50 [ds | do+ llx =5l o
0 Lo
< [ | [1#5) =3t [ds | dr + [ =ik,
0 LO ]

t
< [l = oo, e + e = lo,
0

= (14 lx = llo, »-
And from (4.1) and (4.2), we obtain

T
3) IRk = Kolko, < v [(1+ b= sl
0

(1+7)7
> .

< yllx = yllo, 1

Then by the inequality (4.3), we have,
T
K25 = K23lho, < v [ (14 9)lIKe = Kol ds
0

T

Syzj

0

T
(I+s2 1
Sy2||x—y||(0,T>J(1+5)[ ZX —E]ds

0

(1 +:>f<1 +f)||x_y||(o,z)df] ds

0

T(1+s)3

<yl = 9llo, T)I ds
0
<37l sl o LT L
4 Yo, 1 3 3
L (4T
sy llx = yllio,

8
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Thus, we prove easily by induction that

" (1+ TP

K" x = K", 1) < >

e =sllo.n ™

We are now prepared to prove the main theorem of this paper

Proor oF tHEOREM 1.1: On E; we define a mapping K, by

F "+ @) if 0, T
(Kox®)(0) = Of o) relo. 1l

for all x°eE,.
0 if tel—r, 0]

It is easy to verify that K, maps E, into itself. Using the same arguments as in the proof
of proposition 4.1, we get that

y"(1+ T)*"

IKg % = Kgy°llo, 1y < Y

x® = »° H(o, T)
for all x°, y°eE,.

Then, for all T > 0, there exists an integer N > 0, such that for all # = N, we have
y"(1+ TP
2", n!
one x” € E, such that K{'x° = x°. So x° is one fixed point of K in E,. Now lemma 2.3
gives the existence of X € E, such that x(¢) = x°(#) + ¢(0), for all e [0, T]. Recall

that from (1.2) we have

< 1. So, K{ is a strict contraction from E, into E, and therefore there exists

(Kx)(2) = (Kox)(2) + ¢(0),
where x(z) = x°(#) + @(0). Then consequently,
(K%)(2) = (Kox")(2) + ¢(0) = x°(2) + @(0) = x(2).

Thus x is fixed point of K in E, which completes the proof of theorem 1.1.

5. - AN EXAMPLE

In this section we discuss an interesting example of theorem. We apply our results
to the integro-differential equation

x(2) = jKl(f, 7, x(7)) dr + szu,z,;c(T))dz if 1€10, T]

t—r

(5.1)
x(2) = @(2) if tel[—r, 0]

where e W' and K;:[0, T1 X [—r, T1xX—X, satisfy the following hypothesis
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(H) There are bounded functions v, y,:[0, T1—=R such that for all
tel0, T,

tel—r, T] and %, ;e X : |Ki(£, 7, %) = K2, T, %) | <y, () |x—x, |, i=1, 2.

Define F:[0, T1 X W' 1—X by

(5.2) F(z, @) = le(t, T, ot —1)) dr + sz(;, T, ot — 1) dv,

for all te [0, T1, pe W1,
To prove Hpy, we have, for all 7€ [0, T], from (H) that

|F(z, @) — F(z, y) | < J 1) ot —1) —ylr—1) |dr

t—r

+ [ a0 dte =0 = pr =0 |de

<max {y,(2), y,()}Hlg — vl 1.

Thus theorem 1.1 applies to equation (5.1) with F as in (5.2).
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