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ABSTRACT. — Existence and uniqueness of the solution of a class of nonlinear nonau-
tonomous neutral functional differential equations is proved, in the case the initial value space
is W 1, 1. The proof uses the contraction mapping principle.

Sull’esistenza delle soluzioni
per certe equazioni differenziali funzionali non autonome

SUNTO. — Usando il principio delle contrazioni, si dimostrano alcuni risultati di esistenza e
di unicità per le soluzioni di una certa classe di equazioni differenziali funzionali non autonome
e non lineari.

1. - INTRODUCTION

This paper deals with a class of functional differential equation of neutral type
with values in a Banach space. A neutral functional differential equation (N.F.D.E) is
an equation of the form

x 8 (t) 4G(xt ) ,

where G is defined on a subset D of the space of functions from [2r , 0] into X .
Here

D4W 1, 1 ( [2r , 0]; X) .
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A special class of (N.F.D.E) is the class of (retarded type). In this case

D4C( [2r , 0]; X) .

Most papers in this domain traited the case X4Rn (see Hale [6], [7], Webb [12]).
The case of infinite dimension has been considered by Dyson and Villella-Bressan [4],
Plant [9], and Flaschaka and Leitman [5]. In [9] Plant used the nonlinear semigroup
theory to study the (N.F.D.E)

x 8 (t) 4G(xt ) , x04W�C 1 ( [2r , 0]; X) , 0 G tGT

where G : C 1 ( [2r , 0]; X) KX , is Lipschitz continuous. Many authors have used the
semigroup approach to neutral equations (see Kunisch [8], Salomon [10]).

In this paper we consider the following nonlinear nonautonomous neutral differ-
ential equation:

x
.
(t) 4F(t , xt ) , x04W�W 1, 1 ( [2r , 0]; X), 0 G tGT(1.1)

where x : [2r , T] KX, 0 E rE1Q is the delay and X is a Banach space with norm
N.N, F : [0 , T]3W 1, 1 ( [2r , 0]; X) KX and finally xt is the history of x at time t de-
fined pointwise by

xt (u) 4x(t1u), for u� [2r , 0] .

Throughout this paper we shall assume:
H(F) : F : [0 , T]3W 1, 1 ( [2r , 0]; X) KX is continuous in (t , W) and
Lipschitz continuous for all t� [0 , T], that is,

NF(t , W)2F(t , c)NGg(t)VW2cV1, 1 ,

for some bounded g(t) �R and for all W , c�W 1, 1 .
At this stage note that the evolution equation associated with (1.1) was studied by

J. Dyson and R. Villella-Bressan [4] using the theory of nonlinear operators. They
proved the existence and regularity of solutions of (1.1) if F satisfies H(F) and H(F)8 :
There exists a continuous function h : [0 , T] KX which is of bounded variation and a
monotone increasing function L : [0 , 1Q) K [0 , 1Q) such that:

NF(t1 , W)2F(t2 , W)NGNh(t1 )2h(t2 )NL(VWV1, 1 ) ,

for 0 G t1 , t2GT and W�W 1, 1 . The method used in [4] has been to describe an evo-
lution operator starting from the infinitesimal generator, using the Crandall and Pazy
theorem [2]. Our approach of these problems is based on a direct method by means of
an integral equation. For further details on nonlinear autonomous neutral functional
differential equation (see the earlier work [11], and for nonlinear operators see
([3], [9]). We start with the following definition.
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DEFINITION 1.1.: [1] A function f : [0 , T] KX belongs to W 1, p ( [0 , T]; X) if and

only if there exists a function g�L p ( [0 , T]; X) such that f (t) 4 f (0)1s
0

t

g(s) ds for all
t� [0 , T].

For more details on these spaces, we refer the reader to [1].
The main result of this paper is the following theorem:

THEOREM 1.1: Let F satisfy H(F) , W�W 1, 1 and EW4 ]x�W 1, 1 ( [2r , T]; X) : x4

4W on [2r , 0](. Then, the equation (1.1) has a unique solution x �EW , for all TD0 and
W�W 1, 1 .

The following mapping will be used in the proof of theorem 1.0.1:

(Kx)(t) 4

.
/
´

W(0)1�
0

t

F(s , xs ) ds

W(t)

if tD0

if t� [2r , 0] .

(1.2)

Finally we also give an example of integro-differential satisfie H(F) . This equation was
studied by J. Dyson and R.Villella-Bressan in [4].

2. - PRELIMINARY RESULTS

Denote by W 1, 1 ( [2r , 0]; X) the Banach space defined by:

W 1, 1 ( [2r , 0]; X) 4

.
`
/
`
´

W�L 1 ( [2r , 0]; X), W is absolutely continuous ,

W
.

exists a.e, W
.

�L 1 ( [2r , 0]; X) and

W(u) 4W(0)1�
0

u

W
.
(s) ds , for all u� [2r , 0]

ˆ
`
¨
`
˜

.

We shall denote the norm in L 14L 1 ( [2r , 0]; X) by V . V and in W 1, 14

4W 1, 1 ( [2r , 0]; X) by V . V1,1 . So,

VWV1, 14VWV1VW
.

V .

Note that from [1] if dim (X) E1Q , or X is a reflexive Banach space, then each ab-
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solutely continuous function x : [a , b] KX , is a.e. differentiable and

x(t) 4x(a)1�
a

t

x
.
(s) ds .

In W 1, 1 ( [2r , 0]; X), we define the norm V . V0 by:

VWV04NW(0)N1 �
2r

0

NW
.
(u)Ndu ,

for all W�W 1, 1.
In ordre to prove the theorem 1.1 we need to prove the three following

lemmas:

LEMMA 2.1: V . V0 and V . V1, 1 are two norms equivalents in W 1, 1 :

r

112 r
V . V0GV . V1, 1G (11 r)V . V0 .

PROOF: Let W�W 1, 1, then W(u) 4W(0)2s
u

0

W
.
(t) dt , 2rGuGtG0. So:

NW(u)NGNW(0)N1 s
2r

0

NW
.
(t)Ndt . By integrating this previous inequality on [2r , 0],

we get:

�
2r

0

NW(t)NdtG rNW(0)N1 r �
2r

0

NW
.
(t)Ndt

and we add s
2r

0

NW
.
(t)Ndt both sides of this last inequality we have

�
2r

0

NW
.
(t)Ndt1 �

2r

0

NW(t)NdtG rNW(0)N1 (r11) �
2r

0

NW(t)Ndt .

Hence,

VWV1, 1G (11 r) VWV0(2.1)

To get the other inequality in Lemma 2.1 we write, W(0) 4W(u)1s
u

0

W
.
(t) dt, for

2rGuGtG0. So: NW(0)NGNW(u)N1 s
2r

0

NW
.
(t)Ndt . Again by integration on

[2r , 0]:

rNW(0)NG �
2r

0

NW(t)Ndt1 r �
2r

0

NW
.
(t)Ndt
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and we add r s
2r

0

NW
.
(t)Ndt both sides of this last inequality we have

rNW(0)N1 r �
2r

0

NW
.
(t)NdtGVWV1, 112 rVWV1, 1 .

Thus,

rVWV0G (112 r)VWV1, 1(2.2)

It follows, using (2.1) and (2.2), that:

r

112 r
VWV0GVWV1, 1G (11 r)VWV0 . r

LEMMA 2.2: Let a , b , c be real numbers with aGcGb. If u�W 1, 1 ( [a , c]; X) and
v�W 1, 1 ( [c , b]; X) such that: u(c) 4v(c). Then,

w4
.
/
´

u on [a , c]

v on [c , b]

belongs to W 1, 1 ( [a , b]; X).

PROOF: Let u�W 1, 1 ( [a , c]; X). We have: u(c) 4u(a)1s
a

c

u
.
(x) dx and for

t�]c , b], v(t) 4v(c)1s
c

t

v
.
(x) dx.

Hence

u(c)1v(t) 4u(a)1v(c)1�
a

c

u
.
(x) dx1�

c

t

v
.
(x) dx .

Since u(c) 4v(c), we have for tDc

w(t) 4v(t) 4u(a)1�
a

c

u
.
(x) dx1�

c

t

v
.
(x) dx

4w(a)1�
a

t

w
.
(x) dx ,

and consequently w�W 1, 1 ( [a , b]; X). r

LEMMA 2.3: For all W�W 1, 1 ( [2r , 0]; X), EW4E01 ]WA(, where E04

4 ]x�W 1, 1 ( [2r , T]; X) : x40 on [2r , 0]( and WA 4
.
/
´

W on [2r , 0]
W(0) on [0 , T] .

PROOF: For all x�EW , we have x4 (x2WA)1WA and (x2WA)N[2r , 0]4W2W40,
and then (x2WA) �E0 . r
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3. - LOCAL EXISTENCE OF SOLUTIONS

PROPOSITION 3.1: Let x�EW . Then, the following properties are satisfied

i) xs�W 1, 1 ( [2r , 0]; X), for all s� [0 , T].

ii) The map: s� [0 , T] Kxs�W 1, 1 ( [2r , 0]; X) is continuous on [0 , T].

iii) Kx�EW and K is continuous, Lipschitz on EW with Lipschitz constant
gT(T11), where g4 sup

t� [0 , T]
g(t).

PROOF: i) The result is a consequence of Lemma 2.2.
ii) Let s1 , s2� [0 , T], with s2D s1, we have

Vxs2
2xs1

V04Nxs2
(0 )2xs1

(0 )N1 �
2r

0

Nx
.

s2
(u)2x

.
s1

(u)Ndu .

Nxs2
(0 )2xs1

(0 )N4Nx(s2 )2x(s1 )NK0, as s2K s1 .
We consider two cases 1/TGr. Let 0Gs1Es2GT then 2rG2s2E2s1G0, so

�
2r

0

Nx
.

s2
(u)2x

.
s1

(u)Ndu4 �
2r

2s2

Nx
.

s2
(u)2x

.
s1

(u)Ndu1 �
2s2

2s1

Nx
.

s2
(u)2x

.
s1

(u)Ndu1

�
2s1

0

Nx
.

s2
(u)2x

.
s1

(u)Ndu .

We denote by C ( [2r , 0]; X) the space of continuous functions which is dense in
L 1 ( [2r , 0]; X), and we put:

I1 (s1 , s2 ) 4 �
2r

2s2

Nx
.

s2
(u)2x

.
s1

(u)Ndu ,

I2 (s1 , s2 ) 4 �
2s2

2s1

Nx
.

s2
(u)2x

.
s1

(u)Ndu ,

I3 (s1 , s2 ) 4 �
2s1

0

Nx
.

s2
(u)2x

.
s1

(u)Ndu

I1 (s1 , s2 ) 4 s
2r

2 s2

Nx
.

s2
(u) 2 x

.
s1

(u)Ndu 4 s
2r

2s2

NW
.
(s2 1 u) 2 W

.
(s1 1 u)Ndu, for W

.
�

�L 1 ( [2r , 0]; X). So, there exists a sequence of functions ]c n(n% C ( [2r , 0]; X)
such that Vc n2W

.
VL 1 K0, as nK1Q .
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Then,

I1 (s1 , s2 ) G �
2r

2s2

NW
.
(s21u)2c n (s21u)Ndu1 �

2r

2s2

Nc n (s21u)2c n (s11u)Ndu

1 �
2r

2s2

Nc n (s11u)2W
.
(s11u)Ndu

G2VW
.

2c n V1 �
2r

2s2

Nc n (s21u)2c n (s11u)Ndu

and by density of C in L 1, we have Vc n2W
.

VK0, as nK1Q . We also have

c n� C, so Nc n (s21u)2c n (s11u)NK0, as s2K s1 .

Hence

I1 (s1 , s2 ) K0, as s2K s1 .

For the term I2 , we have

I2 (s1 , s2 ) 4 �
2s2

2s1

Nx
.

s2
(u)2x

.
s1

(u)Ndu4 �
2s2

2s1

Nx
.
(s21u)2W

.
(s11u)Ndu .

Since I2 (s1 , s2 ) is absolutely continuous with respect to the measure associated with
x
.
(s21u)2W

.
(s11u) for the measure of Lebesgue. Hence I2 (s1 , s2 ) K0, as s2K s1 . Fi-

nally, for the term I3 , we have

I3 (s1 , s2 ) 4 �
2s1

0

Nx
.

s2
(u)2x

.
s1

(u)Ndu4 �
2s1

0

Nx
.
(s21u)2x

.
(s11u)Ndu .

By density of C in L 1, we show in a similar argument can be used to prove that
I2 (s1 , s2 ) K0, as s2K s1 . Hence,

sKxs is continuous on [0 , T] .

2/TD r . Let s1 , s2� [r , T], with s1E s2 , then s21uD s11uF0.
Note that s1 , s2� [0 , r] was studied in case 1.
So

�
2r

0

Nx
.

s2
(u)2x

.
s1

(u)Ndu4 �
2r

0

Nx
.
(s21u)2x

.
(s11u)Ndu .

By density of C in L 1, we can show in a similar argument in this case that s
2r

0

Nx
.

s2
(u)2

2x
.

s1
(u)Ndu goes to zero as s2K s1 .

iii) Let x�EW , i.e., x�W 1, 1 ( [0 , T]; X) and x4W on [2r , 0].
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From (1.2) we have KxN[2r , 0]4W and (Kx)(0) 4W(0). So, for t� [0 , T]:

(Kx)(t) 4 (Kx)(0)1�
0

t

F(s , xs ) ds4 (Kx)(0)1�
0

t

(K
.

x)(s) ds .

Hence, Kx�EW . Finally, we prove that K is Lipschitz continuous on EW . Let x , y�EW ,
then x , y�W 1, 1 ( [0 , T]; X) and x4y4W on [2r , 0].

VKx2KyVW 1, 1 ( [0 , T]; X)4�
0

T

N�
0

t

(F(s , xs )2F(s , ys ) ) dsNdt1�
0

T

NF(t , xt )2F(t , yt )Ndt .

By the hypothesis H(F) we obtain

VKx2KyVW 1, 1 ( [0 , T]; X)GgT�
0

T

Vxs2ys V1, 1 ds1g�
0

T

Vxs2ys V1, 1 ds(3.1)

Gg(T11)�
0

T

V xs2ys V1, 1 ds .

By definition of W 1, 1 and xs, we estimate Vxs2ys V1, 1 . We consider the following
cases.

Case 1: sG r . In this case, we can write

Vxs2ys V1, 14 �
2r

0

Nxs (u)2ys (u)Ndu1 �
2r

0

Nx
.

s (u)2y
.

s (u)Ndu4

�
2s

0

Nx(s1u)2y(s1u)Ndu1 �
2s

0

Nx
.
(s1u)2y

.
(s1u)Ndu ,

and by a change of variable s1u4t, we have

Vxs2ys V1, 14�
0

s

Nx(t)2y(t)Ndt1�
0

s

Nx
.
(t)2y

.
(t)Ndt

GVx2yVW 1, 1 ( [0 , T]; X)

Case 2: sD r . Then s1uD r1uF0 for all u in [2r , 0].
We can write

Vxs2ys V1, 14 �
2r

0

Nx(s1u)2y(s1u)Ndu1 �
2r

0

Nx
.
(s1u)2y

.
(s1u)Ndu .



— 119 —

A change of variable gives

Vxs2ys V1, 14 �
s2 r

s

Nx(t)2y(t)Ndt1 �
s2 r

s

Nx
.
(t)2y

.
(t)Ndt .

Since [s2 r , s] % [0 , T] we have

Vxs2ys V1, 1G�
0

s

Nx(t)2y(t)Ndt1�
0

s

Nx
.
(t)2y

.
(t)Ndt

G�
0

T

Nx(t)2y(t)Ndt1�
0

T

Nx
.
(t)2y

.
(t)Ndt

4Vx2yVW 1, 1 ( [0 , T]; X) .

Finally from all these estimates, we deduce that

Vxs2ys V1, 1G�
0

s

Nx(t)2y(t)Ndt1�
0

s

Nx
.
(t)2y

.
(t)Ndt(3.2)

GVx2yVW 1, 1 ( [0 , T]; X) .(3.3)

It follows from (3.1) and (3.3), that

VKx2KyVW 1, 1 ( [0 , T]; X)Gg(T11)�
0

T

Vx2yVW 1, 1 ( [0 , T]; X) ds

4gT(T11)Vx2yVW 1, 1 ( [0 , T]; X) .

The proof is completed. r

The following theorem is a immediate consequence of the following fact: If

TE
2g1k4g1g 2

2g
, K is strict contraction from EW into EW and by the Banach fixed

point theorem, there exists x �EW , such that Kx 4 x. Thus x is a solution of (1.1) for

all t� y0,
2g1k4g1g 2

2g
y .

THEOREM 3.1: Let F satisfy H(F) . Then, (1.1) has one solution x �EW , for all

W�W 1, 1 ( [2r , 0]; X). x is defined on [0 , T] with TE
2g1k4g1g 2

2g
.
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4. - GLOBAL EXISTENCE OF SOLUTIONS

Denote by

V f V(0 , a)4Nf (0)N1�
0

a

N f
.
(s)Nds .

PROPOSITION 4.1: For all nF1 and x , y�E0 , we have

VK n x2K n yV(0 , T)G
g n (11T)2n

2n . n!
Vx2yV(0 , T) .

PROOF: If x�E0 , (Kx)(t) 4
.
/
´

s
0

t

F(s , xs ) ds

0

if t� [0 , T]

if t� [2r , 0]
So, Kx�E0 . Since x�E0 , then

VxV(0 , T)4�
0

T

Nx
.
(s)Nds .

Let x , y�E0 , and by H(F) we have

VKx2KyV(0 , T)

4�
0

T

N d

dt
(Kx)(t)2

d

dt
(Ky)(t) Ndt

4�
0

T

NF(t , xt )2F(t , yt )Ndt

Gg�
0

T

Vxt2yt V1, 1 dt

and from (3.2) we have

Vxt2yt V1, 1G�
0

t

Nx(t)2y(t)Ndt1Vx2yV(0 , t) .

Since

Nx(t)2y(t)NGNx(0)2y(0)N1�
0

t

Nx
.
(s)2y

.
(s)Nds ,
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then, for t� [0 , t], we have

Vxt2yt V1, 1G�
0

t y �
0

t

Nx
.
(s)2y

.
(s)Ndsz dt1Vx2yV(0 , t)(4.2)

G�
0

t y �
0

t

Nx
.
(s)2y

.
(s)Ndsz dt1Vx2yV(0 , t)

G�
0

t

Vx2yV(0 , t) dt1Vx2yV(0 , t)

4 (11 t)Vx2yV(0 , t) .

And from (4.1) and (4.2), we obtain

VKx2KyV(0 , T)Gg�
0

T

(11 t)Vx2yV(0 , t) dt(4.3)

GgVx2yV(0 , T)

(11T)2

2
.

Then by the inequality (4.3), we have,

VK 2 x2K 2 yV(0 , T)Gg�
0

T

(11 s)VKx2KyV(0 , s) ds

Gg 2�
0

Ty(11 s)�
0

s

(11 t)Vx2yV(0 , t) dtz ds

Gg 2
Vx2yV(0 , T)�

0

T

(11 s) y (11 s)2

2
2

1

2
z ds

Gg 2
Vx2yV(0 , T)�

0

T (11 s)3

2
ds

Gg 2
Vx2yV(0 , T)y (11T)4

8
2

1

8
z

Gg 2 (11T)4

8
Vx2yV(0 , T)
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Thus, we prove easily by induction that

VK n x2K n yV(0 , T)G
g n (11T)2n

2n . n!
Vx2yV(0 , T) r

We are now prepared to prove the main theorem of this paper

PROOF OF THEOREM 1.1: On E0 we define a mapping K0 by

(K0 x 0 )(t) 4

.
/
´

�
0

t

F(s , xs
01WAs )

0

if t� [0 , T]

if t� [2r , 0]

for all x 0�E0 .

It is easy to verify that K0 maps E0 into itself. Using the same arguments as in the proof
of proposition 4.1, we get that

VK0
n x 02K0

n y 0
V(0 , T)G

g n (11T)2n

2n . n!
Vx 02y 0

V(0 , T)

for all x 0 , y 0�E0 .
Then, for all TD0, there exists an integer ND0, such that for all nFN, we have

g n (11T)2n

2n . n!
E1. So, K0

n is a strict contraction from E0 into E0 and therefore there exists

one x 0�E0 such that K0
n x 04 x 0. So x 0 is one fixed point of K in E0 . Now lemma 2.3

gives the existence of x �EW such that x(t) 4 x 0 (t)1W(0), for all t� [0 , T]. Recall
that from (1.2) we have

(Kx)(t) 4 (K0 x 0 )(t)1W(0) ,

where x(t) 4x 0 (t)1W(0). Then consequently,

(Kx)(t) 4 (K0 x 0 )(t)1W(0) 4 x 0 (t)1W(0) 4 x(t) .

Thus x is fixed point of K in EW which completes the proof of theorem 1.1.

5. - AN EXAMPLE

In this section we discuss an interesting example of theorem. We apply our results
to the integro-differential equation

.
/
´

x
.
(t) 4 �

t2 r

t

K1 (t , t , x(t) ) dt1 �
t2 r

t

K2 (t , t , x
.
(t) ) dt

x(t) 4W(t)

if t� [0 , T]

if t� [2r , 0]

(5.1)

where W�W 1,1 and Ki : [0 , T]3 [2r , T]3XKX, satisfy the following hypothesis
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(H) There are bounded functions g 1 , g 2 : [0 , T] KR such that for all
t� [0 , T],

t� [2r , T] and x1 , x2�X : NKi (t , t , x1 )2Ki (t , t , x2 )NGg i (t)Nx12x2 N , i41, 2 .

Define F : [0 , T]3W 1, 1KX by

F(t , W) 4 �
t2 r

t

K1 (t , t , W(t2 t) ) dt1 �
t2 r

t

K2 (t , t , W(t2 t) ) dt ,(5.2)

for all t� [0 , T], W�W 1, 1.
To prove H(F) , we have, for all t� [0 , T], from (H) that

NF(t , W)2F(t , c)NG �
t2 r

t

g 1 (t)NW(t2 t)2c(t2 t)Ndt

1 �
t2 r

t

g 2 (t)NW
.
(t2 t)2c

.
(t2 t)Ndt

Gmax ]g 1 (t), g 2 (t)(VW2cV1, 1 .

Thus theorem 1.1 applies to equation (5.1) with F as in (5.2).
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