Rendiconti
Accademia Nazionale delle Scienze detta dei XL
Memorie di Matematica e Applicazioni

An application of scattering theory to the spectrum of the Laplace-Beltrami operator (**)

Summary. - Applying a theorem due to Belopol'ski and Birman, we show that the LaplaceBeltrami operator on 1 -forms on \boldsymbol{R}^{n} endowed with an asymptotically Euclidean metric has absolutely continuous spectrum equal to $[0,+\infty)$.

Un'applicazione della teoria dello scattering allo spettro
 dell'operatore di Laplace-Beltrami

Riassunto. - Applicando un teorema di Belopol'ski e Birman, si dimostra che l'operatore di Laplace-Beltrami sulle 1 -forme nello spazio \boldsymbol{R}^{n} dotato di una metrica asintoticamente Euclidea ha spettro assolutamente continuo pari a $[0,+\infty)$.

1. - Introduction

The relationships between the geometric properties of a complete noncompact Riemannian manifold and the spectrum of the Laplace-Beltrami operator have been intensively investigated by many authors.

Among them, H. Donnelly since the late seventies studied the spectra of the Laplacian and of the Laplace-Beltrami operators on particular manifolds, such as the hyperbolic space ([1]), manifolds with negative sectional curvature ([3]), asymptotically euclidean manifolds ([2]). However, to our knowledge, the case of the Laplace-Beltrami operator acting on p-forms on asymptotically euclidean manifolds has been left aside up to now.

The purpose of this paper is to contribute to the investigation of this case. We
(*) Indirizzo dell'Autrice: Dipartimento di Matematica del Politecnico, corso Duca degli Abruzzi 24, I-10129 Torino.
(**) Memoria presentata il 18 maggio 2001 da Edoardo Vesentini, uno dei XL.
study the absolutely continuous spectrum of the Laplace-Beltrami operator on \boldsymbol{R}^{n} endowed with an asymptotically euclidean metric, that is with a Riemannian metric satisfying conditions (5), (6) and (7). The tool employed is classical scattering theory in the wave operators approach. In this case, the problem is reduced to a problem of scattering for vector-valued operators.

An inherent restriction of the proof, however, that makes it difficult an extension to more general cases, is the use of the Fourier transform, which has a crucial role in our considerations, particularly in connection with Lemma 3. The lack of this tool in the more general case of manifolds with an asymptotically controlled Riemannian metric is a major obstacle to the extension of the theorem.

This paper summarizes and improves some results of my PhD Thesis, compiled under the direction of Prof. Edoardo Vesentini, to whom I am deeply grateful for his constant and careful support.

2. - Preliminaries

Let $\left(\boldsymbol{R}^{n}, e\right)$ be the euclidean n-dimensional space, and $\left(\boldsymbol{R}^{n}, g\right)$ be the same space, endowed with a complete Riemannian metric g.

We will denote by $\Lambda_{c}^{1}\left(\boldsymbol{R}^{n}\right)$ the vector space of all smooth, compactly supported 1 -forms on \boldsymbol{R}^{n}, and by $L_{1}^{2}\left(\boldsymbol{R}^{n}, e\right)$ the completion of $\Lambda_{c}^{1}\left(\boldsymbol{R}^{n}\right)$ with respect to the norm

$$
\begin{equation*}
\|\omega\|_{L_{1}^{2}\left(\boldsymbol{R}^{n}, e\right)}^{2}=\int_{\boldsymbol{R}^{n}}\langle\omega, \omega\rangle_{e} d x \tag{1}
\end{equation*}
$$

where $d x$ denotes the Euclidean volume element and

$$
\langle\omega(x), \omega(x)\rangle_{e}=\sum_{i} \omega_{i}^{2}(x)
$$

is the fiber norm for 1 -forms induced by the Euclidean metric.
$L_{1}^{2}\left(\boldsymbol{R}^{n}, e\right)$ is the Hilbert space direct sum of n copies of $L^{2}\left(\boldsymbol{R}^{n}\right)$. The Laplace-Beltrami operator Δ_{e} on 1 -forms $\omega \in \Lambda_{c}^{1}\left(\boldsymbol{R}^{n}\right)$ acts componentwise as:

$$
\left(\Delta_{e} \omega\right)_{k}=-\sum_{j} \frac{\partial^{2} \omega_{k}}{\partial x_{j}^{2}}
$$

It is well-known that Δ_{e} is essentially selfadjoint on $\Lambda_{c}^{1}\left(\boldsymbol{R}^{n}\right)$, and its closure H_{0} has purely absolutely continuous spectrum equal to

$$
\sigma\left(H_{0}\right)=[0,+\infty),
$$

with constant multiplicity.

We will denote by $h_{0}[\omega]$ the quadratic form associated to Δ_{e} on $\Lambda_{c}^{1}\left(\boldsymbol{R}^{n}\right)$:

$$
\begin{equation*}
\boldsymbol{b}_{0}[\omega]=\int_{\boldsymbol{R}^{n}}\left\langle\Delta_{e} \omega, \omega\right\rangle_{e} d x=\int_{\boldsymbol{R}^{n}} \sum_{i, j=1}^{n}\left(\frac{\partial \omega_{i}}{\partial x^{j}}\right)^{2} d x \tag{2}
\end{equation*}
$$

$L_{1}^{2}\left(\boldsymbol{R}^{n}, g\right)$ will stand for the completion of $\Lambda_{c}^{1}\left(\boldsymbol{R}^{n}\right)$ with respect to the norm:

$$
\begin{equation*}
\|\omega\|_{L_{1}^{2}\left(\mathbb{R}^{n}, g\right)}^{2}=\int_{\mathbb{R}^{n}}\langle\omega, \omega\rangle_{g} \sqrt{g} d x, \tag{3}
\end{equation*}
$$

where $\sqrt{g} d x$, as usual, denotes the volume element induced by the Riemannian metric g and

$$
\langle\omega(x), \omega(x)\rangle_{g}=g^{i j}(x) \omega_{i}(x) \omega_{j}(x)
$$

is the fiber norm for 1 -forms induced by g. (Here, as everywhere throughout the paper, the repeated indices convention is adopted.)

The action of the Laplace-Beltrami operator $\Delta_{g}=d \delta+\delta d$ on 1 -forms $\omega \in \Lambda_{c}^{1}\left(\boldsymbol{R}^{n}\right)$ is given in local coordinates by the Weitzenböck formula:

$$
\left(\Delta_{g} \omega\right)_{k}=-\left(g^{i j} \nabla_{i} \nabla_{j} \omega\right)_{k}+R_{k}^{i} \omega_{i},
$$

where ∇_{i} is the covariant derivative with respect to the connection induced by the metric g, and R_{k}^{i} is the Ricci tensor.

Since the Riemannian metric g is complete, Δ_{g} is essentially selfadjoint on $\Lambda_{c}^{1}\left(\boldsymbol{R}^{n}\right)$. We will denote its closure by H_{1}.

Moreover, we will denote by $b_{1}[\omega]$ the quadratic form associated to Δ_{g} on $\Lambda_{c}^{1}\left(\boldsymbol{R}^{n}\right)$
(4) $\quad b_{1}[\omega]=\int_{R^{n}}\left\langle\Delta_{g} \omega, \omega\right\rangle_{g} \sqrt{g} d x=\int_{R^{n}}|\nabla \omega|_{g}^{2} \sqrt{g} d x+\int_{R^{n}}\langle R \omega, \omega\rangle_{g} \sqrt{g} d x$,
where

$$
|\nabla \omega|_{g}^{2}=g^{i j} g^{\alpha \beta} \nabla_{i} \omega_{a} \nabla_{j} \omega_{\beta}
$$

and

$$
\langle R \omega, \omega\rangle_{g}=g^{\alpha \beta} R_{\alpha}^{i} \omega_{i} \omega_{\beta} .
$$

In the next section we will show how it is possible, under suitable hypothesis on the asymptotic behaviour of g, to get information about the spectrum of H_{1} from the knowledge of the spectrum of H_{0}, proving the following
Tнеогем 2.1: Let \boldsymbol{R}^{n} be endowed with a Riemannian metric g such that $\left|\frac{\partial g^{i l}}{\partial x_{j}}(x)\right|$
is bounded and, for $|x| \gg$, there exists $C>0$ such that

1. for every i, j,

$$
\begin{equation*}
\left|g^{i j}(x)-\delta^{i j}\right|<\frac{C}{|x|^{k}} \tag{5}
\end{equation*}
$$

for some $k>n$;
2. for every i, j, k, l

$$
\begin{gather*}
\left|\frac{\partial g_{i l}}{\partial x_{j}}\right|<\frac{C}{|x|^{k}} \tag{6}\\
\left|\frac{\partial^{2} g_{i l}}{\partial x_{j} \partial x_{k}}\right|<\frac{C}{|x|^{k}} \tag{7}
\end{gather*}
$$

for some $k>n$.
Then the Laplace-Beltrami operator Δ_{g} acting on 1-forms has absolutely continuous spectrum equal to $[0,+\infty)$:

$$
[0,+\infty)=\sigma_{a c}\left(H_{1}\right)=\sigma\left(H_{1}\right)
$$

In particular, it has no discrete spectrum. (There might be singularly continuous spectrum or embedded eigenvalues.)

The main tool for the proof is Belopol'ski-Birman theorem (see [5], [6]), which provides a sufficient condition so that two selfadjoint operators have the same absolutely continuous spectrum.

We recall it briefly:
Theorem 2.2: Let H_{0}, H_{1} be selfadjoint operators acting respectively on Hilbert spaces $\mathscr{H}_{0}, \mathcal{G}_{1}$, and let $E_{\Omega}\left(H_{0}\right), E_{\Omega}\left(H_{1}\right)$, for $\Omega \subset \boldsymbol{R}$, be the associated spectral measures.

If $J \in \mathscr{L}\left(\mathscr{C}_{0}, \mathcal{G}_{1}\right)$ satisfies the conditions:

1. I has a bounded two-sided inverse;
2. for every bounded interval $I \subset \boldsymbol{R}$,

$$
\begin{equation*}
E_{I}\left(H_{1}\right)\left(H_{1} J-J H_{0}\right) E_{I}\left(H_{0}\right) \in \mathscr{J}_{1}\left(\mathcal{H}_{0}, \mathcal{G}_{1}\right), \tag{8}
\end{equation*}
$$

where $\mathscr{J}_{1}\left(\mathcal{H}_{0}, \mathcal{C}_{1}\right)=\left\{A \in \mathscr{L}\left(\mathscr{H}_{0}, \mathscr{\mathcal { G }}_{1}\right) \mid(A * A)^{1 / 2} \in \mathscr{J}_{1}\left(\mathcal{C}_{0}\right)\right\}$ and $\mathscr{J}_{1}\left(\mathscr{H}_{0}\right)$ denotes, as usual, the set of trace-class operators on \mathcal{C}_{0};
3. for every bounded interval $I \subseteq R,\left(J^{*} J-I\right) E_{I}\left(H_{0}\right)$ is compact;
4. $J Q\left(H_{0}\right)=Q\left(H_{1}\right)$, where $Q\left(H_{i}\right)$ is the form domain of the operator H_{i}, for $i=0,1$,
then the wave operators $W^{ \pm}\left(H_{1}, H_{0} ; J\right)$ exist, are complete, and are partial isometries with initial space $P_{a c}\left(H_{0}\right)$ and final space $P_{a c}\left(H_{1}\right)$, where $P_{a c}\left(H_{i}\right)$ denotes, as usual, the absolutely continuous space of H_{i}, for $i=0,1$.

As a consequence, the absolutely continuous spectra of H_{0} and H_{1} do coincide.

Remark 2.3: We recall (see [4]) that if H is a densely defined, essentially selfadjoint, positive operator on a Hilbert space \mathscr{C} and b is the associated quadratic form, the form domain $Q(\bar{H})$ of the selfadjoint operator \bar{H} is the domain of the closure \tilde{b} of the form b, that is to say: $Q(\bar{H})$ is the set of those $u \in \mathscr{H}$ such that there exists a sequence $\left\{u_{n}\right\} \subset D(H)$ converging to u in \mathscr{H} such that

$$
b\left[u_{n}-u_{m}\right] \rightarrow 0
$$

as $n, m \rightarrow+\infty$.

3. - Proof of Theorem 2.1

We will prove that, for a suitable $J: L_{1}^{2}\left(\boldsymbol{R}^{n}, e\right) \rightarrow L_{1}^{2}\left(\boldsymbol{R}^{n}, g\right), H_{1}=\overline{\Delta_{g}}, H_{0}=\overline{\Delta_{e}}$ and J satisfy the conditions of Theorem 2.2, for $\mathcal{G}_{0}=L^{2}\left(\boldsymbol{R}^{n}, e\right)$ and $\mathcal{G}_{1}=$ $=L^{2}\left(\boldsymbol{R}^{n}, g\right)$.

We begin with the following
Lemma 3.1: Let g be as in Theorem 2.1. Then there exist $C, C_{1}>0, D, D_{1}>0$ such that

1. for every $x \in \boldsymbol{R}^{n}$

$$
\begin{equation*}
C \leqslant \sqrt{g(x)} \leqslant C_{1} \tag{9}
\end{equation*}
$$

2. for every $x \in \boldsymbol{R}^{n}, v$ in the cotangent space at $x, T_{x}^{*}\left(\boldsymbol{R}^{n}\right)$

$$
\begin{equation*}
D \sum_{i} v_{i}^{2} \leqslant g^{i j}(x) v_{i} v_{j} \leqslant D_{1} \sum_{i} v_{i}^{2} . \tag{10}
\end{equation*}
$$

Proof: (9) follows immediately observing that, for every $x, \sqrt{g(x)}$ is strictly positive and $\sqrt{g(x)} \rightarrow 1$ as $|x| \rightarrow+\infty$.

As for (10), since the matrix $g^{i j}(x)$, which expresses the Riemannian metric g in contravariant form, is a continuous function of x and is positive, its eigenvalues $\lambda_{1}(x), \ldots, \lambda_{n}(x)$ depend continuously on x and are strictly positive. Hence, the functions f and b defined by

$$
f(x):=\inf _{i} \lambda_{i}(x)
$$

and

$$
h(x):=\sup _{i} \lambda_{i}(x),
$$

are continuous and strictly positive. Moreover, since the metric g is asymptotically euclidean, $f(x) \rightarrow 1$ and $b(x) \rightarrow 1$ as $|x| \rightarrow+\infty$. As a consequence, there exist $D, D_{1}>0$
such that, for every $x \in \boldsymbol{R}^{n}$,

$$
D \leqslant f(x) \leqslant b(x) \leqslant D_{1},
$$

which yields (10).
Lemma 3.1 implies that there is a natural identification between $L_{1}^{2}\left(\boldsymbol{R}^{n}, g\right)$ and $L_{1}^{2}\left(\boldsymbol{R}^{n}, e\right)$, and, moreover, (1) and (3) are equivalent norms. As a consequence, the identity map on $\Lambda_{c}^{1}\left(\boldsymbol{R}^{n}\right)$ extends to a bounded linear operator

$$
J: L_{1}^{2}\left(\boldsymbol{R}^{n}, e\right) \rightarrow L_{1}^{2}\left(\boldsymbol{R}^{n}, g\right),
$$

with bounded two-sided inverse, and condition 1 of Theorem 2.2 is satisfied.
In order to prove (8), we need two Lemmas:
Lemma 3.2: Let $A: \xi \mapsto A_{\xi}$ be a $n \times n$-matrix-valued function on \boldsymbol{R}^{n}, and let $\mathfrak{C a}$ be the linear operator

$$
\mathfrak{a}: D(\mathfrak{Q}) \subset L^{2}\left(\boldsymbol{R}^{n}\right) \oplus \ldots \oplus L^{2}\left(\boldsymbol{R}^{n}\right) \rightarrow L^{2}\left(\boldsymbol{R}^{n}\right) \oplus \ldots \oplus L^{2}\left(\boldsymbol{R}^{n}\right)
$$

of the form

$$
f(x) A\left(-i \nabla_{x}\right),
$$

where $f(x)$ is a function on \boldsymbol{R}^{n} and $A\left(-i \nabla_{x}\right)$ is the operator

$$
A\left(-i \nabla_{x}\right)=\mathscr{F} \circ \widehat{A}_{\xi} \circ \mathscr{F}^{-1},
$$

\mathcal{F} being the Fourier transform and \widehat{A}_{ξ} the multiplication operator

$$
\begin{gathered}
v \mapsto \widehat{A}_{\xi} v \\
\left(\widehat{A}_{\xi} v\right)(\xi)=A_{\xi} v(\xi) .
\end{gathered}
$$

Let $L_{\delta}^{2}\left(\boldsymbol{R}^{n}\right)$ be the space of functions h such that

$$
\|b\|_{\delta}^{2}=\left\|\left(1+|x|^{2}\right)^{\delta / 2} b(x)\right\|_{L^{2}}<\infty .
$$

If, for some $\delta>\frac{n}{2}, f(x) \in L_{\delta}^{2}\left(\boldsymbol{R}^{n}\right)$ and, for every pair of indices $(\alpha, \beta),\left(A_{\xi}\right)_{\alpha}^{\beta} \in L_{\delta}^{2}\left(\boldsymbol{R}^{n}\right)$, then \mathfrak{G} is a trace-class operator.

Proof of Lemma: 3.2: It suffices to show that, for every fixed (α, β), the operator $\mathcal{Q}_{\beta}^{\alpha}$

$$
\begin{aligned}
& \mathfrak{O}_{\beta}^{\alpha}: D\left(\mathfrak{C}_{\beta}^{\alpha}\right) \subset L^{2}\left(\boldsymbol{R}^{n}\right) \oplus \ldots \oplus L^{2}\left(\boldsymbol{R}^{n}\right) \rightarrow L^{2}\left(\boldsymbol{R}^{n}\right) \oplus \ldots \oplus L^{2}\left(\boldsymbol{R}^{n}\right) \\
& \omega=\left(\omega_{1}, \ldots, \omega_{n}\right) \mapsto(\underbrace{0, \ldots, 0, f(x) A_{\alpha}^{\beta}\left(-i \nabla_{x}\right) \omega_{\beta}}, 0, \ldots 0)
\end{aligned}
$$

is trace-class. But this latter operator coincides with the composition

$$
I_{\alpha} \circ\left(f(x) A_{\alpha}^{\beta}\left(-i \nabla_{x}\right)\right) \circ P_{\beta}
$$

where P_{β} is the projection

$$
\begin{gathered}
P_{\beta}: L^{2}\left(\boldsymbol{R}^{n}\right) \oplus \ldots \oplus L^{2}\left(\boldsymbol{R}^{n}\right) \rightarrow L^{2}\left(\boldsymbol{R}^{n}\right) \\
\omega=\left(\omega_{1}, \ldots, \omega_{\beta}, \ldots, \omega_{n}\right) \mapsto \omega_{\beta},
\end{gathered}
$$

I_{α} is the immersion

$$
\begin{gathered}
I_{\alpha}: L^{2}\left(\boldsymbol{R}^{n}\right) \rightarrow L^{2}\left(\boldsymbol{R}^{n}\right) \oplus \ldots \oplus L^{2}\left(\boldsymbol{R}^{n}\right) \\
\omega \mapsto(\underbrace{0, \ldots, 0, \omega}_{\alpha}, \ldots, 0),
\end{gathered}
$$

and $A_{\beta}^{\alpha}\left(-i \nabla_{x}\right)$ is the operator

$$
\begin{gathered}
D\left(A_{\beta}^{\alpha}\left(-i \nabla_{x}\right)\right) \subset L^{2}\left(\boldsymbol{R}^{n}\right) \rightarrow L^{2}\left(\boldsymbol{R}^{n}\right) \\
A_{\beta}^{\alpha}\left(-i \nabla_{x}\right)=\mathfrak{F} \circ\left(\widehat{A}_{\xi}\right)_{\beta}^{\alpha} \circ \mathscr{F}^{-1},
\end{gathered}
$$

where \mathfrak{F} is the Fourier transform and $\left(\widehat{A}_{\xi}\right)_{\beta}^{\alpha}$ is the multiplication operator associated to the scalar function $\left(A_{\xi}\right)_{\beta}^{\alpha}$.

The conclusion follows from the fact that P_{β} and I_{α} are bounded operators and (see [5], Theorem XI.21) any operator

$$
L^{2}\left(\boldsymbol{R}^{n}\right) \rightarrow L^{2}\left(\boldsymbol{R}^{n}\right)
$$

of the form $f(x) b\left(-i \nabla_{x}\right)$ is trace-class if $f(x)$ and $b(\xi)$ belong to $L_{\delta}^{2}\left(\boldsymbol{R}^{n}\right)$.
Lemma 3.3: If $f: \boldsymbol{R}^{n} \rightarrow \boldsymbol{R}$ is continuous and such that for some $k>n$

$$
\begin{equation*}
|f(x)|<\frac{C}{|x|^{k}} \tag{11}
\end{equation*}
$$

when $|x| \gg 0$, then $f \in L_{\delta}^{2}\left(\boldsymbol{R}^{n}\right)$ for some $\delta>\frac{n}{2}$.
Proof: Choosing $\varepsilon>0$ such that $k>n+\varepsilon$, then

$$
|f(x)|<\frac{C}{|x|^{k}}
$$

for $|x| \gg 0$; as a consequence, a straighforward computation in polar coordinates shows that, for $\delta=\frac{n}{2}+\varepsilon$,

$$
\int_{R^{n}}|f(x)|^{2}\left(1+|x|^{2}\right)^{\delta} d x<+\infty
$$

Now, to prove (8), it suffices to see that for every bounded interval $I \subset \boldsymbol{R}$,

$$
\left(H_{1}-H_{0}\right) E_{I}\left(H_{0}\right) \in \mathscr{J}_{1}\left(L^{2}\left(\boldsymbol{R}^{n}\right) \oplus \ldots \oplus L^{2}\left(\boldsymbol{R}^{n}\right)\right) .
$$

Let $\Gamma_{i k}^{\alpha}$ be the Christoffel symbols of the Riemannian connection induced by g; then the difference $H_{1}-H_{0}$ is given by

$$
\begin{align*}
& \left(\left(H_{1}-H_{0}\right) \omega\right)_{k}=\left(-g^{i j}+\delta^{i j}\right) \frac{\delta^{2} \omega_{k}}{\delta x^{i} \delta x^{j}}+g^{i j} \Gamma_{j k}^{\alpha} \frac{\delta \omega_{\alpha}}{\delta x^{i}}+g^{i j} \Gamma_{i j}^{\alpha} \frac{\delta \omega_{k}}{\delta x^{\alpha}}+ \tag{12}\\
& \quad+g^{i j} \Gamma_{i k}^{\alpha} \frac{\delta \omega_{\alpha}}{\delta x^{j}}+g^{i j} \frac{\delta \Gamma_{j k}^{\alpha}}{\delta x^{i}} \omega_{\alpha}-g^{i j} \Gamma_{i j}^{\alpha} \Gamma_{\alpha k}^{\beta} \omega_{\beta}-g^{i j} \Gamma_{i k}^{\alpha} \Gamma_{j \alpha}^{\beta} \omega_{\beta}+R_{k}^{i} \omega_{i}
\end{align*}
$$

A direct computation shows that conditions (5), (6), (7), and hypothesis 3 in Theorem 2.1 imply that $\left|g^{i j} \Gamma_{j k}^{\alpha}\right|,\left|g^{i j} \Gamma_{i j}^{\alpha}\right|,\left|g_{C}^{i j} \Gamma_{i k}^{\alpha}\right|,\left|g^{i j} \frac{\partial \Gamma_{j k}^{\alpha}}{\partial x_{i}}\right|,\left|g^{i j} \Gamma_{i j}^{\alpha} \Gamma_{\alpha k}^{\beta}\right|,\left|g^{i j} \Gamma_{i k}^{\alpha} \Gamma_{\alpha j}^{\beta}\right|,\left|R_{k}^{i}\right|$ are all bounded from above by $\frac{C}{|x|^{k}}$ for some constant $C>0$ and some $k>n$.
$\left(H_{1}-H_{0}\right)\left(E_{I}\left(H_{0}\right)\right)$ is a sum of operators of type $f(x) A\left(-i \nabla_{x}\right)$, with $f(x) \in L_{\delta}^{2}\left(\boldsymbol{R}^{n}\right)$ in view of Lemma 3.3, and A_{ξ} smooth and compactly supported.

Thus, thanks to Lemma 3.2, $\left(H_{1}-H_{0}\right)\left(E_{I}\left(H_{0}\right)\right)$ is trace-class and condition 2 is fulfilled.

As for condition 3, first of all we observe that the adjoint of J

$$
J^{*}: L_{1}^{2}\left(\boldsymbol{R}^{n}, g\right) \rightarrow L_{1}^{2}\left(\boldsymbol{R}^{n}, e\right)
$$

satisfies the equation

$$
\int_{R^{n}} g^{i j} \omega_{i} \phi_{j} \sqrt{g} d x=\int_{R^{n}} \delta^{i j} \omega_{i}\left(J^{*} \phi\right)_{j} d x
$$

and therefore

$$
\left(J^{*} \phi\right)_{k}=\delta_{i k} g^{i j} \phi_{j} \sqrt{g} .
$$

As a consequence, in local coordinates

$$
\left(\left(J^{*} J-I\right) \phi\right)_{k}=\left(\sqrt{g} g^{j k}-\delta^{j k}\right) \phi_{j} ;
$$

now,

$$
\left|\sqrt{g} g^{j k}-\delta^{j k}\right| \leqslant|\sqrt{g}|\left|g^{j k}-\delta^{j k}\right|+|(\sqrt{g}-1)| \delta^{i j}
$$

By (5), there exists $C>0$ such that

$$
\left|g^{j k}-\delta^{j k}\right| \leqslant \frac{C}{|x|^{k}}
$$

for some $k>n$ for $|x| \gg 0$; moreover,

$$
|(\sqrt{g}-1)|=\frac{1}{2}|1-g|+o\left(\frac{1}{|x|^{k}}\right) \leqslant \frac{K}{|x|^{k}}
$$

for some $K>0$ and some $k>n$ as $|x| \rightarrow+\infty$.
Thus, $\sqrt{g} g^{j k}-\delta^{j k}$ belongs to $L_{\delta}^{2}\left(\boldsymbol{R}^{n}\right)$. Hence $\left(J^{*} J-I\right) E_{I}\left(H_{0}\right)$ is an operator of type $f(x) A\left(-\nabla_{x}\right)$, with $f(x)$ in $L_{\delta}^{2}\left(\boldsymbol{R}^{2}\right)$ and A_{ξ} smooth and compactly supported; by Lemma 3.2, it is trace-class, and therefore it is compact.

As for condition 4, thanks to Remark 2.3, $Q\left(H_{0}\right)$ and $Q\left(H_{1}\right)$ can be characterized as follows:

Lemma 3.4: $Q\left(H_{0}\right)$ is the set of those $\omega \in L_{1}^{2}\left(\boldsymbol{R}^{n}, e\right)$ for which there exists a sequence $\left\{\omega^{(n)}\right\} \subset \Lambda_{c}^{1}\left(\boldsymbol{R}^{n}\right)$ such that

$$
\begin{equation*}
\omega^{(n)} \rightarrow \omega \quad \text { in } L_{1}^{2}\left(\boldsymbol{R}^{n}, e\right) \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
b_{0}\left[\omega^{(n)}-\omega^{(m)}\right] \rightarrow 0 \tag{14}
\end{equation*}
$$

as $n, m \rightarrow+\infty$.
Analogously, $Q\left(H_{1}\right)$ is the set of those $\omega \in L_{1}^{2}\left(\boldsymbol{R}^{n}, g\right)$ such that there exists $\left\{\psi^{(n)}\right\} \subset \Lambda_{c}^{1}\left(\boldsymbol{R}^{n}\right)$ for which

$$
\begin{equation*}
\psi^{(n)} \rightarrow \omega \text { in } L^{2}\left(\boldsymbol{R}^{n}, g\right) \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
b_{1}\left[\psi^{(n)}-\psi^{(m)}\right] \rightarrow 0 \tag{16}
\end{equation*}
$$

as $n, m \rightarrow+\infty$.
We prove now that

$$
\begin{equation*}
Q\left(H_{0}\right) \subseteq Q\left(H_{1}\right) . \tag{17}
\end{equation*}
$$

For $\omega \in Q\left(H_{0}\right)$, there exists a sequence $\left\{\omega^{(n)}\right\} \subset \Lambda_{c}^{1}\left(\boldsymbol{R}^{n}\right)$ satisfying (13) and (14). Due to the equivalence of the norms (1) and (3),

$$
\omega^{(n)} \rightarrow \omega \text { in } L_{1}^{2}\left(\boldsymbol{R}^{n}, g\right) ;
$$

hence, in order to see that $\omega \in Q\left(H_{1}\right)$ it suffices to prove that

$$
b_{1}\left[\omega^{(n)}-\omega^{(n)}\right] \rightarrow 0
$$

as $m, n \rightarrow+\infty$.

To establish this fact, we consider first the curvature part of $b_{1}\left[\omega^{(n)}-\omega^{(m)}\right]$,

$$
\begin{equation*}
\int_{R^{n}}\left\langle R\left(\omega^{(n)}-\omega^{(m)}\right),\left(\omega^{(n)}-\omega^{(m)}\right)\right\rangle_{g} \sqrt{g} d x . \tag{18}
\end{equation*}
$$

The following Lemma holds:
Lemma 3.5: There exists $C>0$ such that

$$
\begin{equation*}
\left|\int_{R^{n}}\langle R \omega, \omega\rangle_{g} \sqrt{g} d x\right| \leqslant C\|\omega\|_{L_{1}^{2}\left(R^{n}, e\right)}^{2} \tag{19}
\end{equation*}
$$

for every $\omega \in L_{1}^{2}\left(\boldsymbol{R}^{n}, e\right)$.
Proof: Consider for every $x \in \boldsymbol{R}^{n}$ the quadratic form on $T_{x}^{*}\left(\boldsymbol{R}^{n}\right)$

$$
\omega \mapsto g^{\alpha \beta}(x) R_{\alpha}^{i}(x) \omega_{i} \omega_{\beta}=R^{i \beta}(x) \omega_{i} \omega_{\beta} .
$$

Since the matrix $R^{i \beta}(x)$ depends continuously on x, its eigenvalues $\lambda_{1}(x), \ldots, \lambda_{n}(x)$ are continuous functions of x. Hence the function

$$
f(x):=\sup _{i} \lambda_{i}(x),
$$

is continuous. Moreover, since the metric g is asymptotically euclidean, $f(x) \rightarrow 0$ as $|x| \rightarrow+\infty$. As a consequence, there exists $C>0$ such that $|f(x)| \leqslant C$ for every $x \in \boldsymbol{R}^{n}$. This in turn implies

$$
\left|R^{i \beta}(x) \omega_{i} \omega_{\beta}\right| \leqslant C\|\omega\|_{T_{x}^{*}\left(R^{n}\right)}^{z^{*}}
$$

for every $x \in \boldsymbol{R}^{n}$ and for every $\omega \in T_{x}^{*}\left(\boldsymbol{R}^{n}\right)$, which yields (19).
Since $\left\{\omega^{(n)}\right\}$ is a Cauchy sequence, the preceding Lemma implies that

$$
\begin{equation*}
\int_{R^{n}}\left\langle R\left(\omega^{(n)}-\omega^{(m)}\right),\left(\omega^{(n)}-\omega^{(m)}\right)\right\rangle_{g} \sqrt{g} d x \mapsto 0 \tag{20}
\end{equation*}
$$

as $n, m \rightarrow+\infty$.
As for the gradient part of $b_{1}\left[\omega^{(n)}-\omega^{(m)}\right]$,

$$
\begin{equation*}
\int_{R^{n}}\left|\nabla\left(\omega^{(n)}-\omega^{(m)}\right)\right|_{g}^{2} \sqrt{g} d x, \tag{21}
\end{equation*}
$$

we begin by proving
Lemma 3.6: There exist $C, D>0$ such that

$$
\begin{equation*}
C \int_{\mathbf{R}^{n}}|\eta|_{e}^{2} d x \leqslant \int_{\mathbf{R}^{n}}|\eta|_{g}^{2} \sqrt{g} d x \leqslant D \int_{\mathbf{R}^{n}}|\eta|_{e}^{2} d x \tag{22}
\end{equation*}
$$

for every smooth, compactly supported tensor $\eta=\eta_{i j}$ of rank 2, where

$$
|\eta|_{e}^{2}=\sum_{i, j=1}^{n} \eta_{i j}^{2}
$$

and

$$
|\eta|_{g}^{2}=g^{i j}(x) g^{k l}(x) \eta_{i k} \eta_{j l} .
$$

Proof: Consider, for every $x \in \boldsymbol{R}^{n}$, the quadratic form

$$
\boldsymbol{R}^{n^{2}} \times \boldsymbol{R}^{n^{2}} \rightarrow \boldsymbol{R}
$$

defined by

$$
\eta=\eta_{i j} \mapsto a(x)[\eta]=g^{i j}(x) g^{k l}(x) \eta_{i k} \eta_{j l} .
$$

Since this quadratic form is positive and depends continuously on x, its eigenvalues $\lambda_{k}(x)$, for $k=1, \ldots, n^{2}$, are continuous, positive functions of x. Moreover,

$$
a(x)[\eta] \rightarrow \sum_{i, j=1}^{n} \eta_{i j}^{2}
$$

as $|x| \rightarrow+\infty$, implying that $\lambda_{k}(x) \rightarrow 1$, for every $k=1, \ldots, n^{2}$, as $|x| \rightarrow+\infty$. As a consequence, there exist $C, D>0$ such that

$$
C|\eta|_{e}^{2} \leqslant a(x)[\eta] \leqslant D|\eta|_{e}^{2}
$$

for every $x \in \boldsymbol{R}^{n}, \eta \in \boldsymbol{R}^{n^{2}}$, which implies (22).
Setting

$$
\eta_{i k}=\nabla_{i}\left(\omega_{k}^{(n)}-\omega_{k}^{(m)}\right),
$$

(22) yields

$$
\begin{equation*}
\int_{R^{n}}\left|\nabla\left(\omega^{(n)}-\omega^{(m)}\right)\right|_{e}^{2} d x \leqslant \frac{1}{C} \int_{R^{n}}\left|\nabla\left(\omega^{(n)}-\omega^{(m)}\right)\right|_{g}^{2} \sqrt{g} d x \tag{23}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{\boldsymbol{R}^{n}}\left|\nabla\left(\omega^{(n)}-\omega^{(m)}\right)\right|_{g}^{2} \sqrt{g} d x \leqslant D \int_{\boldsymbol{R}^{n}}\left|\nabla\left(\omega^{(n)}-\omega^{(m)}\right)\right|_{e}^{2} d x \tag{24}
\end{equation*}
$$

Now,

$$
\nabla_{i} \omega_{k}=\frac{\partial \omega_{k}}{\partial x_{i}}-\Gamma_{i k}^{\alpha} \omega_{\alpha}
$$

whence an easy computation shows that for every $i, k=1, \ldots, n$

$$
\left\|\nabla_{i}\left(\omega_{k}^{(n)}-\omega_{k}^{(m)}\right)\right\|_{L^{2}\left(\boldsymbol{R}^{n}, e\right)} \leqslant\left\|\frac{\partial\left(\omega_{k}^{(n)}-\omega_{k}^{(m)}\right)}{\partial x_{i}}\right\|_{L^{2}\left(\boldsymbol{R}^{n}, e\right)}+K\left\|\omega^{(n)}-\omega^{(m)}\right\|_{L_{1}^{2}\left(\boldsymbol{R}^{n}, e\right)} .
$$

As a consequence,

$$
b_{1}\left[\omega^{(n)}-\omega^{(m)}\right] \rightarrow 0
$$

as $n, m \rightarrow 0$. Thus, $Q\left(H_{0}\right) \subseteq Q\left(H_{1}\right)$.
We complete the proof of Theorem 2.1 showing that $Q\left(H_{1}\right) \subseteq Q\left(H_{0}\right)$.
For any $\omega \in Q\left(H_{1}\right)$ there exists a sequence $\left\{\psi^{(n)}\right\} \subset \Lambda_{c}^{1}\left(\boldsymbol{R}^{n}\right)$ such that (15) and (16) hold.

Thanks to the equivalence of the norms (1) and (3),

$$
\psi^{(n)} \rightarrow \omega \quad \text { in } L_{1}^{2}\left(\boldsymbol{R}^{n}, e\right)
$$

Thus, in order to see that $\omega \in Q\left(H_{0}\right)$ it suffices to prove that

$$
b_{0}\left[\psi^{(n)}-\psi^{(m)}\right] \rightarrow 0
$$

as $m, n \rightarrow+\infty$.
Now, (15) and (16), together with (18), imply that

$$
\int_{R^{n}}\left|\nabla\left(\psi^{(n)}-\psi^{(m)}\right)\right|_{g}^{2} \sqrt{g} d x \rightarrow 0
$$

as $n, m \rightarrow+\infty$.
For every $i, k=1, \ldots, n$

$$
\begin{array}{r}
\left\|\frac{\partial\left(\psi_{k}^{(n)}-\psi_{k}^{(m)}\right)}{\partial x_{i}}\right\|_{L^{2}\left(\boldsymbol{R}^{n}, e\right)} \leqslant\left\|\nabla_{i}\left(\psi_{k}^{(n)}-\psi_{k}^{(m)}\right)\right\|_{L^{2}\left(\boldsymbol{R}^{n}, e\right)}+\left\|\Gamma_{i k}^{\alpha}\left(\psi_{a}^{(n)}-\psi_{a}^{(m)}\right)\right\|_{L^{2}\left(\boldsymbol{R}^{n}, e\right)} \leqslant \\
\leqslant\left\|\nabla_{i}\left(\psi_{k}^{(n)}-\psi_{k}^{(m)}\right)\right\|_{L^{2}\left(\boldsymbol{R}^{n}, e\right)}+C\left\|\psi^{(n)}-\psi^{(m)}\right\|_{L_{1}^{2}\left(\boldsymbol{R}^{n}, e\right)}
\end{array}
$$

Then, in view of (23),

$$
b_{0}\left[\psi^{(n)}-\psi^{(m)}\right] \rightarrow 0
$$

as $n, m \rightarrow+\infty$, and $Q\left(H_{1}\right) \subseteq Q\left(H_{0}\right)$.
Therefore,

$$
J\left(Q\left(H_{0}\right)\right)=Q\left(H_{1}\right) .
$$

Remark 3.7: Theorem 2.1 holds, more in general, for p-forms, with $p=1, \ldots n$, with arguments following the same patterns of the ones developed for $p=1$. Indeed, estimates like (9), (10), (22) hold for p-forms, showing that the identification $J=$ $=I: L_{p}^{2}\left(\boldsymbol{R}^{n}, g\right) \rightarrow L_{p}^{2}\left(\boldsymbol{R}^{n}, e\right)$ is continuous with two-sided bounded inverse. To estab-
lish the validity of conditions 2,3 of Belopol'ski-Birman theorem requires replacing Δ_{g} with the Laplace-Beltrami operator on p-forms, given by

$$
\begin{aligned}
\left(\Delta_{g(p)} \omega\right)_{i_{1} \ldots i_{p}}= & -\sum_{\alpha, \beta} g^{\alpha \beta} \nabla_{\alpha} \nabla_{\beta} \omega_{i_{1} \ldots i_{p}}+\sum_{j, \alpha} R_{i_{j}}^{\alpha} \omega_{i_{1} \ldots \alpha, \hat{i}_{j} \ldots i_{p}}+ \\
& -\sum_{j, l \neq j, \alpha, \beta} R^{\alpha \beta \beta}{ }_{i_{j}{ }_{i l}} \omega_{\alpha i_{1} \ldots \beta \hat{i}_{l} \ldots \hat{j}_{j} \ldots i_{p}},
\end{aligned}
$$

where $R_{k l}^{i j}$ is the Riemann curvature tensor, which satisfies the condition $\left|R_{k}^{i}{ }_{k}{ }^{j}\right|<\frac{C}{|x|^{k}}$ for $|x| \gg 0$.

The quadratic forms b_{0} and h_{1} have now to be replaced by

$$
\boldsymbol{h}_{0(p)}=\int_{\boldsymbol{R}^{n}} \sum_{i_{1}, \ldots, i_{p}, j=1}^{n}\left(\frac{\partial \omega_{i_{1} \ldots i_{p}}}{\partial x_{j}}\right)^{2} d x
$$

and by $\boldsymbol{h}_{1(p)}$ expressed by

$$
b_{1(p)}[\omega]=\int_{R^{n}}|\nabla \omega|_{g}^{2} \sqrt{g} d x+\int_{R^{n}}\langle\widetilde{R} \omega, \omega\rangle_{g} \sqrt{g} d x,
$$

where

$$
|\nabla \omega|_{g}^{2}=g^{\alpha \beta} g^{i_{1} j_{1}} \ldots g^{i_{p} j_{j}} \nabla_{\alpha} \omega_{i_{1} \ldots i_{p}} \nabla_{\beta} \omega_{j_{1} \ldots j_{p}}
$$

and

$$
\langle\widetilde{R} \omega, \omega\rangle_{g}=g^{i_{1} j_{1}} \ldots g^{i_{p} j_{p}} R_{i_{j}}^{\alpha} \omega_{i_{1} \ldots \alpha \ldots i_{p}} \omega_{j_{1} \ldots j_{p}}+g^{i_{1} j_{1}} \ldots g^{i_{p} j_{p}} R^{\alpha}{ }_{i_{j}}^{\beta} \varphi_{\varphi_{\alpha i_{1} \ldots \beta \beta i_{p}}} \omega_{j_{1} \ldots j_{p}} .
$$

Then from the fact that a condition similar to (19) holds for $\langle\widetilde{R} \omega, \omega\rangle_{g}$, the proof follows.

REFERENCES

[1] H. Donnelly, The differential form spectrum of hyperbolic space, manuscripta math., 33 (1981), 365-385.
[2] H. Donnelly, Spectrum of the Laplacian on asymptotically Euclidean spaces, Michigan Math. J., 46, no. 1 (1999), 101-111.
[3] H. Donnelly - F. Xavier, On the differential form spectrum of negatively curved Riemannian manifolds, Amer. J. Math., 106, no. 1 (1984), 169-185.
[4] T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, Berlin, 1976.
[5] M. Reed - B. Simon, Methods of modern mathematical physics vol. III, Scattering theory, Academic Press, New York, 1972.
[6] A. L. Belopol'ski - M. S. Birman, Existence of wave operators in scattering theory for a pair of spaces, Izv. Akad. Nauk SSSR Ser. Mat., 32 (1968), 1162-1175.

