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An application of scattering theory to the spectrum
of the Laplace-Beltrami operator (**)

Summary. — Applying a theorem due to Belopol’ski and Birman, we show that the Laplace-
Beltrami operator on 1-forms on R” endowed with an asymptotically Euclidean metric has ab-
solutely continuous spectrum equal to [0, + ).

Un’applicazione della teoria dello scattering allo spettro
dell’operatore di Laplace-Beltrami

Riassunto. — Applicando un teorema di Belopol’ski e Birman, si dimostra che I'operatore
di Laplace-Beltrami sulle 1-forme nello spazio R” dotato di una metrica asintoticamente Eucli-
dea ha spettro assolutamente continuo pari a [0, + o).

1. - INTRODUCTION

The relationships between the geometric properties of a complete noncompact
Riemannian manifold and the spectrum of the Laplace-Beltrami operator have been
intensively investigated by many authors.

Among them, H. Donnelly since the late seventies studied the spectra of the Lapla-
cian and of the Laplace-Beltrami operators on particular manifolds, such as the hyper-
bolic space ([1]), manifolds with negative sectional curvature ([3]), asymptotically eu-
clidean manifolds ([2]). However, to our knowledge, the case of the Laplace-Beltrami
operator acting on p-forms on asymptotically euclidean manifolds has been left aside
up to now.

The purpose of this paper is to contribute to the investigation of this case. We

(*) Indirizzo dell’Autrice: Dipartimento di Matematica del Politecnico, corso Duca degli
Abruzzi 24, 1-10129 Torino.
(**) Memoria presentata il 18 maggio 2001 da Edoardo Vesentini, uno dei XL.
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study the absolutely continuous spectrum of the Laplace-Beltrami operator on R” en-
dowed with an asymptotically euclidean metric, that is with a Riemannian metric satis-
fying conditions (5), (6) and (7). The tool employed is classical scattering theory in the
wave operators approach. In this case, the problem is reduced to a problem of scatter-
ing for vector-valued operators.

An inherent restriction of the proof, however, that makes it difficult an extension
to more general cases, is the use of the Fourier transform, which has a crucial role in
our considerations, particularly in connection with Lemma 3. The lack of this tool in
the more general case of manifolds with an asymptotically controlled Riemannian met-
ric is a major obstacle to the extension of the theorem.

This paper summarizes and improves some results of my PhD Thesis, compiled
under the direction of Prof. Edoardo Vesentini, to whom I am deeply grateful for his
constant and careful support.

2. - PRELIMINARIES

Let (R”, ¢) be the euclidean #-dimensional space, and (R”, g) be the same space,
endowed with a complete Riemannian metric g.

We will denote by A (R”) the vector space of all smooth, compactly supported
1-forms on R”, and by LZ(R", e) the completion of A!(R”) with respect to the
norm

(1) ||w||i12(R", e) — J<w> (1)>€dx }
RU

where dx denotes the Euclidean volume element and
(w(x), o(x)). = 2 o7 (x)

is the fiber norm for 1-forms induced by the Euclidean metric.
L2 (R", e) is the Hilbert space direct sum of # copies of L2(R"). The Laplace-Bel-
trami operator A, on 1-forms w e A(R") acts componentwise as:

2
d,0)=—2 oo

, 2
i Ox;

It is well-known that A4, is essentially selfadjoint on A (R"), and its closure H, has
purely absolutely continuous spectrum equal to

o(Hy) =10, + ),

with constant multiplicity.



We will denote by Ay[w] the quadratic form associated to 4, on A1 (R"):
n \2
(2) hylw] = f{Aew, ), dx = f > % dx .
o o ij=1\ Ox’

LI (R”, g) will stand for the completion of A!(R") with respect to the norm:

6) [0l 0= [(@, @) Veds,
o

where Vg dx, as usual, denotes the volume element induced by the Riemannian metric
g and

(o(x), o(x)), = g7 (x) w,(x) ;(x)

is the fiber norm for 1-forms induced by g. (Here, as everywhere throughout the pa-
per, the repeated indices convention is adopted.)

The action of the Laplace-Beltrami operator A, = do + dd on 1-forms w € A (R")
is given in local coordinates by the Weitzenbock formula:

(4,w),=— (g”V,-V/-w)k +Rlw;,

where V, is the covariant derivative with respect to the connection induced by the met-
ric g, and R/ is the Ricci tensor.

Since the Riemannian metric g is complete, 4, is essentially selfadjoint on A} (R").
We will denote its closure by H;.

Moreover, we will denote by A [w] the quadratic form associated to 4, on
ALR")

(4) hlol = f(Agw, WY, Vg dx = J |Vor |2/ g dx + I(Rw, o), Vadx,
R" R" R"
where
Vo |2=g"¢"V,0,V04
and
(Ro, 0),=g"Riw,wg.

In the next section we will show how it is possible, under suitable hypothesis on
the asymptotic behaviour of g, to get information about the spectrum of H; from the
knowledge of the spectrum of H,, proving the following

% (x)

X

TueoreM 2.1: Let R” be endowed with a Riemannian metric g such that
is bounded and, for |x|>>0, there exists C>0 such that
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1. for every i, 7,

. C
(5) |g7(x) = 07| < .
| x|
for some k> n;
2. for every i,7, k, [
dg, C
(6) & -
9x; | x|
3y, C
@) ‘ & .
Ox; Oxy, | x|

for some k> n.
Then the Laplace-Beltrami operator A, acting on 1-forms has absolutely continuous
spectrum equal to [0, + o):
[0, + OO) = Oac(Hl) = U(Hl) .

In particular, it has no discrete spectrum. (There might be singularly continuous spec-
trum or embedded eigenvalues.)

The main tool for the proof is Belopol’ski-Birman theorem (see [5], [6]), which
provides a sufficient condition so that two selfadjoint operators have the same abso-

lutely continuous spectrum.
We recall it briefly:

Tueorem 2.2: Let Hy, Hy be selfadjoint operators acting respectively on Hilbert
spaces Iy, I, and let Eq(H,), Eq(H,), for QCR, be the associated spectral
measures.

If Je £(9Cy, IC,) satisfies the conditions:

1. | has a bounded two-sided inverse;
2. for every bounded interval ICR,
(8) E;(H,)(H, ] — JHo) E;(Hy) € 3, (9G, 9¢,)
where 3,(9C,, ) = {A e LG, ) [(A*A) e 5,(96)} and 3,(9¢) de-
notes, as usual, the set of trace-class operators on Iy;
3. for every bounded interval ICR, (J*] —1) E;(H,) is compact;
4. JO(Hy) = Q(H,), where Q(H,) is the form domain of the operator H;, for
i=0,1,
then the wave operators W* (H,, Hy; |) exist, are complete, and are partial isometries
with initial space P,.(H,) and final space P,.(H,), where P,.(H,) denotes, as usual, the

absolutely continuous space of H;, for i=0, 1.
As a consequence, the absolutely continuous spectra of Hy and H, do coincide.
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Remark 2.3: We recall (see [4]) that if H is a densely defined, essentially selfad-
joint, positive operator on a Hilbert space IC and 5 is the associated quadratic form,
the form domain Q(H) of the selfadjoint operator H is the domain of the closure b of
the form A, that is to say: Q(H) is the set of those # € IC such that there exists a se-
quence {u,}cD(H) converging to « in JC such that

blu,—u,]—0

as n, m—> + o,

- Proor or TueoreMm 2.1

We will prove that, for a suitable | : L7 (R”, ¢) =L (R", g), H, = 4, Hy=4,
and | satisfy the conditions of Theorem 2.2, for I(,= L (R”, e) and XM, =
=L*(R", g).

We begin with the following

Lemma 3.1: Let g be as in Theorem 2.1. Then there exist C, C; >0, D, D; > 0 such
that

1. for every xeR”

©) CsVialx) <Gy
2. for every xeR”, v in the cotangent space at x, T} (R")

(10) DZvZ-ZSg""(x) viv]-SDlz vE.

Proor: (9) follows immediately observing that, for every x, \/ g(x) is strictly positi-

ve and Vg(x)—1 as |x|— + .

As for (1 ), since the matrix g”(x), which expresses the Riemannian metric g in
contravariant form, is a continuous function of x and is positive, its eigenvalues
Ai(x), ..., 4,(x) depend continuously on x and are strictly positive. Hence, the func-

tions f and A defined by
Flx) :==inf 1,(x)
and

h(x) :=sup 4,(x),

are continuous and strictly positive. Moreover, since the metric g is asymptotically eu-
clidean, f(x) —1 and h(x) =1 as |x| —> + . As a consequence, there exist D, D; > 0
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such that, for every xeR”,
D<{f(x) <h(x) <D,

which yields (10). m

Lemma 3.1 implies that there is a natural identification between L] (R”, g) and
L2(R"”, e), and, moreover, (1) and (3) are equivalent norms. As a consequence, the
identity map on A!(R”) extends to a bounded linear operator

J: L2(R", e)—>L{(R", g),

with bounded two-sided inverse, and condition 1 of Theorem 2.2 is satisfied.
In order to prove (8), we need two Lemmas:

Lemmva 3.2: Let A: Em>Ag be a n X n-matrix-valued function on R”, and let A be
the linear operator

a:D@cL*(R")®...L*(R") >L*(R")®...BL*(R")
of the form
fx)A(=iV,),
where f(x) is a function on R" and A(—iV,) is the operator
A=) =Fo Ao T !,
F being the Fourier transform and A ¢ the multiplication operator
v Agw
(Ae0)(&) = Az0(8).
Let L{(R") be the space of functions b such that
618 = 1 + [x]72 50, < oo.
If, for some 6 > % ,[(x) € L(R") and, for every pair of indices (a., B), (Ag)l e L (R"),
then Q is a trace-class operator.
Proor oF Lemma: 3.2: It suffices to show that, for every fixed (a, ), the operator A
Aas: D@§)cL*(R")®...®L*(R") —>L*(R")®...®L*(R")

w=(w,,.., 0,0, ..,0, f(x) AS(=iV,) wg, 0, ...0

~

a
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is trace-class. But this latter operator coincides with the composition
I, o (f(x) AZ(=V,)) o Py,
where Py is the projection
Pg: L*(R")®...®L*(R") —L*(R")
w=(0, .., 0 ...,0, >0,
I, is the immersion
I,: L>(R")—>L*R"®...®L*(R")

w—0,...,0,w,...,0),

[
a

and Af(—7V,) is the operator
D(A§(—=4V,))cL*(R") —L*(R")
Af(=V,) = Fo(A)fo F !,

where Fis the Fourier transform and (A, ¢)ff is the multiplication operator associated to
the scalar function (Ag)f.

The conclusion follows from the fact that P; and I, are bounded operators and
(see [5], Theorem XI.21) any operator

L*(R") —>L*(R")
of the form f(x) h(—:V,) is trace-class if f(x) and h(E) belong to L{(R"). =
Lemma 3.3: If f: R"—R is continuous and such that for some k> n

c
|| *

when |x|> 0, then fe Li(R") for some & > %

(11) |f(x) ] <

Proor: Choosing &€ > 0 such that £>#» + ¢, then

C
0] < —=
| ]
for |x|>> 0; as a consequence, a straighforward computation in polar coordinates

shows that, for 6 = g +e,

[ PO+ |x2rdi< +o.  m
o
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Now, to prove (8), it suffices to see that for every bounded interval ICR,
(H, — Hy) E;(Hy) € 3;(LA(R")® ... ®L?*(R")).

Let I'§, be the Christoffel symbols of the Riemannian connection induced by g; then
the difference H, — H, is given by

2

(12)  (Hy—Hp) o) =(—g"+0") ——= +g" T} — +g"Tj — +
1 0 k g (5x16x] g Jk 6xl g 7 (Sxa
) ow, _org, . . .
te'Th — +g”Vjiwa—g”F;Fﬁkwﬁ—g”F;‘kaawﬁ+Réwl-.

A direct computation shows that conditions (5), (6), (7), and hypothesis 3 in Theorem
) } ) . ore § } .
2.1imply that |g"T'%|, | T, |¢"T%|, | ¢” == |, |e" T, |g" T4, |RE|

£
are all bounded from above by Lk for some constant C>0 and some %> .
X

(H, — Hy)(E;(H,)) is a sum of operators of type f(x) A(—:V,), with f(x) e L§ (R")
in view of Lemma 3.3, and A; smooth and compactly supported.
Thus, thanks to Lemma 3.2, (H, — H,)(E;(H,)) is trace-class and condition 2 is

fulfilled.
As for condition 3, first of all we observe that the adjoint of |

J*: Lf(R”, g)—>L12(R”, e)
satisfies the equation
[e7wi0,Vedx= [ 67w, (1% p)dx,
R” R”
and therefore
J*¢)=01g"0;Vg.

As a consequence, in local coordinates
(J*] =D @)= (Vgg” = 0") ¢ 3
now,
Vg - 0| < Vel g - 0%] + | (Vg — 1) |o".
By (5), there exists C >0 such that

C

J'k_afk <
|g |\ |x|,é
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for some &> # for |x|>> 0; moreover,

1|1 |+ 1
— _— 0 PR
20 AT

for some K> 0 and some &> 7 as |x|—> + .

Thus, Vgg”*— 87 belongs to LZ(R”). Hence (J*] —I) E;(H,) is an operator of
type f(x) A(—=2V,), with f(x) in L5 (R*) and A, smooth and compactly supported; by
Lemma 3.2, it is trace-class, and therefore it is compact.

As for condition 4, thanks to Remark 2.3, Q(H,) and Q(H;) can be characterized
as follows:

_ K
< &
|x|*

((Ve-1)| =

Levma 3.4: Q(H,) is the set of those w e LL(R”, e) for which there exists a se-
quence {w'"} c AN(R") such that

(13) 0 —=w in Lf(R”, e)
and
(14) holo™ — ™1 —0

as n, m—> + o,
Analogously, Q(H,) is the set of those weLZ(R", g) such that there exists
{p ™Y c ALR") for which

(15) Y —>w in L*(R", g)
and
(16) hl[w(ﬂ)_w(m)]_)o

as n, m—> + oo,

We prove now that

(17) Q(Hy) cQ(H,).

For w € Q(H,), there exists a sequence {a)(”)} c AL(R") satisfying (13) and (14). Due
to the equivalence of the norms (1) and (3),

w” = o in Lf(R”, 2);
hence, in order to see that w € Q(H,) it suffices to prove that
bl [w(n) _ w(m)] —0

as m, n—> + o,
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To establish this fact, we consider first the curvature part of b [0 — "],
(18) f<R(w<ﬂ>—w<m>),<w<”>—w<m>>>g\/§dx.
&
The following Lemma holds:
Lemma 3.5: There exists C> 0 such that

(19)

J(Rw, a))g\/édx S CHw”lez(R”,e)
o

for every w e LZ(R", e).

Proor: Consider for every xeR” the quadratic form on T.7(R")
=g (x) Ri(x) w,05=R¥(x) w,0;.

Since the matrix R”(x) depends continuously on x, its eigenvalues 4, (x), ..., 4, (x)
are continuous functions of x. Hence the function

f(x) = sup 4,(x),

is continuous. Moreover, since the metric g is asymptotically euclidean, f(x) =0 as
|x|— + . As a consequence, there exists C>0 such that |f(x)| <C for every
xeR”. This in turn implies

|R?(x) w04 < Clo

2
T#(R")
for every xeR” and for every w e T (R”), which yields (19). =

Since {®} is a Cauchy sequence, the preceding Lemma implies that

(20) I<R(w(ﬂ)_w(m)))(w(n)_w(m))>g\/édx90
R”

as n, m—> + ©,
As for the gradient part of b [0 —w™],

(21) j|v<w<”>—w<m>)|§\/§dx,

R”

we begin by proving
Lemma 3.6: There exist C, D> 0 such that

(22) C[Inzdses< [ |n|2Vedx<D [ |n|2ds
RYI RW R?I
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for every smooth, compactly supported tensor 5 =1, of rank 2, where

n

2 — 2
|72 Z,,jz:lm,
and
|7]|§ :glj(x) gk[(x) NieNj-

Proor: Consider, for every xeR”, the quadratic form
2 2
R” XR" —R
defined by
n=n;>a(x)n] =g"(x) g (x) nzn,.

Since this quadratic form is positive and depends continuously on x, its eigenvalues
Ay(x), for k=1, ..., n?, are continuous, positive functions of x. Moreover,

as |x|— + o, implying that A,(x) =1, for every k=1, ..., n*, as |x| = + ©. As a
consequence, there exist C, D >0 such that

Cln|2<alx)In] <D|n|2
for every xeR”, neR”’, which implies (22). m
Setting
Nie= Vz(w .ﬂ) - w,(ém)),

(22) yields

1
(23) j|v<w(”)—w(m))|§dx$ = f |V(w(”)—w(m))|§\/§dx
R" R
and
(24) j |V(w(ﬂ)_w(m)) |§\/édstJ' |V(a)(n)_w(m)) |§CZX )
R" R
Now,



— 108 —

whence an easy computation shows that for every 7, =1, ..., n

ol = o e < | + Kl = 0 lser, o

L2(R", ¢)
As a consequence,
hlo” —w™]1—0

as n, m—0. Thus, Q(H,) c Q(H,).

We complete the proof of Theorem 2.1 showing that Q(H;) c Q(H,).

For any w e Q(H,) there exists a sequence {1} c A1(R”) such that (15) and
(16) hold.

Thanks to the equivalence of the norms (1) and (3),
" —w in LIZ(R", e).
Thus, in order to see that w € Q(H,) it suffices to prove that
byl — "] >0

as m, n—> + ©,
Now, (15) and (16), together with (18), imply that

[ 19@ ) =) |2Vgdx—0
Rﬂ

as n, m—> + ©,
For every 7, k=1, ..., n

L2(R" )s Vi = i) 2w, o + I =) 2we, o <
, €

<[Vl =) 2we, o + Clp™” =9 2, 0
Then, in view of (23),
bo[w(n) _ w(m)] —0

as n, m— + o, and Q(H;)c Q(H,).
Therefore,

J(Q(Hy)) = Q(H,).

Remark 3.7: Theorem 2.1 holds, more in general, for p-forms, with p=1, ...#,
with arguments following the same patterns of the ones developed for p = 1. Indeed,
estimates like (9), (10), (22) hold for p-forms, showing that the identification | =
=I:L}(R", g) =L} (R", ¢) is continuous with two-sided bounded inverse. To estab-
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lish the validity of conditions 2, 3 of Belopol’ski-Birman theorem requires replacing
A4, with the Laplace-Beltrami operator on p-forms, given by

(Ag(mw)z'l.‘.l'p: -2 gaﬂvavﬁwzﬁmip_l— > Rz‘,awzy..a it

Sl
a,p 7, a s
_ af L.
) E R i z'[waz'l.../)’z'[.”1'74..1'[,>
=) a, B

where R’/, is the Riemann curvature tensor, which satisfies the condition
. C

RS | for |x|> 0.

X

The quadratic forms b, and b, have now to be replaced by

k

z awil.”ip ’
bO(p) = J ) 2 ) dx
zl,.u,zp,/:I 396]'

R”

and by by, expressed by

by lo] = J |Vw|§\/£dx+ f{Rw, w)g\/édx,

R” R
where

2 _ ,aB a0 1/
|Vw|g_g 14 "'gppvawz'l.”z'pv/}w]']...jp

and

R — gl Wip R @ a7 ph R B
Ro, ), =g""...g""Rlw; o 0. ,+e" . .g""R", P air..foin @iy

Then from the fact that a condition similar to (19) holds for (Rw, w),, the proof
follows.
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