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An application of scattering theory to the spectrum
of the Laplace-Beltrami operator (**)

SUMMARY. — Applying a theorem due to Belopol’ski and Birman, we show that the Laplace-
Beltrami operator on 1-forms on R n endowed with an asymptotically Euclidean metric has ab-
solutely continuous spectrum equal to [0 , 1Q).

Un’applicazione della teoria dello scattering allo spettro
dell’operatore di Laplace-Beltrami

RIASSUNTO. — Applicando un teorema di Belopol’ski e Birman, si dimostra che l’operatore
di Laplace-Beltrami sulle 1-forme nello spazio R n dotato di una metrica asintoticamente Eucli-
dea ha spettro assolutamente continuo pari a [0 , 1Q).

1. - INTRODUCTION

The relationships between the geometric properties of a complete noncompact
Riemannian manifold and the spectrum of the Laplace-Beltrami operator have been
intensively investigated by many authors.

Among them, H. Donnelly since the late seventies studied the spectra of the Lapla-
cian and of the Laplace-Beltrami operators on particular manifolds, such as the hyper-
bolic space ([1]), manifolds with negative sectional curvature ([3]), asymptotically eu-
clidean manifolds ([2]). However, to our knowledge, the case of the Laplace-Beltrami
operator acting on p-forms on asymptotically euclidean manifolds has been left aside
up to now.

The purpose of this paper is to contribute to the investigation of this case. We

(*) Indirizzo dell’Autrice: Dipartimento di Matematica del Politecnico, corso Duca degli
Abruzzi 24, I-10129 Torino.

(**) Memoria presentata il 18 maggio 2001 da Edoardo Vesentini, uno dei XL.
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study the absolutely continuous spectrum of the Laplace-Beltrami operator on Rn en-
dowed with an asymptotically euclidean metric, that is with a Riemannian metric satis-
fying conditions (5), (6) and (7). The tool employed is classical scattering theory in the
wave operators approach. In this case, the problem is reduced to a problem of scatter-
ing for vector-valued operators.

An inherent restriction of the proof, however, that makes it difficult an extension
to more general cases, is the use of the Fourier transform, which has a crucial role in
our considerations, particularly in connection with Lemma 3. The lack of this tool in
the more general case of manifolds with an asymptotically controlled Riemannian met-
ric is a major obstacle to the extension of the theorem.

This paper summarizes and improves some results of my PhD Thesis, compiled
under the direction of Prof. Edoardo Vesentini, to whom I am deeply grateful for his
constant and careful support.

2. - PRELIMINARIES

Let (Rn , e) be the euclidean n-dimensional space, and (Rn , g) be the same space,
endowed with a complete Riemannian metric g.

We will denote by L 1
c (Rn ) the vector space of all smooth, compactly supported

1-forms on Rn , and by L 2
1 (Rn , e) the completion of L 1

c (Rn ) with respect to the
norm

VvV

2
L 2

1 (R n , e)4 �
R n

av , vbe dx ,(1)

where dx denotes the Euclidean volume element and

av(x), v(x)be4!
i

v i
2 (x)

is the fiber norm for 1-forms induced by the Euclidean metric.
L 2

1 (Rn , e) is the Hilbert space direct sum of n copies of L 2 (Rn ). The Laplace-Bel-
trami operator D e on 1-forms v�L 1

c (Rn ) acts componentwise as:

(D e v)k42!
j

¯ 2 v k

¯xj
2

.

It is well-known that D e is essentially selfadjoint on L 1
c (Rn ), and its closure H0 has

purely absolutely continuous spectrum equal to

s (H0 ) 4 [0 , 1Q) ,

with constant multiplicity.
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We will denote by h0 [v] the quadratic form associated to D e on L c
1 (Rn ):

h0 [v] 4�
R n

aD e v , vbe dx4�
R n

!
i , j41

n u ¯v i

¯x j
v2

dx .(2)

L 2
1 (Rn , g) will stand for the completion of L 1

c (Rn ) with respect to the norm:

VvV

2
L 2

1 (R n , g)4 �
R n

av , vbg kg dx ,(3)

where kg dx , as usual, denotes the volume element induced by the Riemannian metric
g and

av(x), v(x)bg4g ij (x) v i (x) v j (x)

is the fiber norm for 1-forms induced by g. (Here, as everywhere throughout the pa-
per, the repeated indices convention is adopted.)

The action of the Laplace-Beltrami operator D g4dd1dd on 1-forms v�L 1
c (Rn )

is given in local coordinates by the Weitzenböck formula:

(D g v)k42(g ij ˜i ˜j v)k1R i
k v i ,

where ˜i is the covariant derivative with respect to the connection induced by the met-
ric g , and R i

k is the Ricci tensor.
Since the Riemannian metric g is complete, D g is essentially selfadjoint on L 1

c (Rn ).
We will denote its closure by H1 .

Moreover, we will denote by h1 [v] the quadratic form associated to D g on
L c

1 (Rn )

h1 [v] 4 �
R n

aD g v , vbg kg dx4 �
R n

N˜vN2
g kg dx1 �

R n

aRv , vbg kg dx ,(4)

where

N˜vN2
g 4g ij g ab ˜i v a ˜j v b

and

aRv , vbg4g ab R i
a v i v b .

In the next section we will show how it is possible, under suitable hypothesis on
the asymptotic behaviour of g , to get information about the spectrum of H1 from the
knowledge of the spectrum of H0 , proving the following

THEOREM 2.1: Let Rn be endowed with a Riemannian metric g such that N ¯g il

¯xj

(x) N
is bounded and, for NxNc 0, there exists CD0 such that
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1. for every i , j ,

Ng ij (x)2d ij NE
C

NxNk
(5)

for some kDn ;

2. for every i , j , k , l

N ¯gil

¯xj
N E

C

NxNk
(6)

N ¯ 2 gil

¯xj ¯xk
N E

C

NxNk
(7)

for some kDn.

Then the Laplace-Beltrami operator D g acting on 1-forms has absolutely continuous
spectrum equal to [0 , 1Q):

[0 , 1Q) 4s ac (H1 ) 4s(H1 ) .

In particular, it has no discrete spectrum. (There might be singularly continuous spec-
trum or embedded eigenvalues.)

The main tool for the proof is Belopol’ski-Birman theorem (see [5], [6]), which
provides a sufficient condition so that two selfadjoint operators have the same abso-
lutely continuous spectrum.

We recall it briefly:

THEOREM 2.2: Let H0 , H1 be selfadjoint operators acting respectively on Hilbert
spaces H0 , H1 , and let EV (H0 ), EV (H1 ), for V%R , be the associated spectral
measures.

If J� L(H0 , H1 ) satisfies the conditions:

1. J has a bounded two-sided inverse;

2. for every bounded interval I%R ,

EI (H1 )(H1 J2 JH0 )EI (H0 ) � I1 (H0 , H1 ) ,(8)

where I1 (H0 , H1 ) 4 ]A� L(H0 , H1 )N(A * A)1/2� I1 (H0 )( and I1 (H0 ) de-
notes, as usual, the set of trace-class operators on H0 ;

3. for every bounded interval I’R , (J * J2 I) EI (H0 ) is compact;

4. JQ(H0 ) 4Q(H1 ), where Q(Hi ) is the form domain of the operator Hi , for
i40, 1 ,

then the wave operators W 6 (H1 , H0 ; J) exist, are complete, and are partial isometries
with initial space Pac (H0 ) and final space Pac (H1 ), where Pac (Hi ) denotes, as usual, the
absolutely continuous space of Hi , for i40, 1.

As a consequence, the absolutely continuous spectra of H0 and H1 do coincide.
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REMARK 2.3: We recall (see [4]) that if H is a densely defined, essentially selfad-
joint, positive operator on a Hilbert space H and h is the associated quadratic form,
the form domain Q(H) of the selfadjoint operator H is the domain of the closure h

A of
the form h, that is to say: Q(H) is the set of those u� H such that there exists a se-
quence ]un( %D(H) converging to u in H such that

h[un2um ] K0

as n , mK1Q.

3. - PROOF OF THEOREM 2.1

We will prove that, for a suitable J : L 2
1 (Rn , e) KL 2

1 (Rn , g), H14 D g, H04 D e

and J satisfy the conditions of Theorem 2.2, for H04L 2 (Rn , e) and H14

4L 2 (Rn , g).
We begin with the following

LEMMA 3.1: Let g be as in Theorem 2.1. Then there exist C , C1D0, D , D1D0 such
that

1. for every x�Rn

CGkg(x)GC1 ;(9)

2. for every x�Rn , v in the cotangent space at x , T *x (Rn )

D !
i

vi
2Gg ij (x) vi vjGD1!

i
vi

2 .(10)

PROOF: (9) follows immediately observing that, for every x , kg(x) is strictly positi-

ve and kg(x)K1 as NxNK1Q.
As for (10), since the matrix g ij (x), which expresses the Riemannian metric g in

contravariant form, is a continuous function of x and is positive, its eigenvalues
l 1 (x), R , l n (x) depend continuously on x and are strictly positive. Hence, the func-
tions f and h defined by

f (x) »4 inf
i

l i (x)

and

h(x) »4 sup
i

l i (x) ,

are continuous and strictly positive. Moreover, since the metric g is asymptotically eu-
clidean, f (x) K1 and h(x) K1 as NxNK1Q. As a consequence, there exist D , D1D0
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such that, for every x�Rn ,

DG f (x) Gh(x) GD1 ,

which yields (10). r

Lemma 3.1 implies that there is a natural identification between L 2
1 (Rn , g) and

L 2
1 (Rn , e), and, moreover, (1) and (3) are equivalent norms. As a consequence, the

identity map on L 1
c (Rn ) extends to a bounded linear operator

J : L 2
1 (Rn , e) KL 2

1 (Rn , g) ,

with bounded two-sided inverse, and condition 1 of Theorem 2.2 is satisfied.
In order to prove (8), we need two Lemmas:

LEMMA 3.2: Let A : j O Aj be a n3n-matrix-valued function on Rn , and let A be
the linear operator

A : D(A) %L 2 (Rn )5R5L 2 (Rn ) KL 2 (Rn )5R5L 2 (Rn )

of the form

f (x)A(2i˜x ) ,

where f (x) is a function on Rn and A(2i˜x ) is the operator

A(2i˜x ) 4 F i A×j i F21 ,

F being the Fourier transform and A×j the multiplication operator

v O A×j v

(A×j v)(j) 4Aj v(j) .

Let L 2
d (Rn ) be the space of functions h such that

VhV

2
d4V(11NxN2 )d/2 h(x)VL 2 EQ .

If, for some dD
n

2
, f (x) �L 2

d (Rn ) and, for every pair of indices (a , b), (Aj )b
a�L 2

d (Rn ),

then A is a trace-class operator.

PROOF OF LEMMA: 3.2: It suffices to show that, for every fixed (a, b), the operator Aa
b

Aa
b : D(Aa

b ) %L 2 (Rn )5R5L 2 (Rn ) KL 2 (Rn )5R5L 2 (Rn )

v4 (v 1 , R , v n ) O u0, R , 0 , f (x) A b
a (2i˜x ) v b

���
a

, 0 , R0v
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is trace-class. But this latter operator coincides with the composition

Ia i ( f (x) A b
a (2i˜x ) ) i Pb ,

where Pb is the projection

Pb : L 2 (Rn )5R5L 2 (Rn ) KL 2 (Rn )

v4 (v 1 , R , v b , R , v n ) O v b ,

Ia is the immersion

Ia : L 2 (Rn ) KL 2 (Rn )5R5L 2 (Rn )

v O (0 , R , 0 , v
���

a

, R , 0 ) ,

and A a
b (2i˜x ) is the operator

D(A a
b (2i˜x ) ) %L 2 (Rn ) KL 2 (Rn )

A a
b (2i˜x ) 4 F i (A×j )a

b i F21 ,

where F is the Fourier transform and (A×j )a
b is the multiplication operator associated to

the scalar function (Aj )a
b .

The conclusion follows from the fact that Pb and Ia are bounded operators and
(see [5], Theorem XI.21) any operator

L 2 (Rn ) KL 2 (Rn )

of the form f (x) h(2i˜x ) is trace-class if f (x) and h(j) belong to L 2
d (Rn ). r

LEMMA 3.3: If f : RnKR is continuous and such that for some kDn

Nf (x)NE
C

NxNk
(11)

when NxNc 0, then f�L 2
d (Rn ) for some dD

n

2
.

PROOF: Choosing eD0 such that kDn1e , then

Nf (x)NE
C

NxNk

for NxNc 0; as a consequence, a straighforward computation in polar coordinates

shows that, for d4
n

2
1e ,

�
R n

Nf (x)N2 (11NxN2 )d dxE1Q . r
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Now, to prove (8), it suffices to see that for every bounded interval I%R ,

(H12H0 ) EI (H0 ) � I1 (L 2 (Rn )5R5L 2 (Rn ) ) .

Let G ik
a be the Christoffel symbols of the Riemannian connection induced by g; then

the difference H12H0 is given by

(12) ((H12H0 ) v)k4 (2g ij1d ij )
d 2 v k

dx i dx j
1g ij G a

jk
dv a

dx i
1g ij G a

ij
dv k

dx a
1

1g ij G a
ik

dv a

dx j
1g ij

dG a
jk

dx i
v a2g ij G a

ij G b
ak v b2g ij G a

ik G b
ja v b1R i

k v i .

A direct computation shows that conditions (5), (6), (7), and hypothesis 3 in Theorem

2.1 imply that Ng ij G jk
a N , Ng ij G ij

aN , Ng ij G ik
a N , Ng ij ¯G jk

a

¯xi
N, Ng ij G ij

a G ak
b N , Ng ij G ik

a G aj
b N , NR i

k N

are all bounded from above by C

NxNk
for some constant CD0 and some kDn.

(H12H0 )(EI (H0 ) ) is a sum of operators of type f (x) A(2i˜x ), with f (x) �L 2
d (Rn )

in view of Lemma 3.3, and Aj smooth and compactly supported.
Thus, thanks to Lemma 3.2, (H12H0 )(EI (H0 ) ) is trace-class and condition 2 is

fulfilled.
As for condition 3, first of all we observe that the adjoint of J

J * : L 2
1 (Rn , g) KL 2

1 (Rn , e)

satisfies the equation

�
R n

g ij v i f j kg dx4 �
R n

d ij v i (J * f)j dx ,

and therefore

(J * f)k4d ik g ij f j kg .

As a consequence, in local coordinates

( (J * J2 I) f)k4 (kgg jk2d jk ) f j ;

now,

Nkgg jk2d jkNGNkgNNg jk2d jkN1N(kg21)Nd ij .

By (5), there exists CD0 such that

Ng jk2d jkNG
C

NxNk
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for some kDn for NxNc 0; moreover,

N(kg21)N4
1

2
N12gN1o u 1

NxNk
vG

K

NxNk

for some KD0 and some kDn as NxNK1Q .
Thus, kgg jk2d jk belongs to L 2

d (Rn ). Hence (J * J2 I) EI (H0 ) is an operator of
type f (x) A(2i˜x ), with f (x) in L 2

d (R 2 ) and Aj smooth and compactly supported; by
Lemma 3.2, it is trace-class, and therefore it is compact.

As for condition 4, thanks to Remark 2.3, Q(H0 ) and Q(H1 ) can be characterized
as follows:

LEMMA 3.4: Q(H0 ) is the set of those v�L 2
1 (Rn , e) for which there exists a se-

quence ]v (n)( %L 1
c (Rn ) such that

v (n)Kv in L 2
1 (Rn , e)(13)

and

h0 [v (n)2v (m) ] K0(14)

as n , mK1Q.
Analogously, Q(H1 ) is the set of those v�L 2

1 (Rn , g) such that there exists
]c (n)( %L 1

c (Rn ) for which

c (n)Kv in L 2 (Rn , g)(15)

and

h1 [c (n)2c (m) ] K0(16)

as n , mK1Q.

We prove now that

Q(H0 ) ’Q(H1 ) .(17)

For v�Q(H0 ), there exists a sequence ]v (n)( %L 1
c (Rn ) satisfying (13) and (14). Due

to the equivalence of the norms (1) and (3),

v (n)Kv in L 2
1 (Rn , g) ;

hence, in order to see that v�Q(H1 ) it suffices to prove that

h1 [v (n)2v (m) ] K0

as m , nK1Q.
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To establish this fact, we consider first the curvature part of h1 [v (n)2v (m) ],

�
R n

aR(v (n)2v (m) ), (v (n)2v (m) )bg kg dx .(18)

The following Lemma holds:

LEMMA 3.5: There exists CD0 such that

N �
R n

aRv , vbg kg dxN GCVvVL 2
1 (R n , e)

2(19)

for every v�L 2
1 (Rn , e).

PROOF: Consider for every x�Rn the quadratic form on T *x (Rn )

v O g ab (x) R i
a (x) v i v b4R ib (x) v i v b .

Since the matrix R ib (x) depends continuously on x , its eigenvalues l 1 (x), R , l n (x)
are continuous functions of x. Hence the function

f (x) »4 sup
i

l i (x) ,

is continuous. Moreover, since the metric g is asymptotically euclidean, f (x) K0 as
NxNK1Q. As a consequence, there exists CD0 such that Nf (x)NGC for every
x�Rn. This in turn implies

NR ib (x) v i v bNGCVvV

2
T *x (R n )

for every x�Rn and for every v�T *x (Rn ), which yields (19). r

Since ]v (n)( is a Cauchy sequence, the preceding Lemma implies that

�
R n

aR(v (n)2v (m) ), (v (n)2v (m) )bg kg dx O 0(20)

as n , mK1Q.
As for the gradient part of h1 [v (n)2v (m) ],

�
R n

N˜(v (n)2v (m) )N2
g kg dx ,(21)

we begin by proving

LEMMA 3.6: There exist C , DD0 such that

C �
R n

NhN2
e dxG �

R n

NhN2
g kgdxGD �

R n

NhN2
e dx(22)
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for every smooth, compactly supported tensor h4h ij of rank 2, where

NhN2
e 4 !

i , j41

n

h ij
2

and

NhNg
24g ij (x) g kl (x) h ik h jl .

PROOF: Consider, for every x�Rn , the quadratic form

Rn 2
3Rn 2

KR

defined by

h4h ij O a(x)[h] 4g ij (x) g kl (x) h ik h jl .

Since this quadratic form is positive and depends continuously on x , its eigenvalues
l k (x), for k41, R , n 2 , are continuous, positive functions of x. Moreover,

a(x)[h] K !
i , j41

n

h ij
2

as NxNK1Q , implying that l k (x) K1, for every k41, R , n 2 , as NxNK1Q. As a
consequence, there exist C , DD0 such that

CNhN2
e Ga(x)[h] GDNhN2

e

for every x�Rn , h�Rn 2
, which implies (22). r

Setting

h ik4˜i (v (n)
k 2v (m)

k ) ,

(22) yields

�
R n

N˜(v (n)2v (m) )Ne
2 dxG

1

C
�

R n

N˜(v (n)2v (m) )N2
g kg dx(23)

and

�
R n

N˜(v (n)2v (m) )N2
g kg dxGD �

R n

N˜(v (n)2v (m) )N2
e dx .(24)

Now,

˜i v k4
¯v k

¯xi

2G ik
a v a ,
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whence an easy computation shows that for every i , k41, R , n

V˜i (v (n)
k 2v (m)

k )VL 2 (R n , e)G V

¯(v (n)
k 2v (m)

k )

¯xi
V

L 2 (R n , e)
1KVv (n)2v (m)

VL1
2 (R n , e) .

As a consequence,

h1 [v (n)2v (m) ] K0

as n , mK0. Thus, Q(H0 ) ’Q(H1 ).
We complete the proof of Theorem 2.1 showing that Q(H1 ) ’Q(H0 ).
For any v�Q(H1 ) there exists a sequence ]c (n)( %L 1

c (Rn ) such that (15) and
(16) hold.

Thanks to the equivalence of the norms (1) and (3),

c (n)Kv in L 2
1 (Rn , e) .

Thus, in order to see that v�Q(H0 ) it suffices to prove that

h0 [c (n)2c (m) ] K0

as m , nK1Q.
Now, (15) and (16), together with (18), imply that

�
R n

N˜(c (n)2c (m) )N2
g kg dxK0

as n , mK1Q.
For every i , k41, R , n

V

¯(c (n)
k 2c (m)

k )

¯xi
V

L 2 (R n , e)
GV˜i (c (n)

k 2c (m)
k )VL 2 (R n , e)1VG ik

a (c (n)
a 2c (m)

a )VL 2 (R n , e)G

GV˜i (c (n)
k 2c (m)

k )VL 2 (R n , e)1CVc (n)2c (m)
VL1

2 (R n , e) ,

Then, in view of (23),

h0 [c (n)2c (m) ] K0

as n , mK1Q , and Q(H1 ) ’Q(H0 ).
Therefore,

J(Q(H0 ) ) 4Q(H1 ) .

REMARK 3.7: Theorem 2.1 holds, more in general, for p-forms, with p41, Rn,
with arguments following the same patterns of the ones developed for p41. Indeed,
estimates like (9), (10), (22) hold for p-forms, showing that the identification J4

4I : L 2
p (Rn , g) KL 2

p (Rn , e) is continuous with two-sided bounded inverse. To estab-
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lish the validity of conditions 2, 3 of Belopol’ski-Birman theorem requires replacing
D g with the Laplace-Beltrami operator on p-forms, given by

(D g(p) v)i1 R ip 42 !
a , b

g ab ˜a ˜b v i1 R ip 1!
j , a

R a
ij v i1 R a , i×j R ip 1

2 !
j , lc j , a , b

R a
ij
b

il v ai1 R b i×l R i×j R ip ,

where R i
k

j
l is the Riemann curvature tensor, which satisfies the condition

NR i
k

j
lNE

C

NxNk
for NxNc 0.

The quadratic forms h0 and h1 have now to be replaced by

h0(p)4�
R n

!
i1 , R , ip , j41

n u ¯v i1 R ip

¯xj

v2

dx

and by h1(p) expressed by

h1(p) [v] 4 �
R n

N˜vN2
g kg dx1 �

R n

aR
A

v , vbg kg dx ,

where

N˜vN2
g 4g ab g i1 j1

R g ip jp ˜a v i1 R ip ˜b v j1 R jp

and

aR
A

v , vbg4g i1 j1
R g ip jp Rij

a v i1 R aRip v j1 R jp 1g i1 j1
Rg ip jp R a b

ij ilv ai1 RbR ip v j1 R jp .

Then from the fact that a condition similar to (19) holds for aR
A

v , vbg , the proof
follows.
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