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Regularity of the Distance Function to the Boundary

AssTrRACT. — Let Q be a domain in a smooth complete Finsler manifold, and let G be the largest
open subset of Q such that for every x in G there is a unique closest point from 9 to x (measured
in the Finsler metric). We prove that the distance function from 92 is in Cli’f(G UoQ), k> 2and
0<a<1,if 0Qisin C*.

1. - INTRODUCTION

In [1] we studied the singular set of viscosity solutions of some Hamilton-Jacobi
equations. This was reduced to the study of the singular set of the distance function to the
boundary of a domain © — for a Finsler metric. The singular set was defined as the
complement of the following open set
(1) G := the largest open subset of Q such that for every x in G there is a

unique closest point from 9Q to x ( measured in the Finsler metric ).

In [1] we stated that if 8Q is in C**, £>2 and 0 < a < 1, then the distance
function from the boundary belongs to C*~4(G U 0Q). Recently Joel Spruck asked to
see the proof for a Riemannian metric and pointed out that the result would imply
that the distance function would be in C**(G U 9Q). In this paper we provide a proof
of that in the Finsler case. This paper can be regarded as an addendum to [1]. In the
Riemannian case, the regularity of the distance function near Q2 can be found in

[GT] and [F].
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We present two proofs of the C&* result. We use the notation, as in [1],
T

Jcﬂ(é(z‘); o)

0

for the length of a curve &(¢). ¢(&; v) is homogeneous of degree one in ». For fixed &, the level
surface ¢(&;v) = 1 is smooth, closed, strictly convex, with positive principal curvatures.
The first proof uses very little of [1] and is essentially self-contained. The second proof
uses some structure from [1], and may be of some interest to some readers.
We actually prove a more general result here, involving conjugate points from the
boundary.

DerinitioN: CoNjuGaTE Point:  Consider a point y on 0£2, and consider the geodesic
E(y, s) from y going inside Q “normal” to 92 (explained below) with s as arclength. The
conjugate point to y is the first point X on the normal geodesic such that any point x” on
the geodesic beyond X has, in any neighborhood of the geodesic, a shorter join from 9Q to
x" than our normal geodesic to x”.

Normar: A geodesic I from a point y € 9Q is “normal” to 9 if for x on I close to y,
the geodesic is the shortest join from 9Q to x.

To obtain the regularity in G we prove a slightly more general result which is local on
0. Namely, suppose C is a neighborhood on 99 of a point y and that the normal
geodesic I" from y to a point X in @ is the unique shortest join from C to X. If the
conjugate point to y is beyond X then there is a neighborhood A of X such that the
distance from C to any point in A belongs to C*%. See Theorem 1 below.

We shall make use of special coordinates introduced in section 3 of [1] about a given
normal geodesic I, going from a point y € 9L into Q. In these coordinates y is the origin
and the x,—axis is normal to 9Q there and is the geodesic I". Furthermore, in these
coordinates, ¢ has the following properties, see (4.1)-(4.6) in [1]. Here Greek letters a,
range from 1 to # — 1, and Latin letters 7,/ range from 1 to 7.

) pltes;e,) =1,
) 0s (te,; €,) =0,
(4) Pulten;en) =0, g ltesse,) =1,
) e tey; €,) =0,
(6) oo (ten; €4) =0,
7) Qi (tey; e,) =0.

In these coordinates for y € O near the origin the geodesic &(y, s) from y “normal” to
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08 there satisfies

&y,00 = V()
where V(y) is the unique vector-valued function on 9Q satisfying (here v(y) is the
Euclidean interior unit normal to 0 at y)

V(y) -vly) >0
(8) ply; V() =1
V.0(y; V(y)) is parallel to v(y).

Using these special coordinates, near the origin, 02 has the form
) y =W, f(), f0)=0, V/O0)=0.

We assume that f € C**, £ >2,0<a < 1.
The result we prove is

Tueorem 1: Assume that the conjugate point of the origin on the geodesic I’ = {te,} is
beyond e, and that there exists a neighborhood C of 0" on OQ such that {te, | 0 <t < 1} is
the unique shortest geodesic from C to e,. Then there exist neighborhoods A of e, and A of
0" on O such that for any X in A there is a unique y € A and geodesic from y to X which is
the shortest join from A to A. Furthermore, if d(X) is its length, then the Jacobian of the
map X — (d, ) is nonsingular at e,, and d lies in Cﬁ’g in A, and y lies in Cf 1 A

0C
2. - SECOND VARIATION

Consider one parameter family of curves (¢, £) from A to Ze,, £ > 0, with 7(0, ) = ze,.
We look at the second variation of its length I[z(e, -)]. For 7 small, it is clearly positive
definite. The first 7 for which it fails to be strictly positive definite is the conjugate point.
Forif =7+, § > 0, then the second variation of curves to 7 cannot be semipositive
definite, and there would then be a shorter connection from A to fe, near I

The standard computation of second variation yields

P2

ﬁI [T(& 9]
Here ] is the usual expression of the second variation if the bottom point were kept at the
origin. Namely,

= J(t],_g) — Fruy (0)72(0,0074(0, 0).
e=0

(10) J(tel,—g) = J{(oéaéﬁ (te,; )70, TP, 2) 4 @ ups(ten; €,)14(0,£)12(0, 1)} dr.
0

Note that 7 and ] do not occur in J.
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3. - Frst PrROOF OF THEOREM 1

3.1. Recalling (9) we shall denote the normal geodesic from y = (', f(z')) by
X = &(a', s); this is a slight change of notation. The geodesic & and &, depend smoothly
on s and their initial data, while the initial data depend C*~1* on . To prove the theorem,
it suffices to show that the Jacobian of the mapping (2, s) to X at (0, 1) is nonsingular. It
follows that d and y belong to C*~1¢, Since Vyd = X, it follows that V yd is in C*~1* and
hence d is in C** — as Spruck pointed out to us.

We now prove the Jacobian is nonsingular.

Write X = (X', X”). Since X(0’,1) = (0’, 1), the Jacobian of the mapping (x/, s) to X
at (0',1) is simply

ox’

x/

M =

(0, 1).
Assume M is singular, without loss of generality we may suppose that
(11) X, (0,1) =0,

We construct a perturbation (e, ) of I' = {te, | 0 < ¢ < 1} such that {(¢) := Tg]
satisfies

(12) JI = £, (0) £40) P(0).

e=0

3.2. Consider the geodesic &(deq, t) of length 1 starting at (deq, f(de1)), 0 < 0 small and
“normal” to OQ there. Set

)
(13) () = %f(éel,t) o
By (11),
(14) () =0.

We obtain an equation for {(¢) by differentiating the geodesic equation
d .
Py = E(pyz(f; 9

with respect to d, and setting § = 0. We find

(”fff/(ten; el = 7 (@ (tEn; €,) ).
Here we have used property (5) of our special coordinates. By (7) and (6),
J .
B _ p
(15) poal =5 (puwl).

We have
(16) £*(0) = 4.
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In addition,

0

0
% V(éel)

(17) {(0) = ¢(der, 0) T w =V, (0).

0=0

By the last formula in (8) we have
V.o((der,f(0e1)); V(der)) - (er + /v, (der)e,) = 0.

Differentiating in J and setting & = 0, we find, using properties of our special coordinates,

(18) o1 (05 ,)VE (') + £, (0) = 0.
Now we introduce the perturbation (e, #) as follows
™) = &),
(e, t) = te,+ (1 —t)f(eer).

The definition of t” is just to ensure that (g, 0) lies on 9Q.
According to (10),

1
Jlz),_] J{wéafﬂ tew; e0) U + puplien; ) 58V
0

Integrating the last expression by parts we find, using (15) , (16), (17) and (18),
1

d . .
Jlz],_o1 = J{wéagﬁcacﬁ — <¢Mﬁcﬁ>} — (0)p,0,0(0; 6, (0)
0
= — 0,100 )VE(O)) = 11, (0)) = £1,,(0))24(0,0)77(0, 0).

It follows from Section 2 that the second variation is zero. O

4. - SECOND PROOF OF THEOREM 1

SeconD PROOF OF THEOREM 1: For X near e, and for small ¢/ = (g4, - -+, 0,_1) € R*~ 1,
let 7 = 7(¢’, X) be defined by ¢(X; (¢/,7)) = 1 and 7(0', ¢,) = 1. Since ¢,.(e,;¢,) = 1, by
the implicit function theorem, 7 exists as a smooth function of (¢’, X) near (0', e,).

Let, as on page 111 of [1], # = 5(d’, X, #) be the unique smooth function of, with

v = ¢’
o d .
e Ui = 2w, 1 <1,

satisfying
no', X, 1) = X, o', X, 1) = (¢, 1(d’, X)).

As explained in the last two lines of page 108 in [1], #(¢’, X, #) is a geodesic with # the
arclength.
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In the special coordinates described in Section 1, Q2 has the form (9) near the origin
with f € C*, k> 2,0 < a < 1. Since {te, | 0 < # < 1} is the unique shortest geodesic
from C to e,, we know that for X close to ¢,, there exists x" close to 0’ such that the
“normal geodesic” starting from (x', f(x’)) will reach X as a shortest join from C to X.
It follows that for some ¢’ close to 0 and # close to 0, we have

{ no', X,t) — (. fx) = 0,
o', X, t) — VHX) = 0,

(19)

where V(x') := V(x/, f(x)) satisfies (8). Note that 1 — # is the distance from C to X.

To prove Theorem 1, we only need to show that the left hand side of (19), denoted as
LHS, has nonsingular Jacobian % at (¢,0’,%,X) =(0,0,0,¢,). Indeed, this

) ) x

would allow the use of the implicit function theorem to show that for X close to ¢,
and in a neighborhood of (0,0’,0'), there exists a unique C*~'“ solution (¢,¢",x') =
= (¢(X), ¢'(X), (X)) of (19). Thus, Theorem 1 follows as explained at the beginning of
Section 3.

Clearly,

O/
O(LHS)
ot

(0, e,,0
(0,0’,0’,&4):( 0, €1, 0 )=

(i7(0', €4, 0))
O/

a (27 — 1) x 1 column vector,

(i (0, e,,0))
(00,00 |
@i, (0", €,,0))

O(LHS)

(20) 90’

0, e,,0
0,0,0,¢,) = (w"“( ¢ ))> _

(. (0, ¢,,0))

a(2n—1) x (# — 1) matrix,

-1
OLHS)
(21) o (0,00, e,) = 0 ,
—VV(0)

a 2n—1) x (n—1) matrix, where I is the (z —1) x (z — 1) identity matrix and
VV' .= (V#), Thus

Xp

o
—(0,e,,0) -1
(22) det(w(o 0,0, ,1)> — (=1 det| 97 ,
8(5,0', 7) 8;7' , .
%(O ,€ﬂ70) —VV (0)

N ) and
where Pk =07 6 = (i1 ).
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By the last line in (8)
o, f(); V' )Dleg + £y (x))e, ] = 0,
ie.
P, (X, (o ) + 0, (¢, f(x); V(x))fy, (&) = 0.
Differentiating in x, and setting x' = 0" we fmd, using properties of our special
coordinates (4), (5) and (6),
(23) D2p(0'se,) - VV'(0') + DPF(0') =
where D¢ := (¢,5,1).

./ /

We now evaluate % (0, e,,0) and % (0, e,,0). It is proved in section 4.4 of [1] that

there exists a C?! function # near 0/ satisfying

f0)=0,  VO)=0,

(24) (DPF(0)) — DPF(0) > 0,
(25) na’se,,0) = /.S )
(26) i’ es,0) = V()
where V(y') := V((¢/,£(¢))) is determined by (8) with £ replaced by £, and y' = y'(¢’)
satisfies
(27) de t(ay ) £0.
a /

Note that (27) is given by (4.9) in [1], while (24) follows from corollary 4.15 in [1]
together with the fact that ¢, is not a conjugate point.
Differentiating (26) in g, and setting ¢’ = 0’ we find

~ 0
(0 e, 00 = VE(0) 222 (0),

Jdo,

Le.

677, / _ YA ay /
(28) ™ (0',e,,0) = VV (0)(9 (0).

Differentiating (25) in g, and setting ¢’ = 0/ we find
on 0y’

) 10,00 = 200
Since

6 /

o) ()
VV/(O/) 8 (0/) _vv/(o/) VV'(O') —VV/(O/) I

<2

)

Qﬁ‘%
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we have, by putting (28) and (29) into (22),

O(LHS) /N _ gyl 8_3’, / I -1 )
60) det<7a(t’a,’x,)(0,0,0,en9—( ) det(aa,(0)> det(w,(o,) v )

The proof of (23), applied to £ instead of 7, yields
(1) D29(0';6,)VV'(0') + D?£(0') = 0.
Thus, by (23) and (31),

1 -1 I —I
(—sz(O’) D2f(0’)) (Dg, p(0'; ¢,)VV'(0') —Dg,q)(o';eﬂ)vv'(oq) -

(1 I —I
_( Di/qo(O/;eﬂ)><vV/(o') —VV’(O’))’

and therefore

’ iy /. I -1
(52)  det(D(0) ~ DX(0)) = det D2 (0 ,eﬂ)det(vvl(ol) _VV,(O,))

Since D?¢(0'; ¢,) is positive definite, we deduce from (30), (27) and (32) that

det ( O(LHS)

/ /
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