

Rendiconti Accademia Nazionale delle Scienze detta dei XL Memorie di Matematica e Applicazioni 123° (2005), Vol. XXIX, fasc. 1, pagg. 455-472

EDOARDO VESENTINI (*)

Periodic and Almost Periodic Linear Isometries of Hardy Spaces

ABSTRACT. — Let T be a strongly continuous semigroup of linear isometries of the Hardy space H^p ($1 \le p \le \infty$, $p \ne 2$) of holomorphic functions on the open unit disc of $\mathbb C$. The main result of this paper concerns a characterization of the case in which T is almost periodic. As a consequence of a detailed analysis of the behaviour of T, it is shown that T is almost periodic if, and only if, its conformal flow is elliptic. The case in which T is periodic is also investigated.

Isometrie lineari periodiche e quasi periodiche di spazi di Hardy

Sunto. — Sia T un semigruppo fortemente continuo di isometrie lineari dello spazio di Hardy H^p ($1 \le p \le \infty$, $p \ne 2$) delle funzioni olomorfe sul disco unità aperto di $\mathbb C$. Un'analisi dettagliata del comportamento di T mostra che T è quasi periodico se, e soltanto se, il suo flusso conforme è ellittico. Viene altresi caratterizzato il caso in cui T è periodico.

The present paper, dedicated to the memory of Luigi Amerio, is devoted to the description of the periodic and almost periodic linear isometries of the Hardy spaces H^p (1 .

The Hardy space H^{∞} is the space of all bounded holomorphic functions on the open unit disc Δ of \mathbb{C} ; it is a Banach space for the sup-norm.

For $1 \le p < \infty$, the Hardy space H^p consists of those holomorphic functions f on Δ for which the integrals

$$\int_{0}^{2\pi} \left| f(re^{i\theta}) \right|^{p} d\theta$$

are bounded as $r \uparrow 1$. Denoting by $||f||^p$ the supremum of these integrals, $f \mapsto ||f||$ is a norm on H^p withy respect to which H^p is a Banach space: a Hilbert space if p = 2. In this latter case the theory of linear isometries of H^2 can be linked to the general theory of

(*) Indirizzo dell'Autore: Politecnico di Torino, Dipartimento di Matematica, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.

linear isometries of separable Hilbert spaces by the fact that, if

$$f(z) = \sum_{n=0}^{+\infty} a_n z^n$$

is the power-series expansion of $f \in H^2$, then

$$||f||^2 = \sum_{n=0}^{+\infty} |a_n|^2.$$

For $1 \le p < \infty, p \ne 2$, the linear isometries of H^p into H^p have been fully described by F. Forelli in [6] as weighted composition operators associated to holomorphic maps $\Delta \to \Delta$ represented by non-constant inner functions. Using Forelli's result we will show that a linear isometry $A: H^p \to H^p$ is n-periodic, i.e. $A^n = I$ for some integer n > 1, if, and only if, there is an infinite set $E \subset \Delta$ with a cluster point in Δ , such that

$$(A^n f)(z) = f(z)$$

for all $f \in H^p$ and all $z \in E$.

Forelli's results were intrumental in the characterization of all strongly continuous semigroups of linear isometries of $T: \mathbb{R}_+ \to \mathcal{L}(H^p)$, which was carried out by E. Berkson in [4] for $1 \le p < \infty, p \ne 2$, showing that any such semigroup T is a semigroup of weighted composition operators associated with a continuous flow ϕ of holomorphic automorphisms of Δ .

The analysis of the behaviour of the flow ϕ yields a characterization of the cases in which the semigroup T is periodic or almost periodic, leading in particular to the conclusion that T is almost periodic if, and only if, ϕ is elliptic, *i.e.* fixes a point in Δ .

In the final section of this paper, the analysis will be extended to H^{∞} following a different approach based on a result by H. P. Lotz, [8], according to which every strongly continuous semigroup of linear operators acting on H^{∞} is uniformly continuous.

As a consequence of this result, any strongly continuous semigroup of linear isometries $H^{\infty} \to H^{\infty}$ is the restriction to \mathbb{R}_+ of a uniformly continuous one-parameter group of isometries of H^{∞} onto itself. Surjective isometries $H^{\infty} \to H^{\infty}$ were shown (see K. Hoffman, [7]) – as a consequence of a "Banach Stone theorem" – to be weighted composition operators associated with continuous flows of holomorphic automorphisms of Δ . At this point, the extension to H^{∞} of the results, concerning periodicity and almost periodicity, established for H^p when $p < \infty$ is easily obtained (*).

1. - Periodic isometries

Let *A* be a linear isometry of the Banach space H^p ($1 \le p < \infty; p \ne 2$). According to Theorem 1 of [6], *A* has a unique representation

$$(1) Af = F \cdot f \circ \psi \ \forall \ f \in H^p,$$

(*) Note added in proofs. A forthcoming paper will be devoted to linear isometries of H^{∞} .

with $F \in \text{Hol}(\Delta)$ and ψ a non-constant inner function. Being

$$(2) F = A1,$$

where 1 is the constant function equal to 1 on Δ , then $F \in H^p$ and ||F|| = 1.

As was shown by F. Forelli in [6], F and ψ are related by the equation

(3)
$$\int_{M} |F|^{p} d\mu = \int_{M} \frac{1}{P(\psi)} d\mu \ \forall M \in \Sigma(\phi),$$

where: $d\mu$ is the Lebesgue measure on $\partial \Delta$ with $\mu(\partial \Delta) = 1$; Σ is the collection of all μ measurable sets in $\partial \Delta$; $\Sigma(\psi)$ is the collection of all symmetric differences of sets $U = \psi^{-1}(E)$, with $E \in \Sigma$, and $V = \psi^{-1}(K)$, with $K \in \Sigma$, $\mu(K) = 0$; P is the Poisson kernel

$$P(z) = \frac{1 - \left|\omega\right|^2}{\left|1 - \omega \overline{z}\right|^2},$$

and

(4)
$$\omega = \int \overline{\psi} d\mu.$$

We consider here the particular case in which ψ is a Moebius transformation of Δ ,

$$\psi(z) = \frac{az+b}{\overline{b}z+\overline{a}},$$

with $a, b \in \mathbb{C}$, $|a|^2 - |b|^2 = 1$, $z \in \Delta$.

A first consequence of this choice is that $\Sigma(\psi) = \Sigma$. Furthermore

$$\omega = \frac{1}{2\pi} \int_{0}^{2\pi} \overline{\psi(e^{i\theta})} d\theta = \frac{1}{2\pi} \int_{0}^{2\pi} \frac{\overline{a}e^{-i\theta} + \overline{b}}{be^{-i\theta} + a} d\theta$$

$$= \frac{1}{2\pi a} \int_{0}^{2\pi} \left(\overline{a}e^{-i\theta} + \overline{b} \right) \left(1 - \frac{b}{a}e^{-i\theta} + \left(\frac{b}{a}e^{-i\theta} \right)^{2} + \dots \right) d\theta$$

$$= \frac{1}{2\pi a} \int_{0}^{2\pi} \overline{b} d\theta = \frac{\overline{b}}{a};$$

$$1 - |\omega|^{2} = 1 - |b/a|^{2} = \frac{1}{|a|^{2}};$$

$$P(z) = \frac{1}{|a|^{2}} \frac{1}{|1 - \frac{b\overline{z}}{\overline{a}}|^{2}} = \frac{1}{|a - \overline{b}z|^{2}}.$$

Since

$$\left(\frac{d\psi}{dz}\right)(z) = \frac{1}{\left(\overline{b}z + \overline{a}\right)^2},\,$$

then,

$$\frac{1}{P(\psi(e^{i\theta}))} = |a - \overline{b}\psi(e^{i\theta})|^2 = \left|a - \overline{b}\frac{ae^{i\theta} + b}{\overline{b}e^{i\theta} + \overline{a}}\right|^2$$
$$= \frac{1}{|\overline{b}e^{i\theta} + \overline{a}|^2} = \left|\left(\frac{d\psi}{dz}\right)(e^{i\theta})\right|.$$

Hence, (3) reads

$$\int_{M} |F|^{p} d\mu = \int_{M} \left| \frac{d\psi}{dz} \right| d\mu \ \forall M \in \Sigma(\psi),$$

implying that

$$|F|^p = \left| \frac{d\psi}{dz} \right|$$
 a.e. on $\partial \Delta$.

Since $(d\psi/dz)^{1/p}$ is an outer function, there is an inner function G such that

$$F = G \left(\frac{d\psi}{dz}\right)^{1/p},$$

and the following proposition holds.

Proposition 1: If the inner function ψ in (1) is a Moebius transformation of Δ , there is an inner function G such that

(6)
$$A: H^p \ni f \mapsto G\left(\frac{d\psi}{dz}\right)^{1/p}. f \circ \psi \ \forall \ f \in H^p.$$

Going back to the general case, suppose now that there exist an integer n > 1 and some $z \in \Delta$ such that

(7)
$$(A^n f)(z) = f(z) \ \forall f \in H^p.$$

Since

$$A^p f = F_p \cdot f \circ \psi^p$$
 for $p = 2, \dots$

where

$$F_p = F . F \circ \psi . \cdots . F \circ \psi^{p-1},$$

(7) reads now

$$(8) F_n(z) = 1,$$

and $\psi^n(z) = z$.

This latter conclusion implies that either $\psi(z) = z$ or

Card
$$\{z, \psi(z), \dots, \psi^{n-1}(z)\} > 1$$
,

in which case, by Proposition 4 of [9], ψ is a holomorphic automorphism of Δ fixing a point $a \in \Delta$.

Hence, if there is an infinite set $E \subset \Delta$ with a cluster point in Δ , such that, if $z \in E$ (7) holds, then ψ is an n-periodic holomorphic automorphism of Δ fixing a point $a \in \Delta$.

Being

$$\psi(a) = a$$

and

$$\frac{1}{1-|\psi(a)|^2}\left|\left(\frac{d\psi}{dz}\right)(a)\right| = \frac{1}{1-|(a)|^2},$$

then

(9)
$$\left| \left(\frac{d\psi}{dz} \right) (a) \right| = 1.$$

Since

$$1 = F_n(a) = F(a)^n,$$

by (5) and (9) |G(a)| = 1, showing that the inner function G is constant:

$$G(z) = \kappa$$

for all $z \in \Delta$ and some $\kappa \in \partial \Delta$, which, by (7), is $\kappa = \mathrm{e}^{2\pi i/n}$.

Hence (2) becomes

(10)
$$A: H^p \ni f \mapsto \mathrm{e}^{2\pi i/n} \left(\frac{d\psi}{dz}\right)^{1/p}. f \circ \phi \ \forall \ f \in H^p.$$

Theorem 2 of [6] yields then

THEOREM 1: If $A \in \mathcal{L}(H^p)$ $(1 \le p < \infty, p \ne 2)$ is an isometry, and if there exists an infinite set $E \subset \Delta$ with a cluster point in Δ such that (7) holds for some n > 1, all $z \in E$ and all $f \in H^p$, then A is a periodic surjective isometry, with period n, represented by (10), where ψ is a periodic Moebius transformation of Δ .

Vice versa, for any Moebius transformation ψ of Δ , such that $\psi^n = \mathrm{id}$, (2) defines an n-periodic (surjective) linear isometry of H^p .

It is worth remarking, at this point, that, if A is periodic, it is necessarily surjective.

In the following sections we shall investigate under which conditions strongly continuous semigroups of linear isometries of Hardy spaces H^p are almost periodic or periodic. We will begin by collecting some results on continuous flows of holomorphic automorphisms of Δ , [3], [4].

2. - Continuous flows of holomorphic automorphisms of Δ

Any continuous flow ϕ of holomorphic automorphisms of Δ is defined by a one-parameter subgroup of SU(1,1).

If the holomorphic automorphism ϕ_t is defined by

$$\tilde{\phi}_t = \begin{pmatrix} a_{11}(t) & a_{12}(t) \\ a_{12}(t) & a_{11}(t) \end{pmatrix} \in SU(1,1),$$

i.e.

$$\phi_t(z) = \frac{a_{11}(t)z + a_{12}(t)}{a_{12}(t)z + a_{11}(t)} \quad (z \in \Delta),$$

then

$$\tilde{\phi}_t = \exp t\Theta,$$

where

$$\Theta = \begin{pmatrix} i\gamma & c \\ \overline{c} & -i\gamma \end{pmatrix}$$

and $\gamma \in \mathbb{R}$, $c \in \mathbb{C}$.

A direct computation yields

$$\exp t\Theta = I + t\Theta + \frac{t^2}{2} \left(|c|^2 - \gamma^2 \right) I + \frac{t^3}{3!} \left(|c|^2 - \gamma^2 \right) \Theta +$$

$$+ \frac{t^4}{4!} \left(|c|^2 - \gamma^2 \right)^2 I + \frac{t^5}{5!} \left(|c|^2 - \gamma^2 \right)^2 \Theta + \dots =$$

$$= \left(1 + \frac{t^2}{2} \left(|c|^2 - \gamma^2 \right) + \frac{t^4}{4!} \left(|c|^2 - \gamma^2 \right)^2 + \dots \right) I +$$

$$+ \left(t + \frac{t^3}{3!} \left(|c|^2 - \gamma^2 \right) + \frac{t^5}{5!} \left(|c|^2 - \gamma^2 \right)^2 + \dots \right) \Theta.$$

If $|\gamma| > |c|$, letting $r = \sqrt{\gamma^2 - |c|^2}$, then

(11)
$$\exp t\Theta = \begin{pmatrix} \cos(rt) + \frac{i\gamma}{r}\sin(rt) & \frac{c}{r}\sin(rt) \\ \frac{\overline{c}}{r}\sin(rt) & \cos(rt) - \frac{i\gamma}{r}\sin(rt) \end{pmatrix};$$

if $|\gamma| < |c|$, letting $s = \sqrt{|c|^2 - \gamma^2}$,

$$\exp t\Theta = \begin{pmatrix} \cosh(st) + \frac{i\gamma}{s}\sinh(st) & \frac{c}{s}\sinh(st) \\ \frac{\overline{c}}{s}\sinh(st) & \cosh(st) - \frac{i\gamma}{s}\sinh(st) \end{pmatrix};$$

finally, if $|\gamma| = |c|$, then

$$\exp t\Theta = I + t\Theta = \begin{pmatrix} 1 + it\gamma & tc \\ t\overline{c} & 1 - it\gamma \end{pmatrix}.$$

Hence, if $|\gamma| > |c|$, Θ defines the periodic flow, with period $\tau = 2\pi/r$, of Moebius transformations of Δ

(12)
$$\phi_{t}: z \mapsto \frac{\left(\cos\left(rt\right) + i\frac{\gamma}{r}\sin\left(rt\right)\right)z + \frac{c}{r}\sin\left(rt\right)}{\frac{\overline{c}}{r}\sin\left(rt\right)z + \cos\left(rt\right) - i\frac{\gamma}{r}\sin\left(rt\right)},$$

while, if $|\gamma| < |c|$ or if $|\gamma| = |c|$, the flows defined by Θ are expressed respectively by the Moebius transformations

(13)
$$\phi_{t}: z \mapsto \frac{\left(\cosh\left(st\right) + i\frac{\gamma}{s}\sinh\left(st\right)\right)z + \frac{c}{s}\sinh\left(st\right)}{\frac{\overline{c}}{s}\sinh\left(st\right)z + \cosh\left(st\right) - i\frac{\gamma}{s}\sinh\left(st\right)}$$

$$= \frac{\left(1 + i\frac{\gamma}{s}\tanh\left(st\right)\right)z + \frac{c}{s}\tanh\left(st\right)}{\frac{\overline{c}}{s}\tanh\left(st\right)z + 1 - i\frac{\gamma}{s}\tanh\left(st\right)}$$

and

(14)
$$\phi_t: z \mapsto \frac{(1+it\gamma)z + tc}{t\overline{c}z + 1 - it\gamma}.$$

When $|\gamma| > |c|$, the orbit of any $z \in \Delta$ is a circle contained in Δ . If $|\gamma| < |c|$, the orbit of z is an arc whose extremes lie in $\partial \Delta$, while, if $|\gamma| = |c|$, the orbit of z is a circle contained in $\overline{\Delta}$ and tangent to $\partial \Delta$.

By Theorem 6 of [9], if $|\gamma| > |c|$ the periodic flow (12) fixes a unique point a of Δ , which can be determined by looking at the points $z \in \mathbb{C}$ where

(15)
$$\frac{d}{dt}\phi_t(z) = 0 \ \forall \ t \in \mathbb{R}.$$

Since

(16)
$$\frac{d}{dt}\phi_t(z) = \frac{-\overline{c}z^2 + 2i\gamma z + c}{\left(\frac{\overline{c}}{r}\sin(rt)z + \cos(rt) - i\frac{\gamma}{r}\sin(rt)\right)^2},$$

the points $z \in \mathbb{C}$ satisfying (15) are the zeros of the polynomial

$$\overline{c}z^2 - 2i\gamma z - c$$

i.e.,

$$z = i \frac{\gamma \pm r}{\overline{c}}$$

if $c \neq 0$, or z = 0 if c = 0.

An elementary discussion completes the proof of the following proposition.

Proposition 2: The inequality $|\gamma| > |c|$ is equivalent to any one of the following conditions:

 ϕ is periodic;

 ϕ fixes a (unique) point $\alpha \in \Delta$.

If $|\gamma| > |c| > 0$, then

$$a = i \frac{\gamma + r}{\overline{c}}$$
 if $\gamma < 0$

or

$$a = i \frac{\gamma - r}{\overline{c}}$$
 if $\gamma > 0$.

If c = 0, ϕ is periodic with period $2\pi/|\gamma|$ and a = 0. If $|\gamma| < |c|$, (13) yields

$$\lim_{t \to -\infty} \phi_t(z) = \frac{\left(1 - i\frac{\gamma}{s}\right)z - \frac{c}{s}}{-\frac{\overline{c}}{s}z + 1 + i\frac{\gamma}{s}}$$
$$= \frac{(s - i\gamma)z - c}{-\overline{c}z + s + i\gamma} = -\frac{c}{s + i\gamma},$$

$$\lim_{t \to +\infty} \phi_t(z) = \frac{\left(1 + i\frac{\gamma}{s}\right)z + \frac{c}{s}}{\frac{\overline{c}}{s}z + 1 - \frac{\gamma}{s}}$$
$$= \frac{(s + i\gamma)z + c}{\overline{c}z + s - i\gamma} = \frac{c}{s - i\gamma}$$

for all points $z \in \Delta$ (because

$$\det\begin{pmatrix} s - i\gamma & -c \\ -\overline{c} & s + i\gamma \end{pmatrix} = \det\begin{pmatrix} s + i\gamma & c \\ \overline{c} & s - i\gamma \end{pmatrix} = 0.$$

Hence:

Proposition 3: If $|\gamma| < |c|$, the points

(17)
$$a = -\frac{c}{s + i\gamma} \in \partial \Delta \quad \text{and } \beta = \frac{c}{s - i\gamma} \in \partial \Delta$$

are the Wolff points of the semiflows $\mathbb{R}_+ \ni t \mapsto \phi_{-t}$ and $\mathbb{R}_+ \ni t \mapsto \phi_{t}$, where ϕ_{t} is given by (13).

For any $t \in \mathbb{R}$, they are the unique fixed points of the continuous extension of ϕ_t to $\overline{\Delta}$.

If $\gamma = 0$, the Wolff points are $-e^{i \arg c}$ and $e^{i \arg c}$.

Finally, (14) yields

PROPOSITION 4: If $|\gamma| = |c| \ (\neq 0)$, the point $i - \frac{c}{\gamma}$ is the Wolff point of the two semiflows $\mathbb{R}_+ \ni t \mapsto \phi_{-t}$ and $\mathbb{R}_+ \ni t \mapsto \phi_t$, where ϕ_t is given by (14).

It is also the unique fixed point of the continuous extension of ϕ_t to $\overline{\Delta}$

As a consequence of some of these facts, the following corollary holds.

Corollary 1: If the orbit of some $z \in \Delta$ by the flow ϕ is relatively compact in Δ , then the set

$$\mathrm{Fix}(\phi) = \{z \in \varDelta : \phi_t(z) = z \ \forall \ t \in \mathbb{R}\}$$

is non-empty (and consists of a unique point).

Vice versa, if $Fix(\phi) \neq \emptyset$, then the orbit of any $z \in \Delta$ is relatively compact in Δ .

It will be useful in the following to compute an expression, in terms of a and β , of (13) when $|\gamma| < |c|$.

First of all, (13) yields

$$\phi_t(z) = \frac{[(s+i\gamma)e^{2st} + s - i\gamma]z + c(e^{2st} - 1)}{\overline{c}(e^{2st} - 1)z + (s - i\gamma)e^{2st} + s + i\gamma}.$$

Since

$$s + i\gamma = -\frac{c}{a},$$

and therefore

$$s - i\gamma = -\frac{\overline{c}}{\overline{a}} = -\overline{c}a,$$

then

$$c = (s - i\gamma)\beta = -\overline{c}\alpha\beta.$$

Furthermore,

$$s + i\gamma = \overline{s - i\gamma} = \frac{\overline{c}}{\overline{B}} = \overline{c}\beta.$$

Then

(18)
$$\begin{aligned} \phi_t(z) &= \frac{\overline{c}(\beta e^{2st} - a)z + c(e^{2st} - 1)}{\overline{c}(e^{2st} - 1)z + \overline{c}(\beta - ae^{2st})} \\ &= \frac{(\beta e^{2st} - a)z - (e^{2st} - 1)a\beta}{(e^{2st} - 1)z + \beta - ae^{2st}}. \end{aligned}$$

Hence,

(19)
$$\left(\frac{d\phi_t}{dz}\right)(z) = \left(\frac{e^{st}(a-\beta)}{(1-e^{2st})z + e^{2st}a - \beta}\right)^2.$$

REMARK: A direct computation shows that, setting

$$\sigma_{a,\beta}(z) = \frac{z-a}{z-\beta},$$

(18) can be written

$$\phi_t(z) = \sigma_{a,\beta}^{-1} \left(e^{2st} \sigma_{a,\beta}(z) \right),$$

which is the expression of ϕ_t given by Theorem (1.6) in [3].

If $|\gamma| < |c|$, $|\gamma| = |c|$, $|\gamma| > |c|$, the flow ϕ is called, respectively, *elliptic*, *parabolic*, *hyperbolic*.

3. - Periodic semigroups of isometries of H^p

Let $T: \mathbb{R}_+ \to \mathcal{L}(H^p)$ be a strongly continuous semigroup of linear isometries of H^p into itself, and let $X: \mathcal{D}(X) \subset \mathcal{L}(H^p) \to \mathcal{L}(H^p)$ be its infinitesimal generator.

According to Theorem (1.6) of [4], there are a unique continuous flow ϕ of Moebius transformations of Δ and a unique family $\{\rho_t : t \in \mathbb{R}_+\}$ of inner functions ρ_t such that

$$(20) \qquad (T(t)f)(z) = \rho_t(z) \left[\left(\frac{d}{dz} \phi_t \right)(z) \right]^{1/p} f(\phi_t(z)) \ \forall t \in \mathbb{R}_+, \ \forall z \in \Delta, \ \forall f \in H^p.$$

Furthermore,

$$\rho_{t_1+t_2}(z) = \rho_{t_1}(z) \cdot \rho_{t_2}(\phi_{t_1}(z)) \ \forall \ t_1, t_2 \in \mathbb{R}_+, \ \forall \ z \in \Delta,$$

and $t \mapsto \rho_t$ is a continuous map of \mathbb{R}_+ into H^1 .

Vice versa, given ϕ and $t \mapsto \rho_t$ as above, satisfying the latter two conditions, the map $\mathbb{R}_+ \ni t \mapsto T(t)$ expressed by (20) is a strongly continuous semigroup of isometries of H^p . The flow ϕ is called, the *conformal flow* or the *conformal group*, [4], of the semigroup T.

If the flow ϕ is periodic with period $\tau > 0$ - and therefore is elliptic, [9] - then, by Theorem 4.1 of [4], the role of the family $\{\rho_t : t \in \mathbb{R}_+\}$ is played by the family $\{e^{i\delta t} : t \in \mathbb{R}_+\}$ for some fixed $\delta \in \mathbb{R}$, so that (20) is replaced by

(21)
$$(T(t)f)(z) = e^{i\delta t} \left[\left(\frac{d}{dz} \phi_t \right) (z) \right]^{1/p} f(\phi_t(z)), \ \forall z \in \Delta, \ \forall f \in H^p$$

and for all $t \in \mathbb{R}_+$.

Vice versa, given any real constant δ and any non-trivial periodic continuous flow ϕ of holomorphic automorphisms of Δ , the map $\mathbb{R} \ni t \mapsto T(t)$ defined by (21) is a strongly continuous group of (surjective) isometries of H^p . For any $t \in \mathbb{R}$, ϕ_t is represented by (12), with $r = 2\pi/\tau$, and the fixed point a is given by Proposition 2. Furthermore

(22)
$$\left(\frac{d}{dz}\phi_t\right)(z) = \frac{1}{\left(\frac{\overline{c}}{r}\sin\left(rt\right)z + \cos\left(rt\right) - i\frac{\gamma}{r}\sin\left(rt\right)\right)^2}.$$

Hence,

(23)
$$\left(\frac{d}{dz}\phi_t\right)(a) = e^{\mp\frac{4\pi i}{\tau}t},$$

according as $a = i \frac{\gamma \pm r}{\overline{c}}$.

We will now describe the infinitesimal generator X of the group T expressed by (21). As a consequence of (22),

$$\frac{\partial^{2}}{\partial t \, \partial z} (\phi_{t})(z) = -2 \frac{\overline{c} \cos{(rt)}z - r \sin{(rt)} - i\gamma \cos{(rt)}}{\left(\frac{\overline{c}}{r} \sin{(rt)}z + \cos{(rt)} - i\frac{\gamma}{r} \sin{(rt)}\right)^{3}},$$

and therefore

(24)
$$\lim_{t \to 0} \frac{1}{t} \left\{ e^{i\delta t} \left[\left(\frac{d}{dz} \phi_t \right) (z) \right]^{1/p} - 1 \right\} =$$

$$= \left(\frac{d}{dt} \left\{ e^{i\delta t} \left[\left(\frac{d}{dz} \phi_t \right) (z) \right]^{1/p} \right\} \right)_{t=0} = i\delta + 2 \frac{i\gamma - \overline{c}z}{p}.$$

For $f \in H^p$, $t \neq 0$ and $z \in \Delta$,

$$\begin{split} \frac{1}{t}(T(t)f - f)(z) &= \frac{1}{t} \left\{ e^{i\delta t} \left[\left(\frac{d}{dz} \phi_t \right)(z) \right]^{1/p} f\left(\phi_t(z) \right) - f(z) \right\} \\ &= \frac{1}{t} \left\{ e^{i\delta t} \left[\left(\frac{d}{dz} \phi_t \right)(z) \right]^{1/p} - 1 \right\} f\left(\phi_t(z) \right) + \frac{1}{t} \left[f\left(\phi_t(z) \right) - f(z) \right]. \end{split}$$

By (16),

$$\begin{split} \lim_{t \to 0} & \frac{1}{t} \left[f \left(\phi_t(z) \right) - f(z) \right] = \left(\frac{df}{dz} \left(\phi_t(z) \right) \right)_{t=0} \times \\ & \times \left(\left(\frac{d}{dt} \phi_t \right) (z) \right)_{t=0} = \left(-\overline{c} z^2 + 2 i \gamma z + c \right) \frac{df}{dz}. \end{split}$$

Since the modulus of the restriction to $\partial \Delta$ of the polynomial $z \mapsto -\overline{c}z^2 + 2i\gamma z + c$ is bounded away from zero, then, by (24),

$$f \in \mathcal{D}(X) \Longrightarrow \frac{df}{d\tau} \in H^p$$
,

and therefore

(25)
$$\mathcal{D}(X) = \left\{ f \in H^p : \frac{df}{dz} \in H^p \right\}.$$

Furthermore

$$(26) X = X_0 + i\delta I,$$

where X_0 is the infinitesimal generator of the periodic group T_0 of composition operators $H^p \ni f \mapsto T_0(t)f = f \circ \phi_t$, with period τ , domain $\mathcal{D}(X_0) = \mathcal{D}(X)$, and

$$(X_0 f)(z) = 2 \frac{i\gamma - \overline{c}z}{p} f(z) + \left(-\overline{c}z^2 + 2i\gamma z + c\right) \frac{df}{dz}(z)$$

for all $f \in \mathcal{D}(X)$ and all $z \in \Delta$.

We will now establish a condition under which the semigroup T is periodic.

Let $z_0 \in \Delta$ and $\tau > 0$ be such that

(27)
$$(T(\tau)f)(z_0) = f(z_0) \ \forall f \in H^p,$$

and such that for any $t \in (0, \tau)$

(28)
$$(T(t)f)(z_0) \neq f(z_0) for some f \in H^p.$$

Choosing f = 1, (20) yields

$$(T(t) 1)(z) = \rho_t(z) \left[\left(\frac{d}{dz} \phi_t \right) (z) \right]^{1/p},$$

and therefore, by (27),

(29)
$$\rho_{\tau}(z_0) \left[\left(\frac{d}{dz} \phi_{\tau} \right) (z_0) \right]^{1/p} = 1.$$

Hence,

$$f(\phi_{\tau}(z_0)) = f(z_0) \ \forall f \in H^p,$$

i.e.,

$$\phi_{\tau}(z_0)=z_0.$$

Thus, [9], ϕ is a periodic flow with period τ/n for some positive integer n, and therefore

$$\phi_{\tau}(z) = z \ \forall z \in \Delta$$

and

$$\phi_t(a) = a$$

for all $t \in \mathbb{R}$ and some $a \in \Delta$.

The condition (28) - holding for any $t \in (0, \tau)$ and, given t, for some $f \in H^p$ - implies that n = 1, *i.e.* that ϕ has period τ .

Since $\rho_t(z) = e^{i\delta t}$ for some $\delta \in \mathbb{R}$, (29) reads now

$$e^{i\delta\tau}=1$$
,

that is to say,

$$\delta = \frac{2\pi m}{\tau}$$

for some positive integer m.

In conclusion, the following Proposition holds.

PROPOSITION 5: If there are $z_0 \in A$ and $\tau > 0$ satisfying (27) and (28), the strongly continuous semigroup T of linear isometries $H^p \to H^p$ ($1 \le p < \infty, p \ne 2$) is the restriction to \mathbb{R}_+ of a strongly continuous group of surjective linear isometries of H^p which is periodic with period τ , is represented by (21), i.e.,

(33)
$$(T(t)f)(z) = e^{\frac{2\pi mi}{\tau}t} \left[\left(\frac{d}{dz} \phi_t \right)(z) \right]^{1/p} f(\phi_t(z))$$

for all $t \in \mathbb{R}_+$, $z \in \Delta$, $f \in H^p$, where ϕ is a continuous flow of holomorphic automorphisms of Δ , periodic with period τ , and m is a positive integer.

COROLLARY 2: Any strongly continuous group T of linear isometries of H^p $(1 \le p < \infty, p \ne 2)$, periodic with period $\tau > 0$, is represented by (33) where ϕ is a continuous flow of holomorphic automorphisms of Δ , periodic with period τ , and m is a positive integer.

4. - Almost Periodic semigroups of Isometries of H^p

Let the continuous semiflow ϕ be elliptic, let $\tau > 0$ be its period and let the group T be expressed by (21) with $\delta \in \mathbb{R}$. By (26), X is a perturbation of X_0 by the operator $i\delta I$. Thus X and X_0 have the same eigenvectors, and both the spectrum and the point-spectrum of X are obtained by translating by $i\delta$ respectively the spectrum and the point-spectrum of X_0 . Since ϕ is periodic with period τ - and therefore also T_0 is periodic with period τ (and vice versa) - by Theorem 3.1 of [1] the spectrum $\sigma(X_0)$ of X_0 consists entirely of eigenvalues $in\tau/2\pi$ for some $n \in \mathbb{Z}$, and the corresponding eigenvectors span a dense linear subspace of H^p . Thus, by Theorem 9 of [2], T is almost periodic, and the following proposition holds.

PROPOSITION 6: If the conformal flow of the semigroup T of linear isometries of H^p $(1 \le p < \infty, p \ne 2)$ is elliptic, T is (the restriction to \mathbb{R}_+ of) an almost periodic group.

Remark: This Proposition can be proved without appealing to [1] and [2], replacing T by a group \tilde{T} whose conformal flow fixes 0, that is to say, by the group

$$t \mapsto \tilde{T}(t) = S^{-1} \circ T(t) \circ S,$$

where S is defined by

$$(Sf)(z) = \left(\left(\frac{d\psi}{dz}\right)(z)\right)^{1/p} f(\psi(z)) \quad (f \in H^p, z \in \Delta),$$

and

$$\psi: \Delta \ni z \mapsto \frac{z-a}{1-\overline{a}z}.$$

Since the conformal flow of \tilde{T} fixes 0, a direct inspection of (12) and (21) shows that there are $\mu, v \in \mathbb{R}$ such that

(34)
$$(\tilde{T}(t)f)(z) = e^{i\mu t} f(e^{i\nu t}z)$$

for all $f \in H^p$, $t \in \mathbb{R}$ and $z \in \Delta$ showing that the function $t \mapsto (\tilde{T}(t)f)$ is almost periodic. Thus, also T is almost periodic, and this alternate proof of Proposition 6 is complete.

We will consider now the cases in which there are no fixed points of ϕ in Δ .

If the continuous flow ϕ of Moebius transformations of Δ is represented by (14) - in which case the continuous extension of ϕ_t to $\overline{\Delta}$ fixes the (unique) point $a=ic/\gamma\in\partial\Delta$ for all $t\in\mathbb{R}$ - then ([4], Theorem 5.1, pp. 408-410) there are constants $\delta\in\mathbb{R}$, $\mu\in\mathbb{R}_+$, $k\in\mathbb{C}$ such that

$$(T(t)f)(z) = e^{t[i\delta - ik\mu t - \mu(a+z)/(a-z)]} \left[\left(\frac{d}{dz} \phi_t \right) (z) \right]^{1/p} f(\phi_t(z)),$$

i.e.,

(35)
$$(T(t)f)(z) = \frac{e^{t[i\delta - ikt\mu - \mu(a+z)/(a-z)]}}{(t\bar{c}z + 1 - it\gamma)^{2/p}} f\left(\frac{(1 + it\gamma)z + tc}{t\bar{c}z + 1 - it\gamma}\right)$$

for all $t \in \mathbb{R}_+$, $z \in \Delta$, $f \in H^p$.

For z = 0 and f = 1 (35) yields

(36)
$$(T(t)1)(0) - 1 = \frac{e^{t[\mu(t\Im k - 1) + i(\delta - t\mu\Re k)]}}{(1 - it\gamma)^{2/p}} - 1,$$

and therefore

$$|(T(t)1)(0) - 1| \ge \left| \frac{e^{\mu(t\Im k - 1)t}}{\left(1 + t^2 \gamma^2\right)^{1/p}} - 1 \right|.$$

Since

$$\lim_{t \to +\infty} \left| \frac{\mathrm{e}^{\mu(t\Im k - 1)t}}{(1 + t^2 \gamma^2)^{1/p}} - 1 \right| = +\infty$$

if $\Im k > 0$, $\mu > 0$, and

$$\lim_{t \to +\infty} \left| \frac{e^{\mu(t\Im k - 1)t}}{(1 + t^2 \gamma^2)^{1/p}} - 1 \right| = 1$$

if $\Im k \leq 0$ and $\mu \geq 0$, there exists some l > 0 such that

$$|(T(t)1)(0) - 1| \ge \frac{1}{2}$$

whenever t > l.

Hence (see, e.g., [5], p. 36),

$$2^{1/p}|T(t)1 - 1| \ge |(T(t)1)(0) - 1| \ge \frac{1}{2}$$

for all t > l, proving thereby

Lemma 1: If the strongly continuous semigroup T of linear isometries of H^p $(1 \le p < \infty, p \ne 2)$ is expressed by (35), where the flow ϕ of Moebius transformations of Δ fixes one point in $\partial \Delta$, then T is not almost periodic.

We will reach the same conclusion in the case in which the flow ϕ appearing in (20) fixes two distinct points a and β of $\partial \Delta$. By Theorem 5.11 of [4] the action of T(t) on any $f \in H^p$ is given by the equation

(37)
$$(T(t)f)(z) = e^{R(t,z)} \left(\left(\frac{d}{dz} \phi_t \right)(z) \right)^{1/p} f(\phi_t(z)),$$

where:

 $\phi_t(z)$ and $\frac{d\phi_t}{dt}$ are given by (18) and (19);

$$R(t,z) = i\delta t - \mu(\overline{a}\beta - 1)\frac{z - a}{z - \beta} \left(e^{2st} - 1\right) + v\frac{z - \beta}{(\overline{a}\beta - 1)(z - a)} \left(e^{-2st} - 1\right),$$

and $\delta \in \mathbb{R}, \mu \in \mathbb{R}_+, v \in \mathbb{R}_+$ are constants.

We will show that the semigroup T is not almost periodic.

Choosing f = 1 and z = 0, then

$$(T(t)1)(0) = \exp\left(i\delta t - \mu(\overline{a}\beta - 1)\frac{a}{\beta}\left(e^{2st} - 1\right) + \nu\frac{\beta}{\overline{a}\beta - 1}\left(e^{-2st} - 1\right)\right) \times \left(\frac{e^{st}(a - \beta)}{e^{2st}a - \beta}\right)^{\frac{2}{\beta}}.$$

Therefore, setting

$$a = e^{ia}, \beta = e^{ib}$$

with $a, b \in \mathbb{R}$, $a \not\equiv b \mod 2\pi$, so that

$$\Re\left((\overline{a}\beta - 1)\frac{a}{\beta}\right) = 1 - \cos\left(a - b\right)$$

and

$$\Re\left(\frac{\beta}{\overline{a}\beta-1}\right) = \frac{\cos a - \cos b}{2(1-\cos(a-b))},$$

we have

$$|(T(t)1)(0)| = \exp(\mu(1-\cos(a-b))(1-e^{2st})$$

$$= v(e^{-2st}-1)\frac{\cos a - \cos b}{2(1-\cos(a-b))} \left| \frac{e^{st}(a-\beta)}{e^{2st}a-\beta} \right|^{\frac{2}{p}}.$$

Since

$$\lim_{t\to+\infty}|(T(t)1)(0)|=0,$$

and therefore

$$\lim_{t \to +\infty} ||(T(t)1)(0)| - 1| = 1,$$

there is some l > 0 such that, if t > l, then

$$|(T(t)1)(0)-1|\geq \frac{1}{2}.$$

In conclusion, if t > l,

$$2^{\frac{1}{p}}|T(t)1-1| \ge |(T(t)1)(0)-1| \ge \frac{1}{2}.$$

That proves

Lemma 2: If the strongly continuous semigroup T of linear isometries of H^p $(1 \le p < \infty, p \ne 2)$ is expressed by (37), where the flow ϕ of Moebius transformations of Δ fixes two distinct points in $\partial \Delta$, then T is not almost periodic.

As a consequence of Proposition 6, and of Lemmas 1 and 2 the following theorem holds.

Theorem 2: The semigroup T of linear isometries of H^p is almost periodic if, and only if, the conformal flow of T fixes a point of Δ . In that case, T is the restriction to \mathbb{R}_+ of an almost periodic group of surjective isometries of H^p .

5. - Semigroups of linear isometries of H^{∞}

So far we have always considered Hardy spaces H^p with p finite (and $p \neq 2$). We will now examine briefly the case of strongly continuous semigroups of linear isometries acting on the Hardy space H^∞ of all bounded holomorphic functions on Δ , endowed with the sup-norm.

Let $T: \mathbb{R}_+ \to \mathcal{L}(H^\infty)$ be a strongly continuous semigroup of linear isometries of H^∞ into itself. According to a result by H.P. Lotz, [8], T, as any strongly continuous semigroup of linear operators acting on H^∞ , is uniformly continuous. Hence, it is the restriction to \mathbb{R}_+ of a uniformly continuous group on \mathbb{R} , which will be denoted by the same symbol T.

Since for any t < 0 and any $f \in H^{\infty}$

$$||f|| = ||T(-t)T(t)f|| = ||T(t)f||,$$

 $T: \mathbb{R} \to H^{\infty}$ is a group of surjective isometries. According to [7] (Corollary, p. 147), there are a function $c: \mathbb{R} \to \partial \Delta$ and a family $\{\phi_t: t \in \mathbb{R}\}$ of holomorphic automorphisms of Δ such that

(38)
$$T(t)f = c(t)f \circ \phi_t \ \forall \ t \in \mathbb{R} \ f \in H^{\infty},$$

Being c(t) = T(t)1, c is a continuous homomorphism of \mathbb{R} into $\partial \Delta$. Therefore there is $\delta \in \mathbb{R}$ such that

(39)
$$c(t) = e^{i\delta t} \ \forall \ t \in \mathbb{R}.$$

Furthermore

$$\phi_{s+t} = \phi_s \circ \phi_t \ \forall \ s, t \in \mathbb{R}$$

and the map $t \to \phi_t(z)$ is continuous; thus, ϕ is a continuous flow of holomorphic automorphisms of Δ .

If T_0 is the group of composition operators in H^{∞} defined by ϕ , that is to say: $T_0(t)f = f \circ \phi_t$ for all $t \in \mathbb{R}$ and all $f \in H^{\infty}$, then

$$T(t) = e^{i\delta t} T_0(t)$$

and the infinitesimal generators X and X_0 of T and T_0 are bounded linear operators on H^{∞} related by (26).

Suppose first that the flow ϕ is elliptic. Arguing as in the proof of Proposition 6, we reach the conclusion that, if ϕ is elliptic, the group T is almost periodic.

In the other two cases, *i.e.*, if there are no points in Δ which are fixed by ϕ , there exist one or two points of $\partial \Delta$ which are Wolff points of the semiflows $\mathbb{R} \ni t \mapsto \phi_{-t}$ and $\mathbb{R} \ni t \mapsto \phi_t$. Thus, denoting by t the "coordinate function" t(z) = t, (38) and 39) imply that there is t > 0 such that

$$||T(t)\imath|| > \frac{1}{2}$$
 whenever $|t| > k$,

proving thereby that the group T is not almost periodic.

In conclusion, the following theorem holds which extends to H^{∞} what we have seen for H^p when $p \neq 2$ is finite and ≥ 1 .

Theorem 3: A strongly continuous semigroup T of linear isometries of H^{∞} into itself is the restriction to \mathbb{R}_+ of a strongly continuous group of surjective isometries. It is almost periodic if, and only if, the conformal flow ϕ associated to T by (38) is elliptic, i.e. fixes a point of Δ .

Moreover, T is periodic if, and only if, ϕ fixes a point of Δ , c is periodic and its period is a rational multiple of the period of ϕ .

REFERENCES

- [1] H. Bart, Periodic strongly continuous semigroups, Ann. Mat. Pura Appl., (4) 115 (1977), 311-318.
- [2] H. Bart S. Goldberg, Characterizations of almost periodic strongly continuous groups and semigroups, Math. Ann., 236 (1978), 105-116.
- [3] E. Berkson R. Kaufman H. Porta, Moebius transformations of the disc and one-parameter groups of isometries of H^p , Trans. Amer. Math. Soc., 199 (1974), 223-239.
- [4] E. Berkson, One-parameter semigroups of isometries into H^p , Pacific J. Math., 86 (1980).
- [5] P. L. Duren, *Theory of H^p-spaces*, Academic Press, New York and London, 1970.
- [6] F. Forelli, The isometries of H^p, Canad. J. Math., **16** (1964), 721-728.

- [7] K. HOFFMAN, Banach spaces of analytic functions, Prentice-Hall, Englewood Cliffs, N. J., 1962.
- [8] H. P. Lotz, Semigroups on L[∞] and H[∞], in R. Nagel (ed.), One-parameter semigroups of positive operators, Lect. Notes in Math., vol. 1184, Springer-Verlag, Berlin/Heidelberg/New York/Tokyo, 1986, 54-59.
- [9] E. Vesentini, Periodic points and non-wandering points of continuous dynamical systems, Advances in Math., 134 (1998), 308-327.