Rendiconti

Accademia Nazionale delle Scienze detta dei XL
Memorie di Matematica e Applicazioni

123° (2005), Vol. XXIX, fasc. 1, pagg. 355-378

V. A. SOLONNIKOV (*)

Schauder Estimates for the Evolution
Generalized Stokes Problem in Exterior Domains

Asstract. — We prove the solvability of the initial-boundary value problem (1.1)-(1.2) in the
exterior #-dimensional domain in the class of bounded functions that are Hélder continuous
together with some their derivatives. We do not make any specific assumptions about the behavior
of the solution at infinity, except the boundedness. Equations (1.1) arise in the linearization of
equations of motion of some class of non-Newtonian liquids.

1. - INTRODUCTION

The paper is concerned with the initial-boundary value problem

ovlx,t) 0 B
% + A(x, Z a) vix,?) + Vplx, 2) = f(x, 1),
(1.1) V-vix,t) =0, x€Q, te(0,7T),
(1.2) v(x,0) = vo(x), v(x, 1) 5 = alx, ),

where Q is an exterior domain in R”, » > 2, with a smooth connected boundary S,

vix,t) = (v1(x,8),...,0,(x,¢)) and p(x,#) are unknown functions and .A(x, t,g) is a

Ox
matrix second order elliptic differential operator with real coefficients whose principal
part Ay (x, ¢, 8_> , i.e. the sum of all terms containing only second derivatives, satisfies the

X

condition

(1.3) CHEPIP < Aolx, t,ién-n < ClEPIMP,  VEneR”,

(*) Indirizzo dell’ Autore: Dipartimento di Matematica Universita di Ferrara, Via Machiavelli 35
- 44100 Ferrara; e-mail: slk@dns.unife.it
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with a constant C independent of &, 7, x, ¢. We assume that A has a divergence form, i.e.,

0 0
A(X,i,a) = Vé(x,t,a>

where / is a first order operator:

K( ) (Z Lt g (%, t + Lip (x, t)) ,

so that Ag(x, ¢,7¢) = Z g 6 DCnCqli ey,

g.m=1

V-E(x,t,%>u (;%m (Z kquz‘ Z kmxl‘)uk))

We study problem (1.1)-(1.2) in anisotropic Hélder spaces. For arbitrary positive non-
integral number /: / =[/1+a, a € (0,1), we denote by C'(Q), C//2(Qr), CH/I2(Xy)
standard Hélder spaces of functions (or vector fields) given in 2, Qr = Q x (0, T) and
X1 =8 % (0, T), respectively. We recall that the norms in C(Q) and C"*/2(Qr) are given by

|l 1) = Z sup |D7a(x)| + [ulY),

J=1,..n

o<ljl<tn €
and
(14) ‘M|C”/2(QT) == Z Sllp |DkD] X t | —+ [Z/l] ¢, 1/2 s
0<2k+]j|<[n Qr
. ) ) ) . . - A u(x)
where j = (71, ... /), |7] = j1 + oo + 7, DY ul) = ———,
Oxi*...0x]"
IU(X) —v(y)|
[U]Q == [D/Z/l]Q B [U]Q - 7{;,
|]‘z[:z] xyeQ ‘X - y|

[l = 1y, + L,

_ ! 02 _
[u]XQT sup [u(-, )], (], 6, SL_(I)p[M(x’

t<T

(1/2)
] 0,1

These definitions extend in a standard way to the functions given on § and on Xt. In
addition, we introduce a mixed semi-norm

(! = sup |x =yl — 2 Plute, ) — uly,§) — ulox, 7) + ay, 7],

where a, f € (0, 1) and the supremum is taken with respect to x,y € Q, £,7 € (0, T).
We assume that the coefficients of the operator ¢ belong to C'**149/2(Qr) hence,
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the coefficients of A belong to C“*?(Qr) and the leading coefficients £, ,,(x.#) belong
to CH*%149/2(Qr). The known functions f,vo, a should satisfy the necessary com-
patibility conditions, in the first line,

(1.5) V-vpx) =0, vo(x)],c5 = alx,0),

and one more condition of a non-local character involving a;. Let po(x) be a solution of
the Neumann problem

v%&wz—qunag)%wnwrﬂmm

Opo(x)
on

(1.6)

xeS§

=—n- (A(x,O,%)vo(x) —f(x,0) + a,(x, 0))

where n(x) is the interior with respect to Q normal to S (if v does not possess the third
derivatives and f does not have the first ones, the first equation in (1.6) should be
understood in a weak sense). The compatibility condition reads

0
(1.7) a,(x,0) +.A(x,0,a

) vo(x) + Vpo(x) = f(x,0), VxeS.

We often assume that

(1.8) V- flx,) =0, S, t) - n(x)], =0

or, what is the same thing, [ f(x,?) - Vo(x)dx = 0 for arbitrary smooth ¢(x). In this case
Q

the terms with f in (1.6) drop out.

TueoreM 1.1: Let § € C*, a € (0, 1), and let the operator A satisfy the above hy-
potheses. Assume also that f € C**?(Qr), vy € C*t4(Q), a € C***42(Xy), and that

n
Z |R/<(at ° n)|Ca.a/2(ZT) < o0,
k=1

where

Ru(b) = ~20, | Elx = 601
S
E is the fundamental solution of the Laplace equation:

E(x) = —T(n/2)|x"Qr"2(n = 2))72, if n> 2,

E(x) = @n) 'log|x|, i n=2;
O = % — nk(% is the kth component of the surface gradient Vs on S. Finally, let
k

conditions (1.5)-(1.8) be satisfied. Then problen: (1.1), (1.2) has a unigue solution (v,p),
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v € C2Hel2(OQr) Vp € C2(Qr), and it satisfies the inequality

(1.9) | v‘czm,lm/Z(QT) + \Vp

C*a/2(Qr) < C(|f Cea/2(Qr) + |vo|sz(Q)+

n
—|—‘a|C2+a.1+a/2(2T) + Z |R/e(az . ") C‘”‘/Z(Zr)) :
k=1

The operators R, that can be considered as the Riesz operators on S are continuous in
the space C*(S) but not in C*%/2(X). However, the estimate (1.9) is coercive in the sense
that its second term can be majorized by the first term multiplied by a certain constant.

For the case of a bounded Q, Theorem 1.1 is proved in [1]. For a classical Stokes
problem (when A = —vl4, v = const > 0) it is obtained in [2] both for bounded and
exterior domains, under the assumption @ = 0. Moreover, in [2] a local solution of the
nonlinear Navier-Stokes problem is constructed. The Cauchy problem for the Navier-
Stokes equations with non-decaying at infinity initial data is solved in [3-5], and the
problem in the half-space is treated in [6,7]. The restrictive compatibility conditions (1.7)
can be avoided by passing to weighted Holder spaces with the weights of the form #,
y > 0, in some terms of the norm (1.4). Parabolic problems in such spaces were studied in
[8-10] and in other papers. Coercive estimates of the type (1.9) in weighted Hoélder spaces
will be obtained in a subsequent publication.

2. - AUXILIARY PROPOSITIONS

It is well known that every vector field #(x) can be represented as a sum
2.1) u=u +V¢=Pu+Pcu
where ¢ is a solution of the Neumann problem
2.2) Ap(x) =V -ulx), x€Q, a—(’b = u(x) - n(x),
onls
and u; satisfies the conditions
V-uy =0, wu nlg=0,

at least in a weak sense.
If Qis a bounded domain, then the Weyl projectors Pg; and Pj are bounded in C*(Q),
ie.,

|Pc u

e T PG utlcg) < cltt]cug)-

For exterior domains, this inequality does not hold, moreover, these projectors, i.e.,
the solution of problem (2.2) with # € C*(Q), need an accurate definition. We introduce
the space C*(Q2) with the norm

]l = sup |a(x)] + [u]g
Q/

where @' is a fixed bounded subdomain of Q. It is clear that the variation of €’ leads to an
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equivalent norm, moreover, ' can be replaced with S. To be definite, we fix € such that

dist(@\ 2,8) > 7 >0 and |x—z| <7, Vx € Q,z€S. In the present paper the

following proposition is used.

U (x)
896/6 i=1,...,

Prorosition 2.1: If u =V -U = (Z

k=1

problem (2.2) has a solution ¢ € C*(Q) with V¢ € C*(Q), defined up to an additive
constant that can be determined, for instance, by the condition

23) Jqs(x)ds o,

S

The solution satisfies the inequalities

(2.4) lell, < cllUlly
2.5) IV@lcoig) < cU]l, + [ael],),
where
U1, = max [Vl il = mas, ol

The norm || #|, in (2.5) can be replaced with [#], because the identity
MM=BM1<JWM—umM%+J(Wﬁ—UMM@%Q7
B,, 0By,
where B,, = {y € Q: |x —y| < ry} implies
lu(x)| < c([u]gf; + [U];g;), Vx € Q.

Proor: Let xg be a fixed point of a bounded domain € = R” \ Q. We define ¢ as the
sum

(2.6) $x) = () + §, () + &

where

P OE(x —y) OE(xo—y) X, | PE(x)—y)
(2.7) R;(x) = 1 J) < O - Do - ; (x/ - xO]) M) sza.(y)dy _

n

- JE(x — U0 (y)dS,
k=1 S
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¢, is a solution of the problem

(2.8) 4¢,(x) =0, x€Q, %— ~n—%

on " on’
vanishing at infinity, and @, = f((ﬁl + ¢,(x))dS. Differentiation of (2.7) gives the

x €S,

expression of ¢, in terms of smgular integrals (see [11], §8):

k=1 /4

i.k=1 3
+ZJ<8ZEx—y 82]5(960—y))Ulk(y)dy7

=) Ox;0xy, 0x0;0%op

where the volume integrals are understood as
J <0ZE(x—y) _ &Exo —)
Ox;0xy, 0x0;0%0

lim Usy)dy.
QN{|x—y|>e}

It is clear that they are convergent, if Uy, € 6“( Q); moreover, AR; = Z aank = u; and
Xk
PU, k=1
A AR; = 2 =V-u.
419 Za R; = Z o

We extend Uy into £° in such a way that |Ul‘,{)|ca(gcug) < ¢|Ust|co(ery and write ¢; in
the form

1 " 8Ex—y) 82E(X0—y)
_;;Ukk Z [J( Ox;Oxy, - 0x0;0X0op )U’k(y)dy_

ik=1

PE(x—y) OElxo—y)
_ J ( O — o~ )Ul-k(y)dy — JExl- (x — MU (y)dS|.
o S

According to classical estimates of the volume and surface potentials (see [12,13]),
n
(65 <> (UL + Uloan) < ellUL
ik=1

moreover, for arbitrary z € &'

PE(z — &PE(xg —
6@ < Z U] + Z ”( Bzzﬁzky a 6x$gxo/ey))(Uik(y) B U"k(Z))dy’—F

N Z Utz |”(82E(z 82E(x0 7y)>dy‘+

82;82% 69601‘(9960/

+;\j oz = Ualym)ds| < U]
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Hence,
¢1ll, < ellUl,-

Now, we estimate V¢, . It is clear that

n (M)
£ = lim M) = Tim 30N

Mﬂoo 1m—00 = X,
where
RM () = — JE(x  U)ma)dS+
- 8E(x -9 O9Eo—9 <~ PE(xo — ) ‘
+ i T ) DURL L e e KL

Culw) = Ux —x0) /M), (e CPRY), (=1 for |z <1, (=0 for |z]>2,
0<{(x) <1, |D/CM(X)| < c(\j|)M’V‘. For M large enough,

M () L PRM d B
Ox,, Z 8x18xm Z 8xm5xz J y)a_%(Ulk(y)CM(y))dy a
o)

! PE(x -
;”m J 3Xm8x, M (Ui )n())dy
1o
After simple transformations we obtain
5¢ 1
s axm = ;%m(x) -
+ l; ( J axlaxm Y (uy) — a0y + () ll—I*%QJ W‘l’y+
PE(x —y)
J W(Uzk(y) — Up(x))dy —
Q\Q
OPE(x —y) 96,0
AQ\Q))

where Q1 = Q1(x) ={yeQ:|x—y|<r}tand 1, ={yc Q:e<|x—y <n}. The

integral J %dj} is uniformly bounded, moreover, it vanishes, if dist(x,S) > 7o,
X 0%
Ql,f‘

ie, x € 2\ 2, hence,

)‘9951 | < (I, + l#lo@) < (1Tl + ull,)-
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961" ()
0%,y

In addition, applying to classical estimates of the theory of potentials and passing

to the limit, we obtain

(Ve 15 < c(IUll, + llull,).

so ¢, satisfies (2.4), (2.5).
Let us pass to the estimates of ¢,. We observe that

9% " " P d \ IR
A Z Z”kax,axk Z(”"a@ 0xl)(9 = divs M,

=1

where M(x) is a tangential vector field on § given by

- OR,
M - l;ﬂ (ﬂl. kT el‘)a_xk7 €k = (5lk)l'-,k:1‘..4,n>

and satisfying the inequality

n
IM|cos) < CZ IVR:|cois) < cl|Ulfg-

=1
Hence, J (u n— %)dS = 0, the solution ¢, of problem (2.8) is well defined, and
S

0
Vérdow <clu-n—22| <aqul, + fuf,)

on lc«s)

To estimate ||$,||,, we represent ¢, as a single layer potential

2.9) 8,(x) = —2 Jm — )uly)dS
S

with u satisfying the integral equation

(2.10) ux) + 2 mey)déﬂ = —divsM(x), x€S.
5 X

Integrating this equation we find [ x(x)dS = 0. The function
Y

o(x) = 2 Jmﬂ(y)ds

Ony
s
satisfies the same kind of equation
olx)+2 Jma(y)dS =2 delbs M>y)dS = —201(x),
aﬂx aﬂx
s s

hence,

sup |a(x)| < csup |oy(x)].
s s
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The function o1 can be brought to the form

OE(x — y)

oS

OE(x —
o1(x) = va% (M) — MOS — (1 — DM () - Jn(y)H(y)
ky y ks
where H is the mean curvature of S. Since
v OE(x — ) <e 1 _
On, |x — 9]

we obtain

01| < | M| o5y < e]|Ull,-

Since f x)dS = 0, the function

6,(x) = —2 J VeE(x — ) - M()S + 2 JE(x — )e()dS
S S

satisfies the inequality
o

which completes the proof of (2.4).

It is easily seen that the constructed solution of the problem (2.2), (2.3) is unique.
Indeed, the solution ¢, of a homogeneous problem is a harmonic function that grows at
infinity not faster than |x|*, which implies that it tends to a constant and in fact coincides
with this constant. By (2.3), it vanishes. The proposition is proved.

Estimate (2.5) implies

(2.11) \Pcu

oo < (M

cos) T S‘;P lo()]) < cl|U]],

Co(Q + |P]

e < (Ul + llll,),
if u = V - U; moreover, by interpolation inequality,

(2.12) sup |Pc u(y)| = sup |V()| < c(h2 (V1% + h~1-02[4]W) <
Q Q

< b lul, + b2 U, + bR UN), e ©,1).
This makes it possible to estimate the norm |Pg #|cuuz(g,), if # =V - U depends also on
t € (0, T). Let us apply (2.12) to h~*24,(h) u(x, ) where
A,B)ulx,t) = ulx, t + h) — ulx, t),
and take supremum with respect to # and 5. This leads to

(1+a—w)/2) [U] (14a—u /2)

(Peuly) < e((sup lull + sup U], + (U)g;

T

hence,
(2.13) |PGV : U|Ca,a/2(Q1) < C|U|C1+a,(1+a)/2(QT)~
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Now, we can prove important estimates of the pressure. We consider at first the
function py satisfying (1.6). It is easily seen that under the condition (1.8)

d
(2.14) Vpo = —PcV - e(x,o,—x) vo + Vao,
where gy is a harmonic function in Q satisfying the boundary condition
Oq0(x) = —a,x,0) -nx), xes.
On

If » =2 and [ a, - ndS # 0, then gy can have a logarithmic growth at infinity, but at any

case it satisfiess the inequality
190lla + [Vgolcug) < clad-;0) - mlcus).
Now, applying proposition 2.1, we see that po € C*(Q), Vpo € C(Q), and
1Poll, + [VPolcuo) < e(volcaruig) + [a:(,0) - mlcug))-

Note that this estimate does not guarantee the boundedness of py(x) for large |x|.
The relation similar to (2.14), i.e.,

(2.15) p=p+q,
0
where Vp' = —P5V - E(x, t,a)v and

Ag(x,t) =0, x€Q, %:—at(x,t)-n(x), x €S,
"

holds for arbitrary # € (0, T).

PROPOSITION 2.2: Let v € C2*414%2(Qr) and let (1.8) be satisfied. Then
(2.16) <p>(Qﬂ;a/2) < C(|v|CH“-“+“’/Z(Q'r) + <Vv>(é”:/2) + [a, - n]ff}/i))7
where 0 < p < 1, and if a - n = 0, then

(p,01/2)
(2.17) (p}élﬁl/ < C|v‘c2+a,1+a/2(QT)

withay +u=1+a, a;,u € (0,1). Finally,
(2.18) |VP|Cu,u/Z(QT> < C(|U|Cz+a,1+a/2(QT) + Z [Rk(a; : ")]gléf))
k=1
Proor: We use the relation (2.15), inequalities

(2.19) [/ (015 <IIp'll, < cllev]l,,

(2.20) VP (Dlew) < e(1€v]cug) + [Avlcug) < vl Dl
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and estimates of ¢:

(2.21) [q(-, 018 < csup |a,(x,0) - n(x)],
S

222)  sup|Vglx, )| < c(sup jai(x, ) - n()| + 3 sup [Rulas(x, 1) - n(x))|),
Q A -1 S

|Val,

ca <C|az('al‘)'"(‘)

Ce(8)-

Inequality (2.22) is proved in [1], proposition 2.7, and the proof is valid for exterior
domains (in this case the condition [ a - #dS = 0 is not necessary).

S
We apply (2.19) and (2.21) to h=%24,(h)p'(x, £) and h=42 A,(h)g(x, 1), respectively, and
take supremum with respect to # and . This leads to

<p> p,a/Z <P > (p,a/2) < >5.Ta/2 ([él)] a/2 < >é},a/2 +[a a, n]iaz/i> <
< e(lolcmsnngy + (V)5 + la, - a182),

since the coefficients of the operator £ belong to C'+%1+®/2(Qr). If @ - n = 0, then in the
same way we obtain

(o) < c([ey] wa <€v>(Q/‘;f11/2)> < cfo]rarazy):
To prove (2.18), we use (2.20) and the interpolation inequality
sup |Vp'(x, f)| < C(ba/Z[vp/(.J)](g) + b*(lﬁu)/Z[p/(.’t)]%))
Q
applied to h=424,(h)p' (x, 1). This gives
(2.23) ‘VP’|Ca,a/2(Q,'.) <c ([Vp ]x.Q + <P > (wa1/2) + [p/]i%J < E|v|C2+a.1+a/2(QT)~

For Vg we have the estimate

N\

(a/2)
Crar2(Qp) < €(|at|cu.a/2(2,l,) +[Rla,; - ”)]tiIE/T )

Together with (2.23), it implies (2.18). The proposition is proved.

Now, we assume that the condition # = V - U is not satisfied.

If u is divergence free, then ¢ is a harmonic function representable in the form (2.9)
with u satisfying the equation

1(x) 42 Jmﬂ(j})ds = —ul)-nlx), xeS.
Oony
S
Hence,
IVolcui) < clu - nleu),
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moreover, using proposition 2.7 in [1] it is easy to see that
¢l + sup [Vé(x)| < C<sup |u(x) - m(x)| + > sup [Rplu - n)(x)|).
Q A —1 S
For general u € C*(Q), the following proposition holds.

ProposiTion 2.3: For arbitrary u € CH(Q) problem (2.2) has a solution ¢(x) such that
V¢ € CHQ). It is defined uniquely, up to a linear combination

n

(2.24) Do) = D el + ;) + ¢
i=1

where c;, = const and y; are solutions to the problems

O =-n;x), x€S8, lim y,(x)=0.

Ay (x) =0, € Q,
it X Oon [x|—o0

The function ¢ satisfies the inequality

(2.25) IV¢ll, < clllaell, + > leel).
k=0

Proor: We define a partial solution of (2.2) by @(x) = &;(x) + P, (x), where

D (x) = J (VxE(x —9) =V Elxo—») — Z (x; — in)M) - uly)dy,

(%co,-

Q

X is the same as in the previous proposition, and @, (x) is a harmonic function satisfying
the boundary condition

0Dy (x) ) - )73¢1(X)
B, = 4 -nlx e
on S. As above, we have
0P1(x) 1 OVE(x —y) 0V4E(xg —y)
0%, ;um(x) + J ( 0%, B Oxom ) uly)dy
Q

where the integral is singular. The functions @; and @, satisfy the inequalities
VD], < cllall,,

oD,
Valcg < clu-n =" <clu,
implying (2.25) in the case ¢o = ... = ¢, = 0. It is clear that V®(x) can grow at infinity not

faster than |x|* and @ not faster than |x|' ™.

Let ®y(x) be a solution of a homogeneous problem (2.2) satisfying this growth
condition. Then it behaves at infinity like the first order polynomial and has the form



— 367 —

(2.24). Let us show that the functions {1,x; +w;(x),...,x, +¥,(x)} are linearly
independent on §. Assume that there exist constants A such that

> il + w0 + 2 =0, x€S.
=1

Since y; are representable in @ in the form of single layer potentials
Vi(x) = =2 [ E(x — y)u;(y)dS, and these potentials are continuous, we have
Y

> il + Vi) + 40 =0, x€S.
=1

The expression in the left hand side is harmonic in ° = R” \ ©, so it vanishes also in £°.
As a consequence, we have

(i (P1)) <o, ves

i=1

where the normal derivative is calculated from the side of the interior domain €°. On the
other hand, we have, by the definition of ,(x), the following relation for the exterior
normal derivatives:

= =1,...
aﬂ )g 07 ? ) 7”

$a(7), - (P2) ) =2 e <o

which implies Z A Vilx) =0, Z Aix; + 20 =0, and finally 4, =0, £=0,...,n

Hence,

A general S(Z)Tllltion of problelr;1 (2.2) has the form
P(x) = D(x) + Py(x)

and satisfies (2.25). The constants ¢; can be found from the appropriate additional
conditions, for instance,

Jg‘b(x)dS =0, Jgﬁ(x)(xi +y,(x)dS=0, i=1,..,n

S S

In this case the last term in (2.25) can be omitted. The proposition is proved.
This proposition is not used in the present paper.
If £ does not satisfy (1.8) but can be represented in the form (2.1):

S=rtVy=DPf+Pcf,

then we can introduce a new pressure p; = p — y and replace f with f; and p with
p1 in (1.1), (1.2) and in the estimate (1.9). It implies the following inequality that is
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used below:

(226) |U|C2+a.1+a/2(QT) + |Vp|Ca,a/2(QT) S C(|f|Cu.a/2(QT) + |Pcf|Caa/2(QT)+

n
+ |vO|C2+a(Q) + |a|C2+a.1+a/2(Z‘T) + Z |Rk(at : ")|C(1.[1/2(2T)) .
k=1

3. - THE PROOF OF ESTIMATE (1.9)

We follow [1], Sec.4, and consider at first problem (1.1), (1.2) with @ = 0, vy = 0.
We estimate the solution in the neighborhood of arbitrary interior point xy € Q. Let
{(y,t) be a cut-off function equal to one in the “parabolic cylinder” Cy), =
= {x,t:|x— x| <d/2,0<ty—t<d?/4} and to zero for ¢ <t outside C;. We
assume that dist(xg,5) > d. We introduce the functions wu(x,?) = v(x,){(x,?),
q(x, 1) = (p(x, 1) — p(#)){(x, ) where

p() = |By| ™! Jp(x, tdx, By={x€Q:|x— x| <d},
By

and we extend them by zero into the domain {# < #y, x € R"} outside C;. The extended
functions satisfy the relations

Oulx,t) n .A(

af .t 3) wl, 1) + Vgle, £) = e, D(x, £) + £ (x, ),

Ox
V-u=v-V{, xeR" <,
u(x,0) =0,
that can be also written as

Oulx,t)

0
= Ang (a)u(x, 1)+ Ve, £) = flx, DC(x, 1) + f1(x, 1),

V-u=v-V{, xeR", +te(0,1),
u(x,0) =0,
where

S ) =LA v+ (p —pVi+ 0, [A o= Alv) - (Av,

S, 0 = —A/(x, t,%) u+f(x 1),

Aoo(%) - Ao(o,;o,%), A = A~ Ag.
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We represent (u,¢) in the form
weul u® L y® g gDy 0
where u'?, 4% are defined by

OuV(x, 1)

o AOO(3

ax)“m("’ ) =f,0lx, ), x€R" <t

(3.1) uV(x,0) =0,

u?(x,t) =V J E(x —y)(v(y,2) - V{(y,2) — V- u(l)(y, 1)dy,

0u®)(x, ) 9\ 0 6)
T#—Aoo(a)u (0, 8) + Vg% (x,8) = fr(x, 1),

with
So=f —Aoo(é)um
2 1 ax .

Let us estimate the functions #'”, 7 = 1,2, 3. The parabolic Cauchy problem (3.1) has
a unique solution #'V € C>***%/2(11,), IT, = R” x (0, t,), and

1)72+a,14a/2) (a,a/2)
[u ]Hlo < C[-fﬂﬂlo
(see [14]). Further, according to well-known estimates of the Newtonian potential,
[ (015" < elv- V(= V- aV] ™ < c([v VR + [um]gﬂ).
To estimate the Holder constant of #'? with respect to #, we write #'? in the form

uy? =VJE<x—y>((—V~€v—Wp—ﬁ))-vc+v-AOOu“>)dy:
er

=V J (( —VE(Kx—9) @V :lv+E(x—9y){lv: VVC))a’y—
RY[

-V J (VE(x —9) - (p =PIV — E(x — ) (p — p)V?{ — VE(x — y) - Ago u“))a’y
R#
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(since f is divergence free, the sum of the terms containing f vanishes). By
inequalities (2.37) and (2.39) in [1],

w157 < a1 4 ) (01 + (0) 8+

+ sup  [o(, Dlciagy + (VoL + (Vo) 2P +

te(to—d? ty)

+lo =L+ O+ s |0 = p Do),

lE(!ofdz,to)

where p is a small positive number. Finally, by estimate (3.9) in [1],

[u(B) (é::a?l-&-a/Z + [Vq ]aa/z < C([f ] (a.0/2) + [Pg fz]talllfo)> <

< C([fl](a ,a/2) + [P fl] (1/2 +[u ) 2+(1 JA+a/2) )’
where Pg is the Weyl projector in the whole space R” (see [1]). In its turn,
LA + e 0500 < LAY + (5 + cdlul g1
+c( Z sup [D/u(y, )| + <A1u>pa/2 + [A ](a/2 )
/=2 o

because the leading coefficients of A" do not exceed cd. Collecting all the above estimates
and taking d sufficiently small, we obtain

6.2) (w3712 4 1ol < (1157 + M)

where M is the sum of some lower order norms of p, v, g = {(p — p) and u = (v that can
be estimated by interpolation inequalities as follows:

M< 8([ ] (2+a,1+a/2) + [vp](a ,a/2) )

+ 6(8)(Sup|v(x, D+ supptx. ) = p)] + [p ) <
([ ] (2+a,1+a/2) + [Vp] (a,a/2) )

+c (sup|vxt|+sup[p ”) <p>/’“/2), Ve € (0,1).

1<ty

Estimate of the solution of (1.1), (1.2) near the boundary was obtained in [1]. From
this estimate and from (3.2) one can deduce, by standard arguments of Schauder’s
method, the inequality

|U‘C2+a,l+a/2(Qf,) + ‘Vp|ca,a/2(Q[,) < C(|f|Cu,a/2(Q/) + Slle |v(x, L‘)|—|—

+sup [p(-, 018 + () 5" +d(p>”‘“/2)

i
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for arbitrary # < T. The norms of p can be estimated by (2.16)-(2.18):

sup [p(, 01+ (P +d(pyg™? <
< (p,a/2) d
<c ‘v|cl+a.(]+a)/2(Qll) + <VU>Q/ + |v|C2+a,l+n/2(Q ) )

/i

After this, using again the smallness of d and the interpolation inequality, we arrive at

|v|sz.1m/2(Q[,) + |Vp

Cral2(Q,) < C(|f Cr2(Q,) + Sélp \v(x, l‘)|) <
[/

7
S C<|f|Ca4a/2(Qf,) + J ‘I)T(X, T)dl'|),
0

and, applying the Gronwall lemma, we obtain (1.9) in our case: vo =0, a = 0.
Now, we turn to a general case. Let a’(x, £) = b(¢)w(x) where w/(x) is a solution of the
Stokes problem

—Ay(x) +Vralx) =0, V-px)=0, xe€, wkx)=Nkx), xeS,

vanishing at infinity for # > 3 and bounded for #» = 2, with a smooth N satisfying the
condition

JN(x) ~n(x)dS > ¢ >0,
s
and let 4(¢) be given by
bl) = (JN(@ - n(x)dS)A Ja(x, ) - n(x)dS.
S

A

Hence, [(a(x,#)—a'(x,2) n(x)dS=0. It is clear that y € C**%(Q) and b€
s

€ C'*%2(0,T). Further, we define a solenoidal extension vjj(x) of the vector field
vo(x) — b(0)y(x) into ° such that

[05lczeazny < ¢[00l o) + 1600)])
(see [1]) and introduce v1(x, #) as a solution of the Cauchy problem
vy, —Avy =0, 01(x,0) =v5x), x€R"
It satisfies the equation V - v; = 0, and the inequality

(33) |v]|c2+u,l+a/2(QT) < C|US|C2+"(R“) < C<|1)0|C2+(1(Q) + |b(0)|),

moreovet, for Pg vy, = PgAv; we have

|Pc 1)1[|C(1.11/2(QT) < C|vl|C2+"-”"/2(QT)’
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by virtue of (2.13). Now, let v, be a solution of the Stokes problem
—Avy; +Vp, =0, V-v,=0, x€Q, v,=a—v;, x€S,

vanishing at infinity for » > 3 and bounded for #» = 2. For this vector field the estimate
(3.4) |UZ|C2+a.1+a/2(QT) < C(|u|C2+(L1+(l/2(ZT) + |U1|C2+a.1+a/2(QT)>

holds both in bounded and in exterior domain Q. Moreover, since v, is divergence free,
vy, m=a, n—vy,-n=a, n—Avy-n and

“ 0 0 \ Ovyy
Avl-n:igz:1 (”’ea_x,-_”f@) 3x11-’

we have, by virtue of inequalities (2.58) and (2.40) in [1],

n
(a/2)
|Pc 112;|Ca_a/z(QT) < c(\a, CR|cunsz(x,) T Z [Re(a, - n)];l)éT + |vl|C2+a.l+u/2(QT)).

It is easily seen that vy(x,0) = 5(0)y(x); hence, the difference w = v —v; — v, is a
solution of the problem

ﬁ)w+Vp:h, Vew=0, wx0=0,  w|=0

35) w,+ A(x, o

with
b(x,2) = fx, ) —88——A(x s ) %—A(X,I;%) vy =

. 81}1 0 8112 0
=fld) =T =Vt Yo ==Vt g Jon
satisfying the inequality

|h|Ca.a/2(QT) + |PG thu,a/Z(QT) < C(|f|ca.a/2(QT) + |1)1lcz+a.1+u/2(QT)+

n
2
+ v, ‘C2+u.l+u/2(QT) + |a|Cz+u,1-u/2(zT) + Z [Rela, - n)]i?z/l)) .

In addition, for x € § we have v1,(x, 0) + v2,(x,0) = a,(x,0), and, as a consequence,
0
B, 0) = f(x,0) = a,((x,0) = A(,0, - o,

from which it follows that the compatibility condition (1.7) is satisfied in problem (3.5).
Hence, by (2.26),

|w|C2+a.1+a/2(Q,l,) + |Vp|Ca,a/z(Q,1‘) < C(|h|Ca,a/2(Q,1‘) + |P¢ h|Ca.a/2(QT)) <

n
(a/2)
Coe/2(Qr) + |Uo‘cz+u(9) + ‘ u|C2+u,1Aa/2(ZT) + Z [Rk(at . ")],{gl )

<<(lf

Together with (3.3)-(3.4), this estimate implies (1.9).
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4. - ON THE SOLVABILITY OF PROBLEM (1.1), (1.2).

We repeat here the arguments in [1], Sec. 5, with small modifications. At first we
consider the case @ = 0, vy = 0, moreover, we assume that

4.1) Sx,00=0, x€Q,

and that the coefficients of the operator A = V - £ are independent of #. Thus, we deal
with the problem

a”é’;’ ).y f(x,%)v(x, 1)+ Vple, 1) = flx, 1),
4.2) V-v=0, xe€Q, +re(0,71),
(4.3) v(x,0) =0, v(x,8),cs =0

with f € C*%/2(Qr) satisfying (1.8), (4.1).
We approximate f with divergence free vector fields fX € C**/2(Qy) N L,(Qr) with
SR n| g =0,R> 1. They are defined by
SR, 0) = fla, R (%) + fr(x, 2),

where {z(x) = {(x/R) is a standard cut-off function equal to one for |x| < R and to zero
for |x| > 2R and f} is a solution of the problem

Vofr=—f Vi), xeKg={R<|x| <2R}, [frlweox, =0

constructed in [15]. For x € R” \ Kg, we set fz = 0. It is known that f satisfies some
estimates in the Hélder norms, in particular,

[Frle) < el fe

Coke)r SUP | frlx 2] < csup | filx, 1)
Kr

Kr

with constants independent of R (see [16, 17]). Hence,

R
|f |Ca.a/2(QT) S C|f|C“'a/2(QT).

The problem
ovR(x, 7) O\ g R R
—5 + A(x,a)v (x,2) + Vp"(x, 1) = fR(x, 1),
V-ok=0, x€Q, +€0,7),
(4.4) oR(x,00 =0, R0, 0], 5 =0

R

has a unique generalized solution o® € Ly(Qr) with of,0f € Ly(Qr) satisfying

conditions (4.3) and the integral identity

T T
ijf(x, t) - nlx, t)dxdt — JJE(DQ%) oR : Vdxdr =

0Q 0Q

O ——

JfR(x, 1) - nlx, dxdt
Q

for arbitrary solenoidal # € L>(Qr) with 7, € Ly(Qr), 7,5 = 0. The existence of the
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unique weak solution and the estimate
T T

4.5) ”(|v§<x, P + [VoR(x, O + [oR (x, ) P)dxdt < cJJ|fR|2dxdt
0Q 0Q

is proved by Galerkin’s method in a quite standard way on the basis of the Garding
inequality

- J&)R :Voldx > ¢ J [VoR(x, ) dx — ¢ J [oR(x, )| dx,
Q Q Q

that is a consequence of (1.3). Now, we can consider v® as a weak solution of an elliptic
problem

9\ r R_ R R R _ R| _
.Ao(x,a)v +Vpi=—v, V-0©=0, x€Q, ;=0

depending on the parameter ¢ € (0, T). By the regularity theorem for such problems (see
[18]), there exist the second derivatives v, € L>(Qr) whose norm can be estimated by
the L,- norms of fX, R and of the first derivatives of »X. Moreover, there exist the
pressure function pR € L,(Qr) with VpR € L,(Qr) such that (4.2) holds in a strong sense,

and, along with (4.5), inequality

' R2 R|2 R2
\; D0 100 + VP Lo < el Iy
=)
is satisfied.
Next, we show that »® and p® belong to the appropriate Holder spaces. To this end,
we approximate fX with the vector fields

PR 8) = ag(6) Ryt — 26) = J 0u(0) fR (.t — 7 — 26)d,

|z|<e

where , is a standard mollifying kernel and fR(x,#) = 0 for # < 0. The corresponding
solutions of problem (4.2), (4.3) have the same structure:

vf(x, 1) = w,(t) % vR(x, £ — 2¢), pf(x, 1) = @, () x pRx, 1 — 2¢),

vR(x,2) = 0, pR(x,#) = 0 for £ < 0. Tt is clear that fX, o&, p, are infinitely differentiable
with respect to ¢, in particular, vX, & € W2(Q) for arbitrary fixed ¢ € (0, T). By the
embedding theorem, v® € L,(Q) with 1/g < 1/2 —2/n. By the regularity theorem for
elliptic problems, o} € W2(Q), Vpk € L,(Q). Since Dj"v} € L,(Q) for arbitrary 7, it
follows that v® € L, (Q) with 1/q1 <1/q—2/n<1/2 —4/n, hence, vk € W;l(.Q),
VpR € L,,(Q). Repeating these arguments, we increase the exponent ¢ indefinitely, until
we can conclude that vR € C*(Q) and, as a consequence, vX € C**4(Q), VpR € C4(Q).

By (1.9),

R R R
|U(,2 |C2+a.1+a/2(QT) + |Vp£ |Ca,a/2(QT) < C|f€ |Ca.a/2(Q,1‘>~
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Now, let & — 0. Since fR(x,0) = 0, the zero extension of f¥ into the domain {# < 0}
belongs to the same class C*%/2. As ¢ — 0, the vector fields fR approximate f® in
C/2(Qr) with arbitrary @’ < a and the norms |} cual2(0y) remain uniformly bounded.
Hence, vR — ok in CHAIH 2O, fo — VpR in C*/2(Qr), and, moreover,
(R, pR), vk e C¥He1+4/2(Qr), VpR € C+%2(Qy), is a solution of (4.2), (4.3). Finally,
passing to the limit as R — oo, we obtain the solution » € C2t®1*%/2(Qr),
Vp € C“%2(Qr) of problem (1.1), (1.2).

Let us prove the solvability of this problem with the operator A of a general form. It
follows from (4.1) that

v(x,0) = v,(x,0) =0, xe€Q.

For arbitrary v € C?*%1+%/2(Q) satisfying these conditions we have
0 0
‘A(x, t,a) v — A(x,O,a) v

< c(max SUP [ L ig (%, ) = Lro g (%, O] 0] caraniarag,)+
ks Q, ’

Ca,a/Z(Q/) -

+ gnax Mkqu|Cav“/2(Q,/) E sup |D/D(X, l‘)l + |v|C1+u.1/2+a/2(Q[,)) < C(ﬂ)a/z|U|C2+aA1+a/2(Qt,)7
21,7 4 o Q/
/=2

‘PGV : (f(x,t%v) — E(x, 0,%)1})
which guarantees the solvability of problem (1.1), (1.2) in a small time interval. From this
it follows that the solution exists for ¢ € (0, Ty).

It remains to remove restriction (4.1). Let us consider problem (1.1), (1.2) with
vy = 0, a = 0 and with arbitrary f € C**?(Qr) satisfying only (1.8) and the compatibility
condition (1.7), i.e., f(x,0)|¢ = 0. We construct a divergence free extension of f, f*, into
the whole space R” with a compact support, such that

Dl ey < el fC D), sup [ £ (x, 0] < esup [ flx, 2)],
XxER" xeQ

<c tl a/2 v a,l+a .
Coar(Qy) = ( ) | |C2+ 144/2(Q,)

and, as a consequence,
| |y < el flenanigy
(see the details in [1]). Let v*(x, #) be a solution of the Cauchy problem
v, (x,2) — Av*(x,2) + Vp*(x,8) = f*(x, 1),
V-v"=0, xeR" +e€(0,1),
v*(x,0) =0,

ie.

v¥(x, 1) = J J I'(x—y,t—1) f(y,7)dydr,
0R

"
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where I is the fundamental solution of the heat equation, and p* = 0. Further, we define
w as a solution of the Stokes problem in Q:

—Aw+Vr=0, V-w=0, wl|j=—-0v".

Since v}(x,0) = 0 for x € §, we have w(x,0) = w,(x,0) =0, x € Q.
Both v* and w belong to C>**'*%/2(Qy), moreover, Pov; = Pg Av* € C+2(Qr),
and, as we have seen above,

n
(a/2)
|PG w['Ca.a/Z(QT) < C(|U;k : "|Ca,a/2(2T) + Z [R/e(vj : ")]tl,ZE/T )
k=1

Since f - n|,.s =0, we have Ry(v} - n) = Ryp(4v* - m). The function A4v* -n can be
written in the form

Av* -n = i (n/i—ﬂk%)%:diwq?
j

= Oxy, Oxp,
with
z ov?
b= (nje/e—ﬂke/)a—/,
7k=1 Kk

hence, by inequality (2.40) in [1],
[Rew; - WL < el aasanigy
For the difference # = v — v* — w we obtain the problem
u,+Au+Vp=»b, V- -u=0, u(x,0)=0, u|, =0,
where
b=—w,— Aw — Av* — Av* € C**(Qr), P b e C***(Qr).

In addition, h(x,0) = 0. As was shown above, this problem has a solution (u,p),
u € Crol+e/2(Qr), Vp € C»*/2(Qr). The proof of Theorem 1.1 is now complete.
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