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The General Relative Entropy Principle
— Applications in Perron-Frobenius and Floquet Theories
and a Parabolic System for Biomotors —

AssTrACT. — We survey several types of results that follow from the notion of General Relative
Entropy Inequality. This concept was introduced in [38, 39, 40] and extends to equations that are
not conservation laws, the notion of relative entropy for conservative parabolic, hyperbolic or
integral equations.

We first show how this notion arises naturally for positive matrices in the context of Perron-
Frobenius theory and Floquet theory. It explains why the solutions to the associated differential
systems converge to the first eigenvector (Perron-Frobenius theory) or to the periodic solution
(Floquet theory) because they minimize the general relative entropy.

For Partial Differential Equations, we give another example of recent interest where a General
Relative Entropy Inequality exists: a parabolic system describing molecular biomotors.

1. - INTRODUCTION

This contribution gives a survey of recent findings on entropy structures of equations
with nonconservative forms. The motivation has been to study models arising in biology
where birth and death processes are crucial and where it is expected to see (at least in the
first phase of the process) a logistic growth along with the Malthus law. We discovered
the form of this new entropy structure for the renewal equation in [40]. It turns out that
the concept of relative entropy, once correctly extended, covers a larger and well
established class of (linear) mathematical models that has been derived and validated,
the so-called structured population dynamic equations arising in biology. In order to have a
concrete example at hand, we can for instance have in mind the ’size structured dynamic’

0 %n(t, x) + %n(z‘, x) + B(x) n(¢, x) = 4B(2x) n(t, 2x), t>0,x>0,

n(t,x=0)=0,
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which describes the number of individuals #(¢, x) with size x > 0, growing continuously

% n(t, x)) and that divide with rate B(x) > 0 in two equal individuals of

size x/2. This represents mitosis for instance, and is modeled by the term
B(x)n(t, x) — 4B2x)n(¢,2x). A complete book on structured population dynamic is
[35], goes back to 1986, and already in 1966 a full study of the simple renewal model
was surveyed in [29]. But the subject is still active in terms of modeling and mathematical
analysis [1, 7, 13, 37, 43]. Also, as usual in mathematical settings, and considering
equation (1), similar models cover broader applications ([4, 9, 27]).

Because they describe growth processes in biology, these linear equations always have
variable coefficients, including zeroth order terms or boundary conditions and thus it is
not obvious to derive a priori estimates. Especially, one usually expects that the first
positive eigenvector of such problems (that can be obtained through Krein-Rutman
theorem, see [20] for instance), describes the long time limit of solutions once they have
been renormalized in time along with the first eigenvalue, denoted by A below, in other
words we rather consider 7(z, x)e .

The concept of entropy is mostly used in nonlinear conservative problems, and is
known to be a fundamental tool there, such as Boltzmann equation and the famous H-
theorem ([11, 50, 25]), systems of conservation laws ([46, 24, 42]) and even more general
Partial Differential Equations, see [28] and the references therein : there the entropy is an
appropriate function H(z) with # the solution of the equation or system under
consideration. The notion of relative entropy is also usual for conservative models (then
J = 0 again ) and the main difference is that some weights now come in the definition of

the entropy as NH (%

specificall the relative entropy 7 In (%) , ([49] for the probabilistic background and [51]

(this is the term

) and the usual choice of the function H leads to consider more

for further references and related topics). In the General Relative Entropy method, we

consider more elaborate weights which now include the steady state N as }Jefore but also
— AL

the adjoint operator solution ¢, in order to build the quantity ¢ NH ( ﬂ?\]

[38, 39] for various Partial Differential Equations. To be concrete, in the above example
(1), we need to take for (4, N, ¢) the solutions to

0

) as stated in

%N(X) + (B(x) + 4) N(x) = 4B(2x) N(2x), x>0,
(2) i
Nix=0)=0, N3>0, JN:L
0
9 40 + (B) + 1) § = 2B(x) (f) >0
896 X X ¢_ X¢ 2 9 X 9
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and then, we have -

d ne
0

The solution N to this equation is depicted in Figure 8 for B = 1 and mathematical studies
of these equations can be found in [43, 37].

The fact that the general structure encompasses all positive matrices comes from
unpublished discussions, [16], and is related to a characterisation of M-matrices in [45]
for M-matrices several years ago.

As we mentioned, the main reason why these entropy methods are fundamental tools
is that they provide several estimates for the integral or Partial Differential Equation
under consideration, as a priori estimates. But more important is that these entropy
methods provide a general understanding of long time convergence to steady states.
Especially they explain various levels of difficulties depending wether the entropy
dissipation controls or not the entropy itself. In the former case exponential rates of
convergence can be proved (with relation to concepts of log-Sobolev inequalities,
hypercontractivity); in the latter case one can usually at least prove simple convergence
to the steady state (usually by arguments that combine informations on the entropy
dissipation and the equation itself) [3, 6, 10, 22, 23, 30, 40, 38, 39, 43, 47, 511.
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Ficure 1. - The solution N to equation (2) with B = 1. This distribution results of the compromize
between continuous growth that pushes N to large x and division in two equal pieces that pushes N
to small x.
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This paper presents mostly the formalism of General Relative Entropies in as
elementary as possible examples: we begin with matrices in the frameworks of Perron-
Frobenius and Floquet theories (Section 2), and especially we illustrate the long time
convergence results that can be derived in this simple and classical case. Then, in Section
3, we turn to general parabolic and scattering equations where we stay at a formal level in
order to illustrate the formalism. For more elaborate examples applications, and
especially for the case of the cell-division equation (1), we refer to [40, 39, 30]. In order
to give another example of system, we consider a recent parabolic system of biophysical
interest in Section 4.

2. - FINITE DIMENSIONAL SYSTEMS

We begin with describing the General Entropy Inequality in the case of matrices and
we deal with two theories where it applies to give an entropy based understanding of time
relaxation. In the framework of Perron-Frobenius eigenvalue Theorem it explains why
the associated dynamic converges to the first (positive) eigenvector (once correctly
normalized). In the framework of Floquet’s eigenvalue theorem it explains why the
associated dynamic converges to the (positive) periodic solution (once correctly
normalized).

2.1. The Perron-Frobenius theory

Let a; >0, 1 <7,7 <d, be the coefficients of a matrix A € M;,;(R) (there are
interesting issues with the case 4; > 0 but we try to keep simplicity here). The Perron-
Frobenius theorem (see [44] for instance) tells us that there is a first eigenvalue > 0 to A
associated with a positive right eigenvector N € R, and a positive left eigenvector
$e R

A.N =N, N;>0 for 7=1,...,d,

¢.A =19, ¢, >0 for 7=1,...,d

For later purposes, it is convenient to normalize these vectors, so that they are now
uniquely defined. We choose
d d

Ni=1, Y Nig =1
=1 =1

We set A = A — 2Id and consider the problem

(4) d%n(t) — Anl2), n(0) = n°.

The following result is ’standard’.
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Proposition 2.1: For positive matrices A and solutions to the differential system (4), we
have,
d

d
(5) p = Zgbii’ll‘(l‘) = Z¢i”?’
i=1

i=1

d d
(6) Dl <D g1,
=1 =1

(7) CN; < n;(t) < CN; with constants given by ~CN; < n? < CN;,

and there is a constant a > 0 such that, with p given in (5), we have

B T

Here, we wish to justify it with an entropy inequality.

Prorosition 2.2: Let H( - ) be a convex function on R, then the solution to (4) satisfies
d d nz'(l‘)
dt_;¢zNzH< va ) =
(7 O [7,(8)  mi(2) n;(2) 1;(t)
= Saanfr (5[5 () ()] <o

d .
DeriNtTioN 2.3: We call General Relative Entropy, the quantity y_ ¢ N; H <ﬂ;\](t)>
i=1 i

Proor or ProrositioN 2.2: We denote by 4, the coefficients of the matrix A and
compute

> Z¢H,(ﬂz);ﬂ/()
g (PO [7@)  ni(2)
-Seann ()[R

7

dtZ¢NH<

oo oni(2) . . .
because the additional ——— term vanishes since A.N = 0. But we also have, again thanks

i

to the equation on N and ¢, that

S () ()] o

57

Combining these two identities, we arrive to the equality in Proposition 2.2. The
inequality follows because only the coefficients out of the diagonal, that satisfy
a; = a; > 0, enters here. O
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Prooror Proprosition 2.1: Notice that, as a special case of H in Proposition 2.2, we can
choose H(#) = u, which being convex together with —H gives the equality

4 d
G2 %mi =0

And (5) follows. In particular this identifies the value p mentioned in (8).

The second statement (6) follows immediately by choosing the (convex) entropy
function H(z) = |u|.

As for the third statement (7), let us consider for instance the upper bound. It follows
choosing the (convex) entropy function H(x) = (u — C)i because for this nonnegative

function we have
d HQ
NH(Z) —o.
> ¢NH(5) =0

i=1
Therefore, because the General Relative Entropy decays, it remains zero for all times,

d
n; ()
NH(—=—]=0
which proves the result.
It remains to prove the exponential decay statement (8). To do that, we work on

mtx) = n(t,x) — pN,

which verifies [ ¢[#(z,x) — pNldx = 0 and satisfies the same equation as 7. Then, we use
the quadratic entropy function H(«) = #?* and the General Entropy Inequality gives

d mi(6)\ d mi(t)  mi(D)\
SN () 23 g (200 <
dtz':zl N,‘ Z/Z:I v N/ N,‘

Then, we need a lemma (Poincaré inequality).

Lemma 2.4: Being given ¢, >0, N; >0, a; >0 fori=1,...,d, j=1,...,d, i #J,
there is a constant a > 0 such that for all vector m of components m;, 1 < i < d satisfying

d
Z ¢z’mi = 07
=1

we have

d 2 d 2
i nz; m;
§ 2NN 22 2 E N =)
= ¢zal/N] <N] NZ> Za - ¢1Nz (Nz>
With this lemma, we conclude

=1
d < mi(0)\ ! milt)
E ; ¢1'Ni (T) S —a Zz:; ¢1'Nl' ( N;’ > )

and then, (8) follows by a simple use of Gronwall lemma. O
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Proor or LEmma 2.4. After renormalizing the vector 7z (when it does not vanish,
otherwise the result is obvious), we may suppose that

d d N2
;qﬁl.m,.:o, z;ng(%) — 1.

Then we argue by contradiction. If such a a does not exist, this means that we can find a
sequence of vectors (mk)(kzl) such that

d . d i\ 2 d ko e\
Semt=o YeN () =1 S ean(F-n) ik
[ 7

i=1 i=1 i,7=1

ZI3,

After extraction of a subsequence, we may pass to the limit 7 — 77 and this vector
satisfies
d d _\ 2
_ 7
Sem-o Yen (i) -1
i=1 i=1 i
. m 2
/j i
Z $:a;N (N N; >
Therefore, from this last relation, for all 7 and j = 1, ..., d, we have
77_1. 177 -
i Ty,
N, N,

By the zero sum condition, we have v = 0 because

In other words, 77 = 0 which contradicts the normalization and thus such a a should
exist. O

Remark 1: This entropy structure is related to a characterization of M-matrices, i.e.,
those whose terms out of the diagonal are negative, diagonal terms are positive and
dominate the corresponding line. Such a matrix has an inverse with positive coefficients.
It was noticed in [45] that a characterization of M-matrices uses the existence of positive
eigenvectors as N and ¢ above. Let us point out that the General Relative Entropy in-
equality also holds for M-matrices because the diagonal terms do not appear in the in-
equality of Lemma 2.4.

Remark 2: The matrix with (positive) coefficients b; = ¢, a; N; is doubly stochastic,
i.e., the sum of the lines and columns is 1 (see for instance [44]).
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Remark 3: Notice that ¢; — 4 < 0 because ) 4;N; = 0. Therefore the matrix C with

.. 1 . . 4
coefficients ¢; = —a;; N, is that of a Markov process. In other words, we set y; = x;/N;,
then it satisfies = *

d
%yl(t) = Cz;y/(t)7

and the vector (1,1,...,1) is the (positive) eigenvector associated to the eigenvalue 0 of
the matrix C, i.e., ¢; = Z#lv ¢; and ¢; > 0. Then, (N;¢,);—1
of the Markov process. In particular this explains the entropy property which is classical

for Markov processes ([48]).

4 is the invariant measure

geeey

2.2. The Floguet theory

We now consider T-periodic coefficients a;(z) >0, 1 <7, 7 <d, ie., a;(t +T) =
= a;(¢). And we denote by A(#) € M, the corresponding matrix. Again our motivation
comes from several questions in biology where such structures arise as seasonal rhythm,
circadian rhythm, see [31, 17, 36, 5] for instance.

The Floquet theorem tells us that there is a first ‘Floquet eigenvalue’ 4,., > 0 and two
positive T-periodic functions N(£) € R?, 4(¢) € R? that are periodic solutions (uniquely
defined up to multiplication by a constant) to the differential systems

) %N(z:) = [A(0) — e Id1.N (),
d
(10) 780 = $(0).LAW) = oy 1d).

Up to a normalization, these elements (4., > 0,N(z) > 0,¢(s)) are unique and we
normalize again as

T 4 [
J N,(Odrt = 1, J S (ON,(Ddt = 1.
0 =1 0 =1

We recall that this case of Floquet theory (which applies to more general situations
than positive matrices) is an application of Perron-Frobenius theory to the resolvent
matrix

[awds
S) = ed ,
which has positive coefficients also. A classical introduction to the subject can be found in
Coddington and Levinson [18].
Again, we set A(¢) = A(t) — Jper]d and consider the differential system
d
—n
dt

In the present context we obtain the following version of Proposition 2.1,

) =An),  n0)=n
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ProrosiTiON 2.5: For positive matrices A we have,

d d
(11) pi=Y &m0 = ¢t =
: i=1

d d
(12) D 60l <t = 0)[),

=1 =1

(13) CN;(1)<ni(t)<CN;(t) with constants given by ~ CN;(t = 0)§n?§6N,-(z‘ =0),

2
) —at

and there is a constant a. > 0 such that

(14) Zw( ”N(f) Z¢N(

Again, this can be justified thanks to entropy inequalities.

Prorosition 2.6: Let H( - ) be a convex function on R, then we have
¢ Ed: $(ON:()H LACA
dr &= N;&))

- Senfr (@7 -0 n() <o

These two propositions are variants of the corresponding ones in Perron-Frobenius
theory and we leave the proofs to the reader. Of course, adapting the Lemma 2.4 requires
an additional compactness argument based on the Ascoli Theorem.

3. - ParaBoLic AND INTEGRAL PDE’s

We now explain the notion of General Relative Entropy on continuous models. We
begin with the most classical equation, namely the parabolic equation for the unknown
n(t, x),

(15) %—Zdji on Z (bin) + dn =0, e R?
9t 2= 0x, \ "o, a””‘ xER

7,7=1

where the coefficients depend on ¢ and x, d = d(¢, x) (no sign assumed), b; = b;(¢, x), and
the symmetric matrix A(#,x) = (a;;(2,x)),; ;< satisfies Az, x) > 0. We could also set the
equation on a domain and assume Dirichlet, zero-flux, mixed or periodic boundary
conditions and then include them in the above calculation.
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Here, it is not obvious to derive a priori bounds on the solution #(z, x), by opposition
to the case A > vld > 0, b; =0, d(x) > 0 where we have, multiplying the equation by
nlnlf~* with p > 1,

P _
d Jln(zf,xn oy e ”J|vﬂ/>/2|2dxgo.
dt p P’

Indeed the only remarkable property of (15) is the L! contraction property

%Jﬂ(i, Wdx + Jd(:, Wl ¥)dx = 0, %J(ﬂ(;, %)), dx + Jd(z‘,x)(n(t, %), dx < 0.

On the other hand the conservative Fokker-Planck equation is very standard when
b = —VV for some convex potential with enough growth at infinity

% — dn — div(VV #n) = 0.
ot

Then, one has N = ¢~V and the relative entropy Jn In ( N) dx is a standard object related
to log-sobolev inequalities, [51]. Of course, here we still have the family JNH ( )dx of

relative entropies for all convex functions H( - ) and not only H(x) = «1n («).

3.1. Coefficients independent of time

In the case of coefficients independent of time, and depending on the values of a;(x),
div b(x) and d(x), the solution can grow or decay exponentially. Therefore, we will assume
that 0 is the first eigenvalue and, following Krein-Rutman theorem (see [20]), we also
assume that we can find two functions N(x) > 0, ¢(x) > 0, such that

(16) _i:a%( ) a N) + d(x)N

7,7=1

- f(f( ) 2 g+ dop =

¢<x) > 0, jN<x)¢(x)dx =1.

These are the first eigenvectors; N for the direct problem and ¢ for the dual operator.
Notice that such eigenelements do not always exist but there are standard examples,
namely when d = 0, A = Id and there is a potential V such that » = —VV. Then, one can
readily check that solutions to (16)-(17) are

N=¢" =1,

when V(x) — oo as |x| — oo fast enough in order to fulfill the integrability conditions.
The general relative entropy property of the parabolic equation (15) can be expressed as
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Lemma 3.1: For coefficients independent of t, assume that there exist eigenelements N, ¢
satisfying (16)-(17). Then for all convex function H : R — R, and all solutions n to (15)
with sufficient decay to zero at infinity, we have

d n(t, x) B (%) & AN
%J*ﬁ(X)N(X)H(N(x))dx"JMH (N(x))Z;_ld”axl (%) ax/( ) de<o

For conservative equations, i.e., d =0, it is usual to take ¢ =1, and then the
corresponding principle is classical (especially related to stochastic differential equations
and Markov processes, [48]).

Proor oF LEmma 3.1. We just calculate (leaving the details to the reader)

S - st [ )]+ L () e (7) + b () o

Therefore, for any smooth function H, we arrive at

d d
() = 22 g [ M) |+ () D () ()
d
+; a%- |6:NH ()] +dNH () = 0.
Finally, combining it with the equation on ¢, we deduce that

w13 @] 3 el

7,7=1

AN () S a5 () e () -0

After integration in x (because we have assumed sufficient decay to zero at infinity), we
arrive at the result stated in Lemma 3.1. O

This Lemma can be used in the directions indicated in Section 2 (a priori estimates,
long time convergence to a steady state) and we refer to [40, 38, 39] for specific examples.

As far as long time convergence is concerned, we notice that, as in Lemma 2.4, a
control of entropy by entropy dissipation is useful, i.e., for the quadratic entropy, from
the Poincaré inequality

”J¢N( ) <2J¢NZ d”@x, (%) ai () when JWZO'

Indeed, this inequality implies exponential decay to the steady state as in 8. Such
inequalities, as well as log-Sobolev inequalities, are classical when 4 = VV, d = 0. We
are not aware of any result when ¢ # 1.
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3.2. Time dependent coefficients

In fact the above manipulations are also valid for time dependent coefficients. A
situation similar to the Floquet Theory and which is therefore useful for periodic
coefficients for instance. We now consider solutions to

B .9 ON .9
—N(¢,x) — Z - (ﬂj]’(x) 3_96/) + ; (bl(X)N) + d(x)N = 0,

(18) ot 5= Ox; Oxi
N(x) >0,
B ) 03\ < 9
- gt =3 g <al-,-(x) axj) - bt b+ dwg=0,
| $(x) > 0.

Then we have

LemMa 3.2: For all convex function H : R — R, and all solutions n to (15) with suf-
ficient decay to zero at infinity, we have

d n(t,x)\ ,
< J 8(4,%) N2, ) H (N ; X)> d —

R A=’ B}
=~ [ev i (§55) Lo () 0 () <o

=1

Again we leave the proof of this variant to the reader.

3.3. Scattering equations

To exhibit another class of equation where the General Relative Entropy inequality
holds true, let us mention the scattering (also called linear Boltzman) equation

(20) (#,%) + k() n(t, x) = J k(y, x) n(t,y) dy.

R?

0
—n
ot

Here we restrict ourselves to coefficients independent of time for simplicity, but the
same inequality holds in the time dependent case as before. We assume that

0<kr(-)e LXMRY,  0<kxy ellnl> (szf)).

And we do not make special assumption on the symmetry of the cross-section £(x,y) as
motivated by turning kernels that appear in various applications as bacterial movement
[2,21, 34, 12, 41].
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Again, we assume that there are solutions N(x) and ¢(x) to the stationary equation and
its adjoint, namely

(21) Er() NGx) = Jm,x) NG) dy, NG >0,
RY

(22) b)) = Jk(x,y) sV dy, ) > 0.
R4

Then we have the

Lemma 3.3:
0 n(x)
g [¢<x> NG H(Wﬂ ;
+ [ [¢<y>N<x>H (”]g(;c ’?) ~ by, BN GH (’jv("(’y y)))]dy _
R?

(¢, %) n(t,y)) (n(t, x)) [ﬂ(l,y) n(t, x)”

= & N |H(Z22) (222 4 i - dy <0.

J 0 2)9() (y)[ (N(x) ) (N@) NG ) Ny T Nw P
Again we leave to the reader the easy computation that leads to this result and just

indicate a class of classical examples where N and ¢ can be computed explicitly.

ExampLE 1: We consider the case where the scattering cross-section is given by
k(x,y) = k1 (x)k2(y).
Then we arrive at (up to a multiplicative constant)

_ kW) _ kW
N =2 Y=o

and we need the compatibility condition

J ka(x)ky () |
kr(x) '
R?
As in the Perron-Frobenius case in Section 2.1, this means that 0 is the first eigenvalue, a
condition that can always be met changing if necessary &7 in A + &7
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ExamprE 2: We consider the more general case where there exists a function N(x) > 0
such that the scattering cross-section satisfies the symmetry condition

k(x,y)N(x) = k(y, x)N(y).

Then the choice &1(x) = [ k(x,y)dy gives the solutions N(x) to (21), and ¢(x) =1 to
equation (22). R4

Again we conclude on long time convergence and the possibility to prove exponential
decay to the steady state. As in Lemma 2.4, this follows from a control of entropy by
entropy dissipation, i.e., still for the quadratic entropy, from the inequality

m\ 2 m(x)  m(y) 2
: J BN () e < 2 jk@, 2SN() wa) _ N(y)} dy dx.

d
whenever

J¢(x)m(x)dx =0.

RY
This is not always true but holds whenever (again we leave this as an exercise) we have

vp(x)N(y) < klx,y),

a condition that is fulfilled for instance if we work on a bounded domain in velocity and £
positive (the difficulties in practical examples as cell division is that ¢ needs not be
bounded in unbounded domains and N can vanish at infinity).

4. - APPLICATION: A PARABOLIC SYSTEM FOR MOLECULAR BIOMOTORS

In several papers (see the review [32]), simple models for molecular motors have been
derived where chemical energy is transformed in mechanical energy. The principle we
consider here is that some molecule can reach two conformations (the density of each
being denoted by 7! and #? below). A bath a such molecules is moving in a filament and
subject to two physical events. First, the filament induces a smooth, periodic and
asymmetric potential seen differently by the two conformations (and denoted by w’(x),
/=1, 2 below). Second, fuel consumption triggers a conformational change between
states 1 and 2 with rates denoted by v/ > 0 below. Being given that, at molecular scale,
viscosity is important, this leads to the system of parabolic equations for the evolution of
the densities 7/ (¢, x)

énlfa_zﬂlfg(vl//lﬂl)+ulﬁl:[)2}12 0<x<1 l‘>0
ot " ox ’ T
2
(23) 9, 0 2_2(%//2”2)_“)2”2:Ulﬂl7

o "o " ox

o . o
—n'(x) = Vy' #(x) =0atx=0,1, i=1,2.
Ox
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Notice that the zero flux condition makes this system conservative
1

d
—J 121z, x) + 7 (¢, x)1dx = 0.
dt
0
This can be interpreted in terms of our previous theory by noticing that in conservative
cases the adjoint problem admits trivial solutions, here ¢' = ¢* = Cst, see (25) below.
This model, as well as several other biomotors, was analyzed in [14, 15, 26, 33].

Especially, in [14] it is proved that there is a positive steady state solution (N*, N?), that

1
one can normalize by [ [N'(x) + N?(x)]dx = 1.
0

—ﬁl\ll—g(Vt/l1 NY) + o' N' = ?N?, 0<x<1,
Ox? Ox
(24) _ P N _ 0 (YN + N2 = N,

Ox? Ox

gNi(x)fVl//" Ni(x)=0atx=0,1, i=1,2.
Ox

A simple way to see this goes again through the adjoint system, which is given by

f%¢l+Vt//l %¢1+01¢1 =v'#, 0<x<1,
25 P D o 20 o4
(25) —aa® TV & =g

)

‘(x) =0atx=0,1, 7i=1,2.

I

As already mentioned, it admits the trivial solution ¢' = ¢* = Csz, which proves that 0 is
the first eigenvalue.

The very deep result in [14], is that the system exhibits a motor effect (the densities are
higher near x = 1 than near x = 0 as shown in Figure 2) under some precise asymmetry
conditions on the potentials i and size conditions on the transition rates /.

Our purpose here less ambitious and is to give, without structure conditions on v’ and
v/, an extension to this system of the General Relative Entropy property (the structure
behind is of course more general and relies on the coupling through zeroth order terms).
It is not surprising that such systems also admit an entropy principle because they are
positivity preserving. Another example is given in [19] for a system in population
dynamic.

As a consequence we can study the solution of the parabolic system (23) and especially
prove the following properties of the solution.



(s Y
0 01 02 03 0.4 05 06 07 08 09 1 0 0.1 02 03 0.4 05 06 07 08 09 1

FiGure 2. -Motor effect for assymetric potentials exhibited by the parabolic system (23). The figure
represent the steady state given by (24) (left the densities themselves, right their logarithm). One can
observe that the densities concentrate preferentially on one hand as proved in [14].

THEOREM 4.1: Assume the potential ' are smooth and n'(t = 0) > 0 are integrable and

bounded. Then,

; nt(t=0,) (=0, y ,
0§7¢(z‘,x)§rnax< N || Loo>N(x), Vx e (0,1), 7=1,2.
We define p by

1 1
J [ (t = 0,%) + 2 (t = 0,x)]dx = pJ[Nl(x) + N%(x)1dx,
0 0
1
then as t — oo, [[|n'(¢,x) — pN'(x)| + [#(2,x) — pN*(x)||dx decays to zero and

0
n'(t,) — pN'(-), #(t,) — pNZ( ), in L7(0,1), ¥p € [1, col.

Again, the proof relies on a General Relative Entropy property of the parabolic
equation (23) that can be expressed as

Lemma 4.2: For all convex function H : R — R, and all solutions (n',n?) to (23), we
have the General Relative Entropy Inequality

1
d 1 ”l(t x) 2 (¢, x) .
gl{N(x)H<Nl()) N()H(Nz()ﬂd

Lo (PN [O ([ n! 2 s o (PN O [ #
N (g <>)[ (N)] o H(Nz 2 ()
2N12 Yz, %)\ [#2(2, %) ﬂl(l‘,x) n (2, x)
_J”N[ ( )[NZ () Nl(x)]+H<N1(x)>

n(t,x)  #(t,x) 72(2, x)
1a71 ) )
- ”N[ ( )[N m NZ<x>]+H<N2<x>

A
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Proor oF Lemma 4.2. Since this computation follows exactly that of the similar
principle for a parabolic equation (23), we just indicate again the main intermediary
steps without details. We have

LA AN GO PN EA RN @ I A B L
Ot \N! ox2 \NT N1) ox \N! Ox Ox N1 N N1 N2 Nt

Therefore, for any smooth function H, we arrive at

0 1 1 li 1rgn o n' 0 81// 1 n! .
Fra H<N1> "o H<N1> +NH Nt ) o |ox N H\NT) | T
— AN2H' nt n? ot (zNz INI)H n'
= AN R N

0 2 . .
After adding the similar result for the quantity — % —N°H (%) and integration in x, we
arrive at the result. O

Proor oF THEOREM 4.1. Again these statements are direct consequences of the entropy
inequality of Lemma 4.2, and we just indicate the choice of the entropy function H( - ).
For the L™ bound we set (as in Section 2.1)
)

1 —0 . 2(, =10 -
szax(ﬂ(t_o’) n(t=0,")

NYC-) el N2()
and the choice H(x) = (u# — C), concludes. For the L! contraction it is enough to use
H(u) = |u|. And the long time convergence again requires standard compactness

arguments that can be found for instance in [40, 39]. O

Acknowledgment 1 wish to thank St. Gaubert and J. Clairambault for useful discussions
and pointing out the interest of the finite dimensional case for numerical purposes.
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