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Lattices and Mean Energy

AsstrACT. — We discuss here some notions of stationary stochastic lattices introduced in
collaboration with X. Blanc and C. Lebris. These notions allow to derive a mean energy (or energy
per unit volume) and an electronic density in the context of various Quantum Physics or Quantum
Chemistry models such as Thomas-Fermi-Von Weiszacker models (for instance).

1. - INTRODUCTION

In a series of works [9]-[11] (see also the announcements [7], [8]), the so-called
thermodynamic limit problem was investigated for a variety of models used in Quantum
Mechanics and Quantum Chemistry, in an attempt to derive rigorously some models
describing solid matter at the microscopic scale. These studies postulate a periodic
organisation of nuclei (for instance) as is the case for a perfect crystal. It is expected (at
least in some general cases . . .) that periodicity should not be an assumption but should
be consequence of the full definition of the ground-state energy in terms of minimization
over geometric configurations. This is essentially an open problem with a few recent
contributions [1], [12].

Another step of this long-term research program “from Quantum Mechanics to
Continuum Mechanics” was carried out in [3] (see also the announcement [2] where we
investigated the so-called macroscopic limit, deriving some explicit formula for the stored
energy function of the material from the energy of a microscopic periodic lattice.

There are various reasons to go beyond periodic lattices in general and to address
stochastic lattices in particular, the simplest of which simply being the fact that a perfect
crystal does not exist. This is why we briefly studied in [9] the case of almost periodic
lattices and we derived in [4] necessary and sufficient conditions on the geometry of a
lattice for the definition of the mean energy. Finally, we introduce and study in [5] (see
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[6] for the corresponding macroscopic limit) some general classes of stationary stochastic
lattices. Our motivations are the following : i) there are natural extensions of almost
periodic lattices, ii) a stochastic stationary setting is consistent with many realistic
materials, iii) one can test the “crystal problem” using stochastic perturbations of the
equilibrium periodic lattice (if it exists . ..) and iv) a stochastic lattice may be viewed as a
naive representation (or model) for temperature effects.

We report here on the approach and results of [5] and we do so in the case of the
simplest possible model for the energy namely a 2-body or pair potential. Given a finite
set of points x; in R’ namely ¢y = {x; € R’/ — N < i/ < N}, we define the energy of £y
by

1 +N
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where V' is a given spherically symmetric potential V € L} C(RB ) and V is assumed to be
(at least) continuous on R’ — {0} and to go to 0 at infinity (V(z) — 0 as |z| — +00) “fast
enough” (in a way we shall make precise later on). The problem of defining and deriving
the mean energy of a lattice £ i.e. of a set of points £ = {x;/7 € Z’} is to understand under
which conditions upon £ do we obtain a limit as N goes to +oo for £(¢y) with £y defined
as above or by another type of finite sampling of the lattice £. ..

If ¢ is a periodic lattice i.e. £ =AZ’ (where det A #0), then the answer is
straightforward and we obtain

2) Ely) ——— EW = > V(- Ak)
N — o0 ££0R?

provided V satisfies (for instance) for some C > 0

(3) V()| < ¢ for 2| > 1, for some 2 >3.
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And this is still the case if £ is almost periodic instead of periodic. Note that the almost
periodic case is physically extremely relevant since it contains as a particular case the case
of quasi-crystals.

Obviously, periodicity or almost periodicity is a structural condition on the
organization of the charges which is only “needed at infinity” if we are simply interested
in the mean energy (in the context of the simplistic 2-Body models !). Extensions in that
direction are considered in [4] and we shall not detail them here.

Tt is thus natural to investigate whether there are other assumptions on the global
organization of the lattice or of the charges which allow to define in a meaningful way the
mean energy. This is precisely what we achieved in [5] by the introduction of appropriate
notions of stochastic lattices for which not only the mean energy is defined almost surely
(i.e. for almost all realization of the lattice) but it is deterministic (i.e. independent of the
realization).
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2. - STATIONARY LATTICES AND MEASURES

Several settings are possible (see [5] for more details). The first one is the following.
Let (,F,P) be a probability space endowed with a commutative group (7z),. of
measure invariant (unitary) transforms on @, which is assumed to be ergodic

(4) AcF, A=A forall keZ?=PA) =0 or 1.

3
We then view a stationary lattice as a random variable on Q with values in (R*)* i.e.
w) = {x;(w)/i € Z’} which is stationary i.e.

5) Uty ) =lw) —k, Ykl .
A typical example consists of stationary perturbations of Z” i.e.
(6) Uw) = {Zp() ke 2’} .

where x(w) = &+ xp(), xp (@) = xo(1pw), x0 € [P(Q) , with p >3 (for example) and
Elxo]l =0.
The main result in [5] is the following

TueoreMm 1: We assume that 'V satisfies

(7) > 2 Vw-x) eLi@),
% €NQ x,€0\{x;}

where Q is the unit cube. We then defz'ne Iy by LN (2N + 1)Q and

Elly) = (2N Z > Vik—x).

x; €0 X; Ef\v\{x,}

Then, we have almost surely on Q

x€NQ x;el\{x;}

Remark: The condition (7) is slightly technical but obviously necessary (in general) in
order for (8) to hold (indeed, take V' > 0. . .). It is satisfied when V is bounded as soon as
#( N Q) € L?(Q) (which amounts to control the size of the random number of charges
concentrated in the unit cube .. .).

In the particular case of the example (6), (7) is implied by simpler conditions and the
limit £(¢y) may be made more explicit as explained in the following

CoroLLARY 2: We assume that 'V is bounded or that the law 1y, of k + xy, satisfies

9) Z | g lppy < 00 for some &>0 with B,=eB
keZ\{0}
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and B is the unit ball. Then E(LN) converges as on Q, as N goes to +oo, to

Z V(k + Xp — Xo)
keZ\{0}

Remark: An even more natural setting consists in stochastic lattices with stationary
increments. In order to simplify the presentation, we explain the idea in one di-
mension. Let y; be a stationary sequence (y;(w) = yo(tzw) a.s.) such that E[|yg|] < oo,

k-1 1

Elyo] > 0. We then set xg =0, x, = Y. 5, if &> 0,x, = — > y; if & < 0. With this
/=0 =k

construction, one can check, under natural conditions on yg and V that we do not

wish to detail here that £y = Z V(x; — x;) converges a.s. on 2, as N goes

2N+ 1.5y

to +o0, to 2> E V(Z yk). At least heuristically, this result is clear: indeed
b>1

1
En = Z V(Z W) and introducing £ =7 —/, we see that under ap-

2N +1 /5N

propriate conditions on the decay of V, €y is close to

e S S (S}

E>1 i~k

i—1
Next, we observe that Y V( > yg) is a stationary random variable since we have
k>1 i—k

S v( St ) =3 V(5 ) (5 )

k>1 2 k>1 k>1 i+m—k

And the conclusion follows (at least formally) from the ergodic theorem.

We conclude with a different setting for stationary lattices and their distributions of
charges. We now consider a probability space (€2, F, P) endowed with a commutative
group (7y), g of measure preserving (unitary) transforms on €2, which is assumed to be
ergodic

(10) AeF ,t,A=A foral xeR = PA) =0N1.

The only modification with respect to the preceding setting is that we replace now (5)
by
(11) Ur0) = o) —

We then observe that the lattice comes into the definition of the energy only through
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the distribution of charges namely

(12) m(x, ) = Z Polx — xp(@))

keZ’
and the stationary condition becomes the usual stationary condition
(13) mlx, T, ®) = mx +y,0) Vy€cR.
We may then consider only a non negative measure 7z satisfying (3) and
E {sup | dm} < o0, and we do not recall anymore the fact that » is or may be

2eR’ 2+0Q
defined through a lattice £. We then consider the “truncated” energy

1

ErR =——
K Byl

J J Vix —y) mlx, ) m(y, w) dxdy

Br Br

where |Bgr| denotes the volume of Bg and R € (0, c0). Once more in order to simplify the
presentation, we only consider here the case when V is continuous bounded on R’ and
we introduce the potential (which is easily shown to exist in view of the assumptions made
upon V)

Ulx,w) = J Vix —y) mly,w) dx.
Then, U is stationary since we have for all £ € R’

Ul 7, ) :JV(X ) mly, o) dy :wa — ) mly + b, 0) dy :JV(erk— 3) mly, ) dy
R3
and this observation allows to show that, by the ergodic theorem, £ converges a.s. on
Q, as R goes to Foo, to a deterministic quantity that one can write formally as
E[U(0, w) 7(0,w)] = E [ V(= y) m(0, w) m(y, w)dy;
And we refer the reader to [5] for more details (and in particular for the precise
statements and the complete proofs).
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