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AssTrACT. — In this note we investigate the notion of one-side polynomial Liouville property for a
class of linear second order hypoelliptic partial differential operators whit real coefficients. Our
results apply in particular to some classes of Kolmogorov and degenerate Ornstein-Uhlenbeck
operators, extending recent results in references [KL1], [KL2] and [PZ].

1. - INTRODUCTION

Let 4 be the Laplace operator in R”. The classical Liouville Theorem states that any
bounded solution to

(1.1) Au=0 in RY

is constant in R™. More generally, if # solves (1.1) and #(x) = O(|x|"), as x goes to infinity,
for a suitable #z > 0, then « is a polynomial function. In the 1983 paper [G], Geller
pointed out the following very short proof of this theorem.

Let u be a tempered distribution in R satisfying (1.1) in the weak sense of
distributions. Then, denoting by F the Fourier transform,

0 = Fldu) = —|E]* Fu,
so that Fu is a tempered distribution supported at the origin. Hence Fu is a linear
combination of derivatives of the Dirac measure. Thus, « is a polynomial function.

It is a trivial fact that the Laplace operator is invariant with respect to the Euclidean
translations and homogeneous of degree two with respect to the isotropic dilations
x — Ax, 4 > 0. Moreover, it is also well known that 4 is hypoelliptic.

These three properties of the Laplacian are deeply related to its polynomial Liouville
property. Indeed, the following sharp generalization of the previous theorem holds true.
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(GR). Let L be a partial differential operator in RN with smooth coefficients. Assume
there exists a homogeneous Lie group Gi = (RN, 0,d;) such that L is left translations
invariant on G and d;-homogeneous of degree 72 > 1. Then L has the polynomial
Liouville property if and only if L is hypoelliptic.

Here, and in what follows, we agree to say that L has the polynomial Liouville property
if every tempered distributional solution to the equation Lz = 0 in RY is a polynomial
function.

The # part of Theorem (GR) was proved by Geller in [G]. The only i part was
proved by Rothschild in [R] soon after Geller’s result appeared.

Before proceeding we would like to clarify some of the notion we used before. A
group of dilation in RY is a family (d;),-¢ of linear transformations of the following type

(1.2) dp RN S RN di(xy, .o xn) = (%%, A% ),

where a1, ..., oy are suitable positive integers. Given a Lie group (RY,0) and a family
(d;);>0, we say that G = (RN, 0,d,) is a homogeneous group if d; is a automorphism of
(RN, o).

We also recall that a linear partial differential operator is hypoelliptic if every
distributional solution to the equation

Lu=f, in QCR"

is of class C* whenever £ is of class C*. The operator L is left translations invariant on G
and d;-homogeneous of degree # if, respectively,

(1.3) L(ula o x)) = (Lu)(aox), forevery a,x € RV,

(1.4) L(u(d;x)) = A" (Lu)(d;x), forevery A > 0,x € RY,

and for every function # € C*(RY, R)

In 1996 Luo Xuebo extended Geller’s Theorem by proving the polynomial Liouville
property for every hypoelliptic operator L just satisfying (1.4) for a suitable group of
dilations (d;);-0, [L].

As Luo Xuebo stressed in his paper, the Egorov’s operator

E= 8,%1 + z'xlﬁi in R?
is hypoelliptic and d;-homogeneous of degree 72 = 4 with respect to the dilations
dj(x1,%2) = (Fx1, X x2).

It follows that E has the polynomial Liouville property since it satisfies the hypotheses of
[L]. However, there is no Lie group in R? leaving E left translations invariant. Thus, Luo
Xuebo’s result is a true extension of Geller’s Theorem. It has to be noticed that Geller-
Rothschild and Luo Xuebo Theorems apply to operators with real and complex coefficients
as well. We would also like to remark that the assumption, in these theorems, that « is a
tempered distribution appears to be very mild. However, it implicitly requires a bound for
the absolute value of u, so that, if # is real valued, a bound from above as well as from below.
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In dealing with operators with real coefficients, it seems quite natural to look for
Liouville properties of solutions just bounded from one side, and to give the following
definition.

DeriNtTioN 1.1: A linear Partial Differential Operator L in R" with real valued coeffi-
cients will be said to bave the one-side polynomial Liouville property if every global solution
to Lu = 0 in R” is a polynomial function whenever bounded from below by a polynomial
Function.

The aim of this paper is to investigate this property for the class of linear second order
hypoelliptic ultraparabolic operators introduced in [KL2]. More explicitly, the operators
we shall deal with are of the following type

N N
(15) L= 0.(a;(00) + > b0, — 0, in RN,
i,7=1 =1

where the coefficients @; and b; are smooth functions defined in RN, The matrix
AN: (a;);, j=1,..N is supposed to be symmetric and nonnegative definite at any point of
R™.
We shall denote by z = (x,#), x € RN, # € R, the point of R¥*! and by Y the vector

field in RM*!

N
(1.6) Y=Y bi(x)dy, — 0.

i=1

Moreover, we shall denote by L the stationary part of L, i. e.

N

N
(1.7) Lo=> 0.a;(x)dy) + Y bi(x)0,,.
i,7=1

i=1

We assume the following hypotheses are satisfied.
(H1) £ is hypoelliptic in RN and homogeneous of degree two with respect to the
group of dilations (D;);~¢ given by

(1.8) D;(x, ) = (dyx, 222)

where d; is a dilation as in (1.2)
(H2) For every (x,1),(y,7) € RN > 1, there exists an £- admissible path
5 : [0, T1 — RN*! such that 5(0) = (x, £), 5(T) = (y, 7).
An L-admissible path is any continuous path # which is the sum of a finite number of
diffusion and drift trajectories.
A diffusion trajectory is a curve n satisfying, at any points of its domain, the
inequality

(1), )’ < (As))E, &) Ve e RN,

Here (,) denotes the inner product in R¥*! and A(z) = A(x, #) = A(x) stands for the
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(40

A drift trajectory is a positively oriented integral curve of Y.
Throughout the paper we shall denote by Q the homogeneous dimension of RN*!
with respect to the dilations (1.8), i.e.

Q:0'1—|—...—|—O'N+2

(N+1) x (N+1) matrix

and we assume
Q>5.

Then, the d;-homogeneous dimension of RN is Q—-22>3.

We explicitly remark that the smoothness of the coefficients of £ and the homogeneity
assumption in (H1) imply that the 4;’ s and the ;" s are polynomial functions (see [L],
Lemma 2).

For any z = (x,7) € RV we define the D;-homogeneous norm | - | by

2] = |G, 8)] == (x* + A)F

where

1
N

% N
x| = [Cer, oo xN)| = <Z(x/2-)5> , O':]:[O']'.
=1

7=1

Some explicit examples of operators satisfying (H1) and (H2) will be given in
Section 2.
The main result of this paper is the following theorem.

TueoreM 1.2: Let u : RN — R be a (smooth) solution to Lu = 0 in RN, Suppose

u > p, were p is a polynomial function, and

(1.9) u(0,2) = OF”) as t— 00
for some m > 0. Then

(1.10) u is a polynomial function

We remind that condition (1.9) cannot be removed in order to get (1.10). Indeed, for
example, the function

ulx,t) = exp (x1 +x2 + ... +xn + N#), xRN, teR,

is a nonnegative non-polynomial solution to the heat equation
N
_ . N+L _ 2
Au—0u=0 in RN A=3"7.
=1

We stress that # does not satisfy condition (1.9) since (0, #) = exp (N¢).
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From Theorem 1.2 we obtain a Liouville-type theorem for nonnegative solution to
Lu = 0, first proved in [KL2], Theorem 1.1.

CoroLLARY 1.3: Let u : RN — R be a (smooth) solution to Lu = 0 in RN Suppose
u >0 and

(1.11) u(0,2) = O@F”) as t— 00
for some m > 0. Then
(1.12) u = const. in RNTL

From this corollary, one easily gets a Liouville property for the stationary operator Lo
analogous to the one for the classical Laplace operator (see [KL.2], Corollary 1.2)

CoroLLARY 1.4: Let v : RN — R be a (smooth) solution (V) to Lov = 0 in RN. Then, if
v >0,

v = const. in RN,

This result extends to our class of stationary operators a recent important Liouville-
type property for bounded solutions to degenerate Ornstein-Uhlenbeck operators,
proved by Priola and Zabczyk in [PZ]. In Section 3, Remark 2.2, we will make more
precise this statement.

Directly from Theorem 1.2 we obtain the following polynomial Liouville theorem for
Ly, in which we do not require any a-priori asymptotic behavior for the solutions.

Treorem 1.5: Let v: RN — R be a solution to Lov =0 in RN, If there exists a
polynomial function q such that v > q in RY, then v is a polynomial function.

The proofs of Theorem 1.2 and of its consequences, are postponed to Section 4. In
next Section 2 we show some explicit examples of operators to which our results apply.
Section 3 is devoted to some recalls and preliminary results needed in Section 4 for the
proof of Theorem 1.2

2. - SoME ExaMPLES

In this section we show some explicit examples of operators satisfying hypotheses
(H1)and (H2). They are mainly taken from [KL1].

() Obviously, £ is hypoelliptic in RY since £ is hypoelliptic in RN™. Then, every
distributional solution to Lov = 0 is smooth.
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Exampre: [Heat operators on Carnot groups] Let (RN, 0) be a Lie group in R”.
Assume that RY can be split as follows
RN = RM x ... x RN
and that the dilations
dy RN — RN g, x Ny = (AN Ny

5N GRN’, i=1,...,m 1>0,

are automorphisms of (RY, o).
We also assume

2.1) rank Lie{X,..., Xy, }(x) =N Vxe RN
where the X;’s are left invariant on (RY, o) and
0 .
}Q(O):W, ]:17...,N1.

7

Then G = (RY,0,4;) is a Carnot group whose homogeneous dimension Qy is the
natural number

Qo : = N; + 2N, + mN,,.

The vector fields X, ..., X, are the generators of G,

Ny
. 2
A(:r = g X/'
=1

is the canonical sub-Laplacian on G and the parabolic operator
(2.2) L=4;—-8  inRNT!

is called the canonical heat operator on G. Obviously £ can be written as in (1.5).
Moreover, if we define

L = (RN o D))
with Dj(x, ) = (d;x, /?¢) and the composition law o given by
(,)o (X, )= (xox, t+1)

then L is a homogeneous group, and the operator £ in (2.2) satisfies condition (H1) in
the Introduction. We explicitly remark that the homogeneous dimension of L is

Q:=0Qy+2.
In [KL1], page 70, it is proved that £ also satisfies (H2).

ExampLe: [Kolmogorov operators.] Let us split RY as follows

RN = R? x R”
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and denote by x = (x, x)) its points. Let B a N x N real matrix taking the following
block form

0O o0 0 0
B 0 0 0
B=| 0 B

0O 0 0 B, 0
where B; is a 7, x7_; matrix with rank 7, and rnn=p>r >...>nrn>1,
7o+ 7 + ...+ 7 = N. Denote

E(z) = exp (— ¢B)

and introduce in RN the following composition law
(2.3) (x,2) 0 (y,7) := (y+ E(®)x, ¢+ 7).
The triplet

K=®R"" o,d)
is a homogeneous Lie group with respect to the dilations
D;(x,2) =D; (x"), x) X )
=0 2250 L PR %)
(see [LP]) The homogeneous dimension of K is
Q=p+3n+...4+Qk+1)r,+2.

We call K a Kolmogorov-type group.

Let us now consider the operator

K = 4z, + (Bx,D) — 0y,

where 4, denotes the usual Laplace operator in R?, (,) is the inner product in RN and

D = (d,,,...,0x). Itis easy to see that K can be written as in (1.5).The first order partial
differential operator

Y = (Bx,D) — 8,

is called the total derivative operator on K. By Proposition 2.2 in [LP], Y is D;-
homogeneous of degree two.

The operator K satisfies (H1)and (H2), and it is left translation invariant on K( see
[KL.1] and [LP]).

Remark 2.1: The matrix E(t) in (2.3) takes the following triangular form

I 0
B = (Eﬁ:) I,+E2<f>>

where 1, and 1, are the identity matrix in R” and R', respectively. Then, the composition
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law in K has the following structure:

(x(p)’x(r)’ ) o (y(p)’y(r)’ 7) = (X(p) _|_y(p)’x(r) _|_y(r) + El(‘L')x<p) + Ez(‘[)x(’), L4 1)

Remark 2.2: The stationary part of K:
Ko = A‘Rp + <BX, D),

is contained in the class of degenerate Ornstein-Ublenbeck operators studied in [PZ]. In
[PZ] a Liouville Theorem for bounded solutions is proved.

ExampLE: [A non-translations invariant operator.] The operator
: 3
L=0 +x""0, -0, in R

m €N, is hypoelliptic since, if we let X =0, and Y =x"™0,, — 9, we have
£ =X?+Y and rank Lie(X.Y) = 3 at any point of R’. Then £ satisfies the hypoellip-
ticity-Hormander rank condition. Moreover, £ is homogeneous of degree 2 with respect
to the dilations

DA(Xl,XZ, t) = (/1X1, )“2m+3x27 /12)

Then, L satisfies hypothesis (H1). It can be also proved, just proceeding as in [KL1],
pages 72-74, that it also satisfies hypothesis (H2). Finally, it is easy to recognize that there
is no Lie group structure in R’ leaving left translation invariant the operator £.

3. - SOME PRELIMINARY RESULTS

Hypotheses (H1) and (H2)imply the existence of a global fundamental solution I"(z, {)
of £ smooth out of {z = (}. In particular, from (H2) it follows that I"((x, #), (£, 7)) > 0 #f
t > 1. (see [KL1],[KL2],[LP1],[LP2]). We will also use the following property of I,
showed in [KL1], Theorem 2.7 and Proposition 2.8.

(i) For any fixed z € RN*!, I'(-,2) and I'(z, -) belongs to L (RN*1),
(ii) For every p € C*(R™*') and z € RM*,

c J [&0pQ) d = J 0L df = —pl).

]RNAI :RN+1

(iif) There exists C > 0 such that

G.1) 0<F(z,é)<|z|% if |z > 2|

From these properties of I" we easily obtain the following lemma
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Lemma 3.1: Let ¢ a smooth function with compact support in RNT'. Then

sup |I7,| < oo.

H:\Hl

Here we have set

Iy = J [, 0p(0) dC.

]RN+1

Proor: We know that I', € C(RN*1). Moreover, denoting by K the support of ¢, we
have

1,0 < CRl© [ lolac
K
for |z| sufficiently large. This inequality implies that I”, vanishes at infinity. Thus, the
lemma follows. O

In [KL2], Theorem 2.1, the following Harnack inequality is proved.
There exist two positive constants C = C(£) and 6 = (L) < 1 such that, if « is a
nonnegative solution to Lz = 0 in G, then

(3.2) supu < Cu(0,1)
G

where, for p > 0, C, denotes the D;-symmetric ball
C,:={z e RN 2] < p}.

Next lemma is crucial for our purposes.

Lemma 3.2: Let f be a smooth function in RN and let u be a nonnegative solution to
Lu=f in R

There exists a positive constant C independent of u and f such that

(3.3) supu < C(u(0,1) +sup | f])
Co (6]
0
Proor: Let iy be a nonnegative smooth and compactly supported function such that
y=1inCy Define

b(2) = J P& OpO Qe
RN+
This function is smooth, satisfies Lz = — f in G and
lv| <sup|f|sup Iy, =:a.
L RN

Cy R
0
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It follows that
u+v+a>0, and Lu+v+a)=0 in G

Then, from the previously recalled Harnack inequality, we have

sup (u+v+a) <Cu(0,1)+20,1) + a)
Cp

<C(u(0,1) + 2a)

so that
sup # <sup (#+v+a)+ sup |v+ a|
Cy Cy RN+
<C(u(0,1) + 2a) + 2a
Keeping in mind the definition of a, this completes the proof of the lemma. O

By using the homogeneity of £, from the previous lemma we obtain the following
result.

COROLLARY 3.3: Assume the hypotheses of Lemma 3.2 are satisfied. Then

uz) < C <M(o (%)2>+|z|2 sup | f(C)I)

[
for every z € RN'L. The positive constant C is independent of u and f

Proor: Fore every » > 0 define
u(2) = u(D,2), and £(z) = rf(Dy2).
Then, since £ is D;-homogeneous of degree two,
Lu, = *(Lu) o D, = £,
Therefore, by the previous lemma,

supz, < C(u,(0,1) + sup |£;])
C

@) 1
7

This inequality can be written as follows

sup #(z) < C(u(0,7*) + 7 sup | £(0)])

|| <0r 1K1<3

from which the assertion immediately follows. O

For our purposes, it is convenient to specialize the above corollary as follows.

COROLLARY 3.4: Let p be a polynomial function and let u be a nonnegative solution to

Lu=p in RN
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Assume
(3.4) u(0,6) = 0OF") as t— o0
for a suitable m > 0. Then

uz) = O(z|") as |z — o0

where n = max{2m,2 + degp,p}.

Note. If a :N(al, ...,aN+1) is a multi-index with nonnegative integer components,
we let |a[p, = D" g;a; + 2an.1.
7=1
If p(x) = > ¢42*, we define

A
“ degp, p = max{lalp, :a € A}.

Proor: . Condition (3.4) implies

u(O,(%l)z)zO(Mzm) as | — oo

P =33 o,

On the other hand, if

%0 [a|—F
we have
2 2+s
|Z| SUP |f(C)| = O(‘Z| ) as |Z| — OO
[
From this estimate and Corollary 3.3, the assertion follows. n

We close this Section by giving the proof of a strong maximum principle, a direct
consequence of hypothesis (H2).

PrOPOSITION 3.5: Let u be a nonnegative solution to the equation Lu =0 in the half-space
§:=RN x1-o00,5[, #€R.
Suppose there exists a point 71 = (x1,t1) € S such that
ulxy, t1) = 0.
Thenu=0inRY x1— 00,4
Proor: Let us denote by P, (S) the propagation set of z; in S, i.e. the set

P, (8) = {z € § : there exists an L-admissible path
n:00,T]1—Ss. t. 50) =z, n(I) =z}.
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The hypothesis (H2) implies P, (S) = RY x ] — 0o, #1[. On the other hand since z; is
a minimum point of # and the minimum spreads all over P, (see [A]), we get

u(z) = ulz;) Vze RN x1—o00,4l

Then, the assertion follows since #(z;) = 0. O

4. - ProOF OF THEOREM 1.2 AND OF ITS CONSEQUENCES
We begin with the proof of our main theorem.

Proor o TaeoreM 1.2. Defining v := # — p and g = —L(p), we have
v>0 and Lo=gqg

Moreover, g is a polynomial function, since £ has polynomial coefficients, and
v(0,4) = O(#) as t — oo, for a suitable integer s > 0 Then, by Corollary 3.4 we have

0(2) = O(|z!) as |z —

for a suitable integer # > 0. It follows that # = v + p is a tempered distributional solution
to Lz =0 in RN, From Luo Xuebo’s Theorem it follows that # is a polynomial
function.

Proor or CoroLLARY 1.3 By Theorem 1.2 we know that « is a polynomial function.
Then, the proof can be completed just proceeding as in [KL2], Section 1, Proof of
Theorem 1.1. For reading convenience, we would like to give the details of the proof.
Since « is a polynomial function, we have « = ug + ...+ u,,, for a suitable integer

m > 0 and polynomial functions #; D;-homogeneous of degree £, £=0,1,...,n.
Since # >0, we have #, > 0. On the other hand, being Lz =0 and Lu, D;-
homogeneous of degree & — 2, if £ > 2, we have Lu, =0 for every £=0,1,...,7.

In particular Lu,, = 0. Since u,, is nonnegative and D;-homogeneous, there exists
20 = (x0,20) € RN*! such that

uy(20) = inf u,, (20 =(0,0)).

-R[er

By the strong Maximum Principle recalled in the previous Section (see Proposition
3.5), we then have

U (%, 1) = 1, (x0, to) V (x,2) € RN x ] — 00, L.
Since #,, is a polynomial function, this obviously implies
U, 8) = thy(x0, 1) ¥ (x,0) € RN

Then 72 = 0 and # = uy, i.e. u is a constant function.
Now, we can go into the proof of Corollary 1.4.
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Proor or coroLLARY 1.4. The function

ViRV SR, Vix, t) = v(x)

satisfies LV = 0 in RN, Moreover, V > 0 and

V(0,1 = v(0) vt e R.

By Corollary 1.3, V = const. in RN so that » = const. in R”.
Finally, we prove Theorem 1.5.

Proor oF TaeoreM 1.5. We argue as in the previous proof and define

V,0: RN R,  Vix,8 =), Q1) = qlx).

We have

V(0,5 =v(0) =0(1) as|z| > o0, V>0

and LV = Lyv = 0. By Theorem 1.2, V is a polynomial function, and the assertion
follows.
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