

Rendiconti Accademia Nazionale delle Scienze detta dei XL Memorie di Matematica e Applicazioni 123° (2005), Vol. XXIX, fasc. 1, pagg. 243-256

ERMANNO LANCONELLI (*)

A Polynomial one-side Liouville Theorem for a Class of Real Second Order Hypoelliptic Operators (**)

ABSTRACT. — In this note we investigate the notion of *one-side polynomial Liouville property* for a class of linear second order hypoelliptic partial differential operators whit real coefficients. Our results apply in particular to some classes of Kolmogorov and degenerate Ornstein-Uhlenbeck operators, extending recent results in references [KL1], [KL2] and [PZ].

1. - Introduction

Let Δ be the Laplace operator in \mathbb{R}^n . The classical Liouville Theorem states that any *bounded* solution to

$$(1.1) \Delta u = 0 in \mathbb{R}^N$$

is constant in \mathbb{R}^N . More generally, if u solves (1.1) and $u(x) = O(|x|^m)$, as x goes to infinity, for a suitable m > 0, then u is a polynomial function. In the 1983 paper [G], Geller pointed out the following very short proof of this theorem.

Let u be a tempered distribution in \mathbb{R}^N satisfying (1.1) in the weak sense of distributions. Then, denoting by \mathcal{F} the Fourier transform,

$$0 = \mathcal{F}(\Delta u) = -|\xi|^2 \mathcal{F} u,$$

so that $\mathcal{F}u$ is a tempered distribution supported at the origin. Hence $\mathcal{F}u$ is a linear combination of derivatives of the Dirac measure. Thus, u is a polynomial function.

It is a trivial fact that the Laplace operator is invariant with respect to the Euclidean translations and homogeneous of degree two with respect to the isotropic dilations $x \to \lambda x$, $\lambda > 0$. Moreover, it is also well known that Δ is *hypoelliptic*.

These three properties of the Laplacian are deeply related to its polynomial Liouville property. Indeed, the following sharp generalization of the previous theorem holds true.

^(*) Indirizzo dell'Autore: Dipartimento di Matematica, Università di Bologna, Piazza di Porta San Donato, 5, I-40126 Bologna, Italy e-mail:lanconel@dm.unibo.it

^(**) Primary 35B05; Secondary 35H10, 35K70.

(GR). Let L be a partial differential operator in \mathbb{R}^N with smooth coefficients. Assume there exists a homogeneous Lie group $\mathbb{G} = (\mathbb{R}^N, \circ, d_{\lambda})$ such that L is left translations invariant on \mathbb{G} and d_{λ} -homogeneous of degree $m \geq 1$. Then L has the polynomial Liouville property if and only if L is hypoelliptic.

Here, and in what follows, we agree to say that L has the *polynomial Liouville property* if every tempered distributional solution to the equation Lu = 0 in \mathbb{R}^N is a polynomial function.

The *if* part of Theorem (**GR**) was proved by Geller in [G]. The *only if* part was proved by Rothschild in [R] soon after Geller's result appeared.

Before proceeding we would like to clarify some of the notion we used before. A group of *dilation* in \mathbb{R}^N is a family $(d_{\lambda})_{\lambda>0}$ of linear transformations of the following type

$$(1.2) d_{\lambda}: \mathbb{R}^{N} \to \mathbb{R}^{N}, \ d_{\lambda}(x_{1}, \dots, x_{N}) = (\lambda^{\sigma_{1}} x_{1}, \dots, \lambda^{\sigma_{N}} x_{N}),$$

where $\sigma_1, \ldots, \sigma_N$ are suitable positive integers. Given a Lie group (\mathbb{R}^N, \circ) and a family $(d_{\lambda})_{\lambda>0}$, we say that $\mathbb{G} = (\mathbb{R}^N, \circ, d_{\lambda})$ is a *homogeneous group* if d_{λ} is a automorphism of (\mathbb{R}^N, \circ) .

We also recall that a linear partial differential operator is *hypoelliptic* if every distributional solution to the equation

$$Lu = f$$
, in $\Omega \subset \mathbb{R}^n$

is of class C^{∞} whenever f is of class C^{∞} . The operator L is left *translations invariant* on \mathbb{G} and d_{λ} -homogeneous of degree m if, respectively,

(1.3)
$$L(u(a \circ x)) = (Lu)(a \circ x), \text{ for every } a, x \in \mathbb{R}^N,$$

(1.4)
$$L(u(d_{\lambda}x)) = \lambda^{m}(Lu)(d_{\lambda}x), \text{ for every } \lambda > 0, x \in \mathbb{R}^{N},$$

and for every function $u \in C^{\infty}(\mathbb{R}^N, \mathbb{R})$

In 1996 Luo Xuebo extended Geller's Theorem by proving the polynomial Liouville property for every hypoelliptic operator L just satisfying (1.4) for a suitable group of dilations $(d_{\lambda})_{\lambda>0}$, [L].

As Luo Xuebo stressed in his paper, the Egorov's operator

$$E = \partial_{x_1}^2 + ix_1 \partial_{x_2}^2$$
 in \mathbb{R}^2

is hypoelliptic and d_{λ} -homogeneous of degree m=4 with respect to the dilations

$$d_{\lambda}(x_1, x_2) = (\lambda^2 x_1, \lambda^3 x_2).$$

It follows that E has the polynomial Liouville property since it satisfies the hypotheses of [L]. However, there is no Lie group in \mathbb{R}^2 leaving E left translations invariant. Thus, Luo Xuebo's result is a true extension of Geller's Theorem. It has to be noticed that Geller-Rothschild and Luo Xuebo Theorems apply to operators with real and complex coefficients as well. We would also like to remark that the assumption, in these theorems, that u is a tempered distribution appears to be very mild. However, it implicitly requires a bound for the absolute value of u, so that, if u is real valued, a bound from above as well as from below.

In dealing with operators with *real* coefficients, it seems quite natural to look for Liouville properties of solutions just bounded from one side, and to give the following definition.

DEFINITION 1.1: A linear Partial Differential Operator L in \mathbb{R}^n with real valued coefficients will be said to have the one-side polynomial Liouville property if every global solution to Lu = 0 in \mathbb{R}^n is a polynomial function whenever bounded from below by a polynomial function.

The aim of this paper is to investigate this property for the class of linear second order hypoelliptic ultraparabolic operators introduced in [KL2]. More explicitly, the operators we shall deal with are of the following type

(1.5)
$$\mathcal{L} = \sum_{i,j=1}^{N} \partial_{x_i} (a_{ij}(x) \partial_{x_j}) + \sum_{i=1}^{N} b_i(x) \partial_{x_i} - \partial_t \quad \text{in } \mathbb{R}^{N+1},$$

where the coefficients a_{ij} and b_i are smooth functions defined in \mathbb{R}^N . The matrix $A = (a_{ij})_{i,j=1,\dots,N}$ is supposed to be symmetric and nonnegative definite at any point of \mathbb{R}^N .

We shall denote by $z = (x, t), x \in \mathbb{R}^N, t \in \mathbb{R}$, the point of \mathbb{R}^{N+1} and by Y the vector field in \mathbb{R}^{N+1}

(1.6)
$$Y := \sum_{i=1}^{N} b_i(x) \partial_{x_i} - \partial_t.$$

Moreover, we shall denote by \mathcal{L}_0 the *stationary* part of \mathcal{L} , i. e.

(1.7)
$$\mathcal{L}_0 = \sum_{i,j=1}^N \partial_{x_i} (a_{ij}(x) \partial_{x_j}) + \sum_{i=1}^N b_i(x) \partial_{x_i}.$$

We assume the following hypotheses are satisfied.

(H1) \mathcal{L} is hypoelliptic in \mathbb{R}^{N+1} and homogeneous of degree two with respect to the group of dilations $(D_{\lambda})_{\lambda>0}$ given by

$$(1.8) D_{\lambda}(x,t) = (d_{\lambda}x, \lambda^2 t)$$

where d_{λ} is a dilation as in (1.2)

(H2) For every $(x,t), (y,\tau) \in \mathbb{R}^{N+1}$, $t > \tau$, there exists an \mathcal{L} - admissible path $\eta: [0,T] \longrightarrow \mathbb{R}^{N+1}$ such that $\eta(0) = (x,t), \eta(T) = (y,\tau)$.

An \mathcal{L} -admissible path is any continuous path η which is the sum of a finite number of diffusion and drift trajectories.

A diffusion trajectory is a curve η satisfying, at any points of its domain, the inequality

$$(\langle \eta'(s), \xi \rangle)^2 \le \langle \hat{A}(\eta(s))\xi, \xi \rangle \qquad \forall \xi \in \mathbb{R}^{N+1}.$$

Here \langle,\rangle denotes the inner product in \mathbb{R}^{N+1} and $\hat{A}(z)=\hat{A}(x,t)=\hat{A}(x)$ stands for the

 $(N+1) \times (N+1)$ matrix

$$\hat{A} = \begin{pmatrix} A & 0 \\ 0 & 0 \end{pmatrix}.$$

A drift trajectory is a positively oriented integral curve of Y.

Throughout the paper we shall denote by Q the homogeneous dimension of \mathbb{R}^{N+1} with respect to the dilations (1.8), i.e.

$$Q = \sigma_1 + \ldots + \sigma_N + 2$$

and we assume

$$Q \ge 5$$
.

Then, the d_{λ} -homogeneous dimension of \mathbb{R}^N is $Q-2 \geq 3$.

We explicitly remark that the smoothness of the coefficients of \mathcal{L} and the homogeneity assumption in (H1) imply that the a_{ij} 's and the b_i 's are polynomial functions (see [L], Lemma 2).

For any $z = (x, t) \in \mathbb{R}^{N+1}$ we define the D_{λ} -homogeneous norm $|\cdot|$ by

$$|z| = |(x, t)| := (|x|^4 + t^2)^{\frac{1}{4}}$$

where

$$|x| = |(x_1, \dots, x_N)| = \left(\sum_{j=1}^N (x_j^2)^{\frac{\sigma}{\sigma_j}}\right)^{\frac{1}{2\sigma}}, \ \sigma = \prod_{j=1}^N \sigma_j.$$

Some explicit examples of operators satisfying (H1) and (H2) will be given in Section 2.

The main result of this paper is the following theorem.

Theorem 1.2: Let $u : \mathbb{R}^{N+1} \longrightarrow \mathbb{R}$ be a (smooth) solution to $\mathcal{L}u = 0$ in \mathbb{R}^{N+1} . Suppose $u \ge p$, were p is a polynomial function, and

(1.9)
$$u(0,t) = O(t^m) \quad \text{as} \quad t \longrightarrow \infty$$

for some $m \geq 0$. Then

We remind that condition (1.9) cannot be removed in order to get (1.10). Indeed, for example, the function

$$u(x, t) = \exp(x_1 + x_2 + ... + x_N + Nt), \quad x \in \mathbb{R}^N, \ t \in \mathbb{R},$$

is a nonnegative non-polynomial solution to the heat equation

$$\Delta u - \partial_t u = 0$$
 in \mathbb{R}^{N+1} , $\Delta = \sum_{i=1}^N \partial_{x_i}^2$.

We stress that u does not satisfy condition (1.9) since $u(0, t) = \exp(Nt)$.

From Theorem 1.2 we obtain a Liouville-type theorem for nonnegative solution to $\mathcal{L}u = 0$, first proved in [KL2], Theorem 1.1.

Corollary 1.3: Let $u: \mathbb{R}^{N+1} \longrightarrow \mathbb{R}$ be a (smooth) solution to $\mathcal{L}u = 0$ in \mathbb{R}^{N+1} . Suppose $u \ge 0$ and

(1.11)
$$u(0,t) = O(t^m) \quad as \quad t \longrightarrow \infty$$

for some $m \geq 0$. Then

$$(1.12) u = \text{const.} in \mathbb{R}^{N+1}.$$

From this corollary, one easily gets a Liouville property for the *stationary* operator \mathcal{L}_0 analogous to the one for the classical Laplace operator (see [KL2], Corollary 1.2)

COROLLARY 1.4: Let $v : \mathbb{R}^N \longrightarrow \mathbb{R}$ be a (smooth) solution (1) to $\mathcal{L}_0 v = 0$ in \mathbb{R}^N . Then, if v > 0,

$$v = \text{const.}$$
 in \mathbb{R}^N .

This result extends to our class of *stationary* operators a recent important Liouville-type property for *bounded* solutions to degenerate Ornstein-Uhlenbeck operators, proved by Priola and Zabczyk in [PZ]. In Section 3, Remark 2.2, we will make more precise this statement.

Directly from Theorem 1.2 we obtain the following polynomial Liouville theorem for \mathcal{L}_0 , in which we do not require any a-priori asymptotic behavior for the solutions.

THEOREM 1.5: Let $v : \mathbb{R}^N \longrightarrow \mathbb{R}$ be a solution to $\mathcal{L}_0 v = 0$ in \mathbb{R}^N . If there exists a polynomial function q such that $v \ge q$ in \mathbb{R}^N , then v is a polynomial function.

The proofs of Theorem 1.2 and of its consequences, are postponed to Section 4. In next Section 2 we show some explicit examples of operators to which our results apply. Section 3 is devoted to some recalls and preliminary results needed in Section 4 for the proof of Theorem 1.2

2. - Some Examples

In this section we show some explicit examples of operators satisfying hypotheses (H1)and (H2). They are mainly taken from [KL1].

⁽¹⁾ Obviously, \mathcal{L}_0 is hypoelliptic in \mathbb{R}^N since \mathcal{L} is hypoelliptic in \mathbb{R}^{N+1} . Then, every distributional solution to $\mathcal{L}_0 \nu = 0$ is smooth.

Example: [Heat operators on Carnot groups] Let (\mathbb{R}^N, \circ) be a Lie group in \mathbb{R}^N . Assume that \mathbb{R}^N can be split as follows

$$\mathbb{R}^N = \mathbb{R}^{N_1} \times \ldots \times \mathbb{R}^{N_m}$$

and that the dilations

$$d_{\lambda}: \mathbb{R}^{N} \longrightarrow \mathbb{R}^{N}, \quad d_{\lambda}(x^{(N_{1})}, \dots, x^{(N_{m})}) = (\lambda x^{(N_{1})}, \dots, \lambda^{m} x^{(N_{m})})$$

$$x^{(N_{i})} \in \mathbb{R}^{N_{i}}, \quad i = 1, \dots, m, \quad \lambda > 0.$$

are automorphisms of (\mathbb{R}^N, \circ) .

We also assume

(2.1)
$$\operatorname{rank} \operatorname{Lie}\{X_1, \dots, X_{N_1}\}(x) = N \quad \forall x \in \mathbb{R}^N$$

where the X_i 's are left invariant on (\mathbb{R}^N, \circ) and

$$X_j(0) = \frac{\partial}{\partial x_i^{(N_1)}}, \qquad j = 1, \dots, N_1.$$

Then $\mathbb{G} = (\mathbb{R}^N, \circ, \delta_{\lambda})$ is a Carnot group whose homogeneous dimension Q_0 is the natural number

$$Q_0:=N_1+2N_2+mN_m.$$

The vector fields X_1, \ldots, X_{N_1} are the *generators* of \mathbb{G} ,

$$\Delta_{\mathbb{G}} := \sum_{i=1}^{N_1} X_j^2$$

is the canonical sub-Laplacian on G and the parabolic operator

(2.2)
$$\mathcal{L} = \Delta_{G} - \partial_{t} \quad \text{in } \mathbb{R}^{N+1}$$

is called the *canonical heat operator* on \mathbb{G} . Obviously \mathcal{L} can be written as in (1.5). Moreover, if we define

$$\mathbb{L} = (\mathbb{R}^{N+1}, \circ, D_{\lambda})$$

with $D_{\lambda}(x,t) = (d_{\lambda}x, \lambda^2 t)$ and the composition law \circ given by

$$(x,t)\circ(x',t')=(x\circ x',t+t')$$

then $\mathbb L$ is a homogeneous group, and the operator $\mathcal L$ in (2.2) satisfies condition (H1) in the Introduction. We explicitly remark that the homogeneous dimension of $\mathbb L$ is $Q := Q_0 + 2$.

In [KL1], page 70, it is proved that ${\cal L}$ also satisfies (H2).

Example: [Kolmogorov operators.] Let us split \mathbb{R}^N as follows

$$\mathbb{R}^N = \mathbb{R}^p \times \mathbb{R}^r$$

and denote by $x = (x^{(p)}, x^{(r)})$ its points. Let B a $N \times N$ real matrix taking the following block form

$$B = \begin{pmatrix} 0 & 0 & 0 & \dots & 0 \\ B_1 & 0 & 0 & \dots & 0 \\ 0 & B_2 & \dots & \dots & \dots \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & B_k & 0 \end{pmatrix}$$

where B_j is a $r_j \times r_{j-1}$ matrix with rank r_j , and $r_0 = p \ge r_1 \ge ... \ge r_k \ge 1$, $r_0 + r_1 + ... + r_k = N$. Denote

$$E(t) = \exp\left(-tB\right)$$

and introduce in \mathbb{R}^{N+1} the following composition law

$$(2.3) (x,t) \circ (y,\tau) := (y + E(\tau)x, t + \tau).$$

The triplet

$$\mathbb{K} = (\mathbb{R}^{N+1}, \circ, d_{\lambda})$$

is a homogeneous Lie group with respect to the dilations

$$D_{\lambda}(x,t) = D_{\lambda}(x^{(p)}, x^{(r_1)}, \dots, x^{(r_k)}, t)$$

= $(\lambda x^{(p)}, \lambda^3 x^{(r_1)}, \dots, \lambda^{2k+1} x^{(r_k)}, \lambda^2 t)$

(see [LP]) The homogeneous dimension of \mathbb{K} is

$$Q = p + 3r_1 + \ldots + (2k+1)r_k + 2.$$

We call \mathbb{K} a Kolmogorov-type group.

Let us now consider the operator

$$\mathcal{K} = \Delta_{\mathbb{R}_p} + \langle Bx, D \rangle - \partial_t,$$

where $\Delta_{\mathbb{R}_p}$ denotes the usual Laplace operator in \mathbb{R}^p , \langle , \rangle is the inner product in \mathbb{R}^N and $D = (\partial_{x_1}, \dots, \partial_{x_N})$. It is easy to see that \mathcal{K} can be written as in (1.5). The first order partial differential operator

$$Y = \langle Bx, D \rangle - \partial_t$$

is called the *total derivative operator* on \mathbb{K} . By Proposition 2.2 in [LP], Y is D_{λ} -homogeneous of degree two.

The operator K satisfies (H1)and (H2), and it is left translation invariant on K(see [KL1] and [LP]).

Remark 2.1: The matrix E(t) in (2.3) takes the following triangular form

$$E(t) = \begin{pmatrix} I_p & 0 \\ E_1(t) & I_r + E_2(t) \end{pmatrix}$$

where I_p and I_r are the identity matrix in \mathbb{R}^p and \mathbb{R}^r , respectively. Then, the composition

law in \mathbb{K} has the following structure:

$$(x^{(p)}, x^{(r)}, t) \circ (y^{(p)}, y^{(r)}, \tau) = (x^{(p)} + y^{(p)}, x^{(r)} + y^{(r)} + E_1(\tau)x^{(p)} + E_2(\tau)x^{(r)}, t + \tau)$$

Remark 2.2: The stationary part of K:

$$\mathcal{K}_0 = \Delta_{\mathbb{R}_p} + \langle Bx, D \rangle,$$

is contained in the class of degenerate Ornstein-Uhlenbeck operators studied in [PZ]. In [PZ] a Liouville Theorem for bounded solutions is proved.

Example: [A non-translations invariant operator.] The operator

$$\mathcal{L} = \partial_{x_1}^2 + x_1^{2m+1} \partial_{x_2} - \partial_t \quad \text{in} \quad \mathbb{R}^3$$

 $m \in \mathbb{N}$, is hypoelliptic since, if we let $X = \partial_{x_1}$ and $Y = x_1^{2m+1}\partial_{x_2} - \partial_t$, we have $\mathcal{L} = X^2 + Y$ and rank Lie(X.Y) = 3 at any point of \mathbb{R}^3 . Then \mathcal{L} satisfies the hypoellipticity-Hörmander rank condition. Moreover, L is homogeneous of degree 2 with respect to the dilations

$$D_{\lambda}(x_1, x_2, t) = (\lambda x_1, \lambda^{2m+3} x_2, \lambda^2)$$

Then, \mathcal{L} satisfies hypothesis (H1). It can be also proved, just proceeding as in [KL1], pages 72-74, that it also satisfies hypothesis (H2). Finally, it is easy to recognize that there is no Lie group structure in \mathbb{R}^3 leaving left translation invariant the operator \mathcal{L} .

3. - Some preliminary results

Hypotheses (H1) and (H2)imply the existence of a global fundamental solution $\Gamma(z,\zeta)$ of \mathcal{L} smooth out of $\{z=\zeta\}$. In particular, from (H2) it follows that $\Gamma((x,t),(\zeta,\tau))>0$ iff $t > \tau$. (see [KL1],[KL2],[LP1],[LP2]). We will also use the following property of Γ , showed in [KL1], Theorem 2.7 and Proposition 2.8.

- (i) For any fixed $z \in \mathbb{R}^{N+1}$, $\Gamma(\cdot,z)$ and $\Gamma(z,\cdot)$ belongs to $L^1_{\mathrm{loc}}(\mathbb{R}^{N+1})$. (ii) For every $\varphi \in C^{\infty}(\mathbb{R}^{N+1})$ and $z \in \mathbb{R}^{N+1}$,

$$\mathcal{L}\int\limits_{\mathbb{R}^{N+1}} \Gamma(z,\zeta) \varphi(\zeta) \ d\zeta \ = \ \int\limits_{\mathbb{R}^{N+1}} \Gamma(z,\zeta) \mathcal{L} \varphi(\zeta) \ d\zeta \ = \ -\varphi(z).$$

(iii) There exists C > 0 such that

$$(3.1) 0 \le \Gamma(z,\zeta) \le \frac{C}{|z|^{Q-2}} if |z| \ge 2|\zeta|$$

From these properties of Γ we easily obtain the following lemma

Lemma 3.1: Let φ a smooth function with compact support in \mathbb{R}^{N+1} . Then

$$\sup_{\mathbb{R}^{N+1}} |\Gamma_{\varphi}| < \infty.$$

Here we have set

$$\Gamma_{\varphi}(z) := \int_{\mathbb{D}^{N+1}} \Gamma(z,\zeta) \varphi(\zeta) \ d\zeta.$$

Proof: We know that $\Gamma_{\varphi} \in C^{\infty}(\mathbb{R}^{N+1})$. Moreover, denoting by K the support of φ , we have

$$|\Gamma_{\varphi}(z)| \le C|z|^{-Q} \int\limits_{K} |\varphi| d\zeta$$

for |z| sufficiently large. This inequality implies that Γ_{φ} vanishes at infinity. Thus, the lemma follows.

In [KL2], Theorem 2.1, the following Harnack inequality is proved.

There exist two positive constants $C = C(\mathcal{L})$ and $\theta = \theta(\mathcal{L}) < 1$ such that, if u is a nonnegative solution to $\mathcal{L}u = 0$ in C_1 , then

$$\sup_{C_{\theta}} u \leq C u(0,1)$$

where, for $\rho > 0$, C_{ρ} denotes the D_{λ} -symmetric ball

$$C_{\rho} := \{ z \in \mathbb{R}^{N+1} | |z| < \rho \}.$$

Next lemma is crucial for our purposes.

Lemma 3.2: Let f be a smooth function in \mathbb{R}^{N+1} and let u be a nonnegative solution to

$$\mathcal{L}u = f$$
 in \mathbb{R}^{N+1}

There exists a positive constant C independent of u and f such that

(3.3)
$$\sup_{C_{\theta}} u \le C(u(0,1) + \sup_{C_{\frac{1}{\theta}}} |f|)$$

PROOF: Let ψ be a nonnegative smooth and compactly supported function such that $\psi \equiv 1$ in $C_{\frac{1}{n}}$. Define

$$v(z) := \int_{\mathbb{R}^{N+1}} \Gamma(z,\zeta) \psi(\zeta) f(\zeta) d\zeta$$

This function is smooth, satisfies $\mathcal{L}u = -f$ in $C_{\frac{1}{n}}$ and

$$|v| \leq \sup_{C_{\frac{1}{\alpha}}} |f| \sup_{\mathbb{R}^{N+1}} \Gamma_{\psi} =: a.$$

It follows that

$$u + v + a \ge 0$$
, and $\mathcal{L}(u + v + a) = 0$ in $C_{\underline{1}}$.

Then, from the previously recalled Harnack inequality, we have

$$\sup_{C_{\theta}} (u + v + a) \le C(u(0, 1) + v(0, 1) + a)$$

$$\le C(u(0, 1) + 2a)$$

so that

$$\sup_{C_{\theta}} u \leq \sup_{C_{\theta}} (u+v+a) + \sup_{\mathbb{R}^{N+1}} |v+a|$$
$$< C(u(0,1)+2a)+2a$$

Keeping in mind the definition of a, this completes the proof of the lemma.

By using the homogeneity of \mathcal{L} , from the previous lemma we obtain the following result.

COROLLARY 3.3: Assume the hypotheses of Lemma 3.2 are satisfied. Then

$$u(z) \leq C \left(u \left(0, \left(\frac{|z|}{\theta} \right)^2 \right) + |z|^2 \sup_{|\zeta| \leq \frac{|z|}{\theta^2}} |f(\zeta)| \right)$$

for every $z \in \mathbb{R}^{N+1}$. The positive constant C is independent of u and f

Proof: Fore every r > 0 define

$$u_r(z) = u(D_r z)$$
, and $f_r(z) = r^2 f(D_r z)$.

Then, since \mathcal{L} is D_{λ} -homogeneous of degree two,

$$\mathcal{L}u_r = r^2(\mathcal{L}u) \circ D_r = f_r$$

Therefore, by the previous lemma,

$$\sup_{C_{\theta}} u_r \leq C \left(u_r(0,1) + \sup_{C_{\frac{1}{\theta}}} |f_r| \right)$$

This inequality can be written as follows

$$\sup_{|z| \le \theta r} u(z) \le C(u(0, r^2) + r^2 \sup_{|\zeta| \le \frac{r}{\theta}} |f(\zeta)|)$$

from which the assertion immediately follows.

For our purposes, it is convenient to specialize the above corollary as follows.

COROLLARY 3.4: Let p be a polynomial function and let u be a nonnegative solution to

$$\mathcal{L}u = p$$
 in \mathbb{R}^{N+1} .

Assume

$$(3.4) u(0,t) = O(t^m) as t \to \infty$$

for a suitable m > 0. Then

$$u(z) = O(|z|^n)$$
 as $|z| \to \infty$

where $n = \max\{2m, 2 + deg_{D_i}p\}$.

Note. If $a = (a_1, \dots, a_{N+1})$ is a multi-index with nonnegative integer components, we let $|a|_{D_{\lambda}} := \sum_{j=1}^{N} \sigma_{j} a_{j} + 2a_{N+1}$. If $p(z) = \sum_{a \in A} c_{a} z^{a}$, we define

If
$$p(z) = \sum_{a \in \mathcal{A}} c_a z^a$$
, we define
$$deg_{D_{\lambda}} p = max\{|a|_{D_{\lambda}} : a \in \mathcal{A}\}.$$

Proof: Condition (3.4) implies

$$u\left(0, \left(\frac{|z|}{\theta}\right)^2\right) = O(|z|^{2m})$$
 as $|z| \to \infty$

On the other hand, if

$$p(z) = \sum_{k=0}^{s} \sum_{|a|=k} c_a z^a,$$

we have

$$|z|^2 \sup_{|\zeta| \le \frac{|z|}{dz}} |f(\zeta)| = O(|z|^{2+s})$$
 as $|z| \to \infty$

From this estimate and Corollary 3.3, the assertion follows.

We close this Section by giving the proof of a strong maximum principle, a direct consequence of hypothesis (H2).

Proposition 3.5: Let u be a nonnegative solution to the equation $\mathcal{L}u = 0$ in the half-space

$$S := \mathbb{R}^N \times] - \infty, t_0[, \quad t_0 \in \mathbb{R}.$$

Suppose there exists a point $z_1 = (x_1, t_1) \in S$ such that

$$u(x_1,t_1)=0.$$

Then u = 0 in $\mathbb{R}^N \times]-\infty, t_1[$.

Proof: Let us denote by $P_{z_1}(S)$ the propagation set of z_1 in S, i.e. the set

 $P_{z_1}(S) = \{z \in S : \text{there exists an } \mathcal{L}\text{-admissible path} \}$

$$\eta:[0,T]\longrightarrow S$$
 s. t. $\eta(0)=z_1,\ \eta(T)=z\}.$

The hypothesis (H2) implies $P_{z_1}(S) = \mathbb{R}^N \times]-\infty, t_1[$. On the other hand since z_1 is a minimum point of u and the minimum spreads all over P_{z_1} (see [A]), we get

$$u(z) = u(z_1) \quad \forall z \in \mathbb{R}^N \times] - \infty, t_1[.$$

Then, the assertion follows since $u(z_1) = 0$.

4. - Proof of Theorem 1.2 and of its consequences

We begin with the proof of our main theorem.

Proof of Theorem 1.2. Defining v := u - p and $q = -\mathcal{L}(p)$, we have

$$v > 0$$
 and $\mathcal{L}v = q$

Moreover, q is a polynomial function, since \mathcal{L} has polynomial coefficients, and $v(0,t) = O(t^s)$ as $t \to \infty$, for a suitable integer s > 0 Then, by Corollary 3.4 we have

$$v(z) = O(|z|^{\beta})$$
 as $|z| \to \infty$

for a suitable integer $\beta > 0$. It follows that u = v + p is a tempered distributional solution to $\mathcal{L}u = 0$ in \mathbb{R}^{N+1} . From Luo Xuebo's Theorem it follows that u is a polynomial function.

PROOF OF COROLLARY 1.3 By Theorem 1.2 we know that u is a polynomial function. Then, the proof can be completed just proceeding as in [KL2], Section 1, Proof of Theorem 1.1. For reading convenience, we would like to give the details of the proof. Since u is a polynomial function, we have $u = u_0 + \ldots + u_m$, for a suitable integer $m \ge 0$ and polynomial functions u_k D_{λ} -homogeneous of degree k, $k = 0, 1, \ldots, m$. Since $u \ge 0$, we have $u_m \ge 0$. On the other hand, being $\mathcal{L}u = 0$ and $\mathcal{L}u_k$ D_{λ} -homogeneous of degree k - 2, if $k \ge 2$, we have $\mathcal{L}u_k = 0$ for every $k = 0, 1, \ldots, m$. In particular $\mathcal{L}u_m = 0$. Since u_m is nonnegative and D_{λ} -homogeneous, there exists $z_0 = (x_0, t_0) \in \mathbb{R}^{N+1}$ such that

$$u_m(z_0) = \inf_{\mathbb{R}^{N+1}} u_m, \quad (z_0 = (0,0)).$$

By the strong Maximum Principle recalled in the previous Section (see Proposition 3.5), we then have

$$u_m(x,t) = u_m(x_0,t_0) \qquad \forall (x,t) \in \mathbb{R}^N \times]-\infty, t_0[.$$

Since u_m is a polynomial function, this obviously implies

$$u_m(x,t) = u_m(x_0,t_0) \quad \forall (x,t) \in \mathbb{R}^{N+1}.$$

Then m = 0 and $u \equiv u_0$, i.e. u is a constant function.

Now, we can go into the proof of Corollary 1.4.

Proof of Corollary 1.4. The function

$$V: \mathbb{R}^{N+1} \longrightarrow \mathbb{R}, \qquad V(x,t) = v(x)$$

satisfies $\mathcal{L}V = 0$ in \mathbb{R}^{N+1} . Moreover, $V \geq 0$ and

$$V(0,t) = v(0) \quad \forall t \in \mathbb{R}.$$

By Corollary 1.3, V = const. in \mathbb{R}^{N+1} so that v = const. in \mathbb{R}^{N} . Finally, we prove Theorem 1.5.

PROOF OF THEOREM 1.5. We argue as in the previous proof and define

$$V,Q:\mathbb{R}^{N+1} \longrightarrow \mathbb{R}, \qquad V(x,t) = v(x), \ Q(x,t) = q(x).$$

We have

$$V(0,t) = v(0) = O(1)$$
 as $|z| \to \infty$, $V \ge Q$

and $\mathcal{L}V = \mathcal{L}_0 v = 0$. By Theorem 1.2, V is a polynomial function, and the assertion follows.

REFERENCES

- [A] K. AMANO, Maximum principle for degenerate elliptic-parabolic operators, Indiana Univ. Math. J. 29, (1979), 545-557.
- [B] J.M. Bony, Principe de maximum, inégalité de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés, Ann. Inst. Fourier, Grenoble 19, (1969), 277-304.
- [G] D. Geller, Liouville's Theorem for homogeneous groups, Comm. in Partial Diff. Eq. 8, (1983), 1665-1677.
- [KL1] A.E. KOGOJ and E. LANCONELLI, An invariant Harnack inequality for a class of hypoelliptic ultraparabolic equations, Mediterr. J. Math., to appear.
- [KL2] A.E. Kogoj E. Lanconelli, One side Liouville Theorems for a Class of Hypoelliptic Ultraparabolic equations, Contemporary Mathematics, to appear.
- [L] Luo Xuebo, Liouville's Theorem for homogeneous differential operators, Comm. in Partial Diff. Eq., 22 (1997), 1813-1848.
- [LP] E. LANCONELLI S. POLIDORO, On a class of hypoelliptic evolution operators, Rend. Sem. mat. Univ. Pol. Torino 52 (1994), Partial Diff. Eqs., 29-63.
- [LP1] E. LANCONELLI A. PASCUCCI, On the fundamental solution for hypoelliptic second order partial differential equations with non-negative characteristic form, Ricerche di matematica 43 (1999), 81-106.
- [LP2] E. LANCONELLI A. PASCUCCI, Superparabolic Functions Related to Second Order Hypoelliptic Operators, Potential Analysis, 11 (1999), 303-323.
- [PZ] E. PRIOLA J. ZABCZYK, Liouville theorem in finite and infinite dimensions, Preprints di Matematica, n. 9 (2003), Scuola Normale Superiore, Pisa.
- [R] L.P. ROTHSCHILD, A remark on hypoellipticity of homogeneous invariant differential operators on nilpotent Lie groups, Comm. P.D.E., 8 (1983), 1679-1682.

