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On the Double Well Duffing Equation
with a Small Bounded Forcing Term

AssTrACT. — By using differential inequalities and a kind of approximate maximum principle, a
smallness condition on the bounded forcing term f is shown to imply the existence of exactly 3
different bounded solution which asymptote any solution of the Duffing equation
'+ + 2 —u=f(t) as ¢ tends to infinity, at least for ¢ large enough. For small values of ¢ a
weaker property is obtained when f is T-periodic, namely a smallness condition on f ensuring the
existence of exactly 3 different T-periodic solutions.

INTRODUCTION

In this paper we consider the second order ODE

(1) d' el i —u=f@)
where ¢ > 0 and f € L°(R) which is a reduced adimensional form for the more general-
looking equation
) X' ax + fP0o¢ — P)x = gl).
In fact the transformation .

2(0) = aulapty=ule) = x( =)

a

af
reduces (2) to (1) with

a 1 t
ci=—, f)=— (—)
a ﬂ f a ﬂz g a ﬁ
The equation (2) has several interesting interpretations in mechanics, cf. for instance F. C.
Moon and P. J. Holmes [11]. This equation has been intensively studied from both
theoretical and applied points of view. A first easy remark is that any solution # of (1) for
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t >ty is bounded as well as #' and #”. However it is well known that the solutions of (1)
may have a very complicated behavior. For instance when f is periodic with minimal
period T, there may in general exist, in addition to some T-periodic orbits, also periodic
solutions with minimal period #»T where 7 > 2, called in the literature “subharmonic”
solutions. This bad phenomenon even happens in the better case where the nonlinear
term 2> — u is replaced by #® + u (cf eg. Cartwright & Littlewood [4], Loud [9], Hale &
Taboas [6], and also Chow, Hale&Mallet-Paret [5] for a related problem). An interesting
question is to find sufficient conditions on f and ¢ preventing subharmonic and chaotic
behaviors. This is the main object of the present work, where we show that a smallness
condition on f ensures a less complicated behavior of the system, at least for ¢ large
enough. The plan of the paper is as follows: Section 1 contains the statement of the main
results, Section 2 is devoted to the statement and proof of optimal estimates on the norm
of a certain inverse operator in the space of bounded functiond on the line. In Sections 3,
4,5 and 6 we give the proofs of the main results together with some remarks on optimality
of the results.

1. - MAIN RESULTS
We start with a local result valid for arbitrary bounded forcing terms.

Tueorem 1.1: Under the condition
2
(1.1) <—=
Il <525

equation (1) has a unique solution wy € W?>*(R) such that

1
(1.2) ol <7

If in addition ¢ > 272, under the additional assumption

5 /5
(13) Il < 2(;% 2)

(1) has a unique solution w., and a unique solution w_ in W?>*(R) such that

5 5
(1.4) |co+—1|oo<\/;—l, |co+1||oc<\/;—1.

If ¢ < 2v/2, assuming the additional smallness condition

c 2c c
15 < (@‘ 1) (MH_ 1+3ﬁ> =)



— 209 —

(1) has a unique solution w., and a unigque solution w_ in W?>*(R) such that

C c
o <Al —=—1, o 1, < Jl+—=—1.
3v2 | | 32

Finally if ¢ < 1, assuming

c 2¢ c
(1.7) ||f||oo<<,/1+§—1> <?+1—,/1+§> = n,(c)

(1) has a unique solution w, and a unigue solution w_ in W?>*°(R) such that

(1.8) 0: = Ul < (1451, flo-+ 1 <y /1+5-1.

In some cases the local result of Theorem 1.1 can be refined to a global one under an
additional smallness restriction on f.

L6) o —1|

Tueorem 1.2: Under the conditions

1 c
(1.9) c>2V2, € Gy(R), o < m———
any solution u of (1) on some halfline | = (ty, +00) is asymptotic to one of the 3 solutions

o, Wy, WO_ as t — + 0.

CoroLLARY 1.3: Under the hypotheses of Theoren 1.2, iff is almost periodic, (1) bas exactly
3 almost periodic solutions wg, w., w_. Moreover if f is T-periodic then so are wqg, wy., w_.

CoroLLARY 1.4: Under the hypotheses of Theorem 1.2, if f is T- periodic, then (1) has no
subbarmonic periodic solution.

Our last main result is restricted to T-periodic solutions

Tueorem 1.5: Let f be bounded and T-periodic. Under the condition

T /31 A+1 .5 2. c \/5
1.10 1+—4/—+12 — inf 1+———1,4/=-1
(110 |f|m< TR ||f||m)<31n{ [T }

equation (1) has at most 3 T-periodic solutions.

CoroLLARY 1.6: Let f be bounded and T-periodic satisfying both smallness conditions of
Theorem 1.1 and Theorem 1.5. Then equation (1) has exactly three T- periodic solutions.

Remark 1.7: Under the hypotheses of Theorem 1.5 or Corollary 1.6, we do not know if
there can exist any subharmonic solution of the equation.
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2. - NORM ESTIMATES FOR THE INVERSE OF A SECOND ORDER OPERATOR

In this section we consider the second order differential operator defined on

X = L*®(R)
by
(2.1) D(L) = W**(R) = {uc C'(R), u,d,u" € L°(R)}
(2.2) Vue DIL), Lu=d+ci + tu

for some positive constants ¢, w. It is classical that for any f € X = L>°(R) there exists a
unique solution # of Lz = f which asymptotes exponentially fast all solutions of

d' +cd +tu=F, t>rn

as t — +00. We can therefore define

L' XD cCX.

The estimate of the norm of £7! in L(X) is crucial for our purpose. For notational
convenience we introduce

D(9) = W'=(R)
and
Yu € D), Ou=+4u.

We have the following result.

TrEOREM 2.1: For any positive constants c,w, we have the following
i) Ifc>2w L7 is order preserving and

_ 1
(2.3) 1£ 1||L(X> =2
i) Ifc < 2w,
4 1 1 cn 2
(2 4) e = ||»C HL(X) a)z COth {2 4(02 = CZ} = o

and these inequalities are optimal for arbitrary ¢ < 2.

Proor: i) The positivity of £7! in this case is well-known, cf. e.g.[1, 10]. Actually it is
sufficient to remark that since
L =(0+ DO+ al)
with
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we have
L' =©@+a) ' @+pD"
Then for any £ € X we have
=Allx </ < flx

therefore

1 B B B 1
=Sl ==L llx < £7 < L7 llx = S 1f1x

and i) is proved.
ii) In this case £ is no longer positive and the complex factorization

L7r'=0+a) O+pD7"

. . _ 4 .. . w .
only provides the weak estimate [|£7"]; ) < — which is quite bad when — is large. In
c c

order to evaluate the norm ||£7'|x), we simply compute the operator £7' in the
following way. First the general solution of the homogeneous equation

V' +a + o’ =0
is given by the explicit formula

v(t) = C; oo + Cze(—y—zb‘)t

with
c 1
_¢ _ 2 2
7=5 0 3 402 — ¢
and
1 2'(0) + y0(0) 1 1/(0) + y(0)
C1—§(v(0)—lf> Cz—§<v(0)+zf>.
The bounded solution of

A +od +tu=Ff

is then given (cf. e.g. [7]) by the formula
), /) = [ T@0,fe ~ o)z
0

with T(#) the group of operators solving the homogeneous equation. Since the first
component of

T(2)(0, f(z—1))
is

C1(0, f(t = 1) 77 1 C5(0, f(¢ — 1)) 77717
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an easy calculation yields

2.5) [L7Y1(0) = ult) =

SO

J e "sin (07) f(t — 1)dT
0
and in particular

127l < 5 [ e sin G0
0

SOl

Moreover the special choice

f(s) = —sgn(sin (ds))

gives

#(0) =

SO

J | sin (67)|de
0

and finally

SR

12 g = J ¢ sin (90)|d.
0

The computation of this integral is easy. Indeed

(r

T

Dn

e "] sin (01)|dt =

J 7| sin (67)|dT =) |
0

0

S — o)

z

- 5 5
= Z e J e " sin (0t)dt = ! Je_w sin (62)dt =
0 0 0

—
1—¢7

1 1( = . 1 1+ev
:1 =5 €7 sinsds = N1 oF
—ei 9] 5(1 N _2) —e
0
and therefore
1] 1 14ed
+e7
(2.6) Lt =— J e | sin (07)|dT = X —.
12 sy = | lsn ool = <
Since
y c
+P =0, L=
7 0 40? — ¢?
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we end up with

_ 1 1+ e\/;[ﬂ2 1 for/4
2.7) L1 :—x4m:—coth{4}.
1 oo =5 | _ oo P AR — 2

Now we have

1
col| L7} = g(¢) := tcoth { n;}
|| HL(X) 4 Zm

where

the change of variable

gives

co| L7y = b(O) :

A rather straightforward calculation shows that

b0 = ks(e) 70
(1 + 07)sh? (-)
2
with
k(0) = sh(n0) — n(0 + ) > é(nef — 70’ =’ ((1)7[2 — 1) > 0.
Hence 5 is increasing on (0, +00) and therefore
4 _ .

Remark 2.2: The proof of

2
2.8 L1 <2
29 1 < =
from the exact formula is rather involved. It is is also possible to establish it directly by
relying on a technique from [8, lemme 3.2.6] refined to deal with bounded solutions

rather than exponential decay. For any solution # of (1) we have

d
Z(? + P + cud) = 2" + D) + ci? + cud" =

dt

=2u(f —cil) + cu® + cu f — il — Pu) = —c(u? + P ul? + cudd) + Qi + cu).
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On the other hand the condition ¢ < 2w yields the inequality
Qi + cu)? = 4d% + P + deurd < 42 + 0P + cudd)
and we deduce
FQu +cu) < 2(20/ + cu)’ + §f2 < %(z/2 + & + curd) + §f2
hence

d
Z(? + P+ cud) < —

dt

Assuming # to be bounded on R, classically #, %" are also bounded and solving for the
above differential inequality, we obtain with

D(t) = (d? + i + cudd)(?)

c 2
E(ulz + &’ + cud) += f2.
c

c

vz s 00 <exp(~S0—9) 00 + 1

Letting s tend to —oo we derive
42
sup D(#) < = || fII5 -
teR ¢

Finally let us consider an “asymptotically maximizing” sequence #, such that

lim #2(¢,) = sup «*(2) .
=0 teR

Assuming this limit to be positive, since #” is bounded for # >0 it is clear that
lim #/(¢,) = 0, consequently we have
n—0o0

4 4
2 10 2() < N £IR 2(4) < 2
o Jim () < S I = sup?) < 11

which is equivalent to ii).

3. - EXISTENCE OF 3 BOUNDED SOLUTIONS FOR f SMALL

First we establish the existence of the “small” solution. We introduce the operator A
such that

D) = W**(R) = {ue C'(R), u,u,u" € L*(R)}
and
Yuec D), Au=du"+ci —u

so that a bounded solution # of (1) is just a solution of

Mu=d"+cd —u=f—1u
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Since —A is an elliptic operator, it is clearly invertible on X and we have
-1
47 Nl =1

We write the previous equation as

Now the mapping

leaves invariant the ball
B ={veXlply<r}
as soon as
I£llx +7 <.
This is satisfied for some positive » whenever
2

”fHX<Srlig (r—rj)zﬁ.

Since the supremum is achieved for » =7y := under the condition above there is

1
r < ry such that V3
TB, CB,.

. 1 ) . . .
Now since 7 < —=, on B, the map v — ¢ is a uniform X-contraction and so is 7". So there

V3

is a unique fixed point u of 7 in B,, which is the solution of our problem. In addition we

have [Ju||y < 1 .
V3

For the two other solutions, due to the odd character of the non-linearity, by changing
# to (—=f) we just need to study the existence of a second bounded solution close to 1.
Setting u= 1+v, we are reduced to consider the equation

'+ +2v=Ff 37—
that we rewrite in the form
v=LNf=32 -0
where
L= +co+2I
is the operator defined by (2.1)-(2.2) with @ = v/2 . Then we distinguish 3 cases.

case 1: ¢ > 22
1
Then ||£7"| ) = > and therefore
Tw) =L —302—07)
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leaves invariant the ball
B, ={veXl|plx <r}

as soon as
1
E(HfHXJrBi"Z +7)<r.

This is satisfied for some positive » whenever
Iflly <sup @r—37—7):=M
>0

An easy calculation shows that
M=2r-35—ry; 1= 2—1
In addition, since 67y + 373 = 2 we have
Vo€ (—ry,m), |32+ |=60+30° <2.
Therefore for any » € (0, ) such that

Ifllx < @r—=37—=7)

we have 7B, C B, and 7 : B, — B, is a uniform contraction. The fixed point of 7 is the
positive bounded solution we looked for. To finish the proof in this case, two additional
remarks are necessary.

1) We have
4 5 /5 2
M"O(E"O) —2<§\/§‘2> S35

2) The solution near 0 and the solution near 1 are distinct since the second one is

1
greater than 1 — (\/g—l) :2—\/§>7§.

case 2: ¢ < 2+/2 Y
2 2
Then || L7, < —=— and therefore
¢ c

Tw) =L7Nf -3 —-0))
leaves invariant the ball
B ={veXlvly<r}
as soon as

\/T§(||f||x+372+r3) <r.

A computation similar to case 1 gives now the condition

I71x <

c

\/57’1 — (G747
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rn = 1—|——C —1<r
TV T2 T

Moreover 7 is still a contraction on B, for » < r; and the positive solution, still strictly
greater than the small one. The final condition on # in this case is

< (555 -1) (o iy ) =

case 3: c <1
Using the exact formula, we prove

where

H‘C_IHL(X) <

Indeed for o fixed, ¢[| L7, is an increasing function of ¢, hence for ¢ < 1

16%
e < 5 x 2

. T . .
since —= > In 3. The conclusion follows as in case 2.

Y.

Remark 3.1: It is immediate to check that, as ¢ — 0

2

1 (c) NE

whereas for ¢ = 1, we obtain the sufficient condition

I/1lx < 0.08.

4. - ULTIMATE BOUND OF THE GENERAL SOLUTION.

In this section we derive a general, probably not optimal, estimate of the ultimate
bound of the general solution of (1).

Prorosition 4.1: For any solution u of (1) we have

— 24+16
(4.1) m%mg+¢uc+|ﬁ;
t—00 4¢2
. 1, 14, 1,
Proor: We introduce the energy E(¢) = 54 + 7% 3% We have

2
E,(t) :ﬁ// _ CZ//Z S _%ua +J[_
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and
(wd) = u? + wd" = u® +ulf —cid — i + u)
hence
d 2 2
a(E—i—%m/) S—gu’z—%uu’—2u4+§ uf—l——:
2 1
= —c(E—&—gm/) —Zu + - uf—|—f—< —C<E+4uu) + (1_66—’_;)][2

Let M > 0 be such that E(z) + 421””/ + M > 0 and introduce F(z) = E(¢) + 451””/ + M.
Then

Pm<—ﬁm+m+< )vn

hence
— A4+16, .5
T () < M+ S 2,
which provides
Jrnt0+ 0 = W
Now for any & > 0 we have for # large enough
[ A +16
(E(t)+4uu> < ea 112

finally let us consider an “asymptotically maximizing” sequence ¢, such that

lim #%(z,) = tli—muz(z‘).

n—00

Assuming this limit to be positive, since #” is bounded for # >0 it is clear that
lim #/(t,) = 0, consequently for n large enough

n—0o0

Lo — 2y < By + £ < S 16

1 2 = 5= ez Wk +2e=

2 116
— () — 12 <146 112, + 2.

Now either #2(z,) < 1 for an infinite number of integers n , in which case limsup z? < 1,
or for n large enough we have #?(z,) > 1. In the second case the inequality above implies

S 2+ 16
(0 < 11+ S0 2

1—00

and since ¢ is arbitrary we obtain (4.1).



— 219 —

5. - A PRECISE ESTIMATE FOR ¢ LARGE

When ¢ > 2v/2, the inequality (4.1) and the positivity preserving property of £~
allow a more precise estimate on « for # large.

ProrosiTion 5.1: For any ¢ > 2\/2 we have

_ 1
(5.1) Jim [2(6)] < 1 +§Hf”oo

valid whenever || /||, < 2.

Proor: When ¢ > 24/2, according to section 2, the operator £ = & + ¢d + 2I has
positive inverse on L™, In addition the estimate (4.1) here provides

T2 <14+ /142171

Il <2

In particular if we assume

then we find

limaA(1) < 3.

t—00
Now if « is any solution of (1) we set # = 1 + v so that
Vo 4204307+ =F.

Since # > —2 for ¢ large we have 3% +1v* = 12(3 +v) > 0 for ¢ large. We claim that
— 1
T () < 142 /...

Assuming that this inequality is false, we can select > 0 and ¢, some sequence tending to
+o0 such that

1
u(t,) 2 1431/l +9.

Now replace v by v(¢ + ¢,) and # by f(¢z +¢,). We can then pass to the limit along a
subsequence, for which the sequence of translates of / converges in L? weak, the limit
being of course in the same ball of L>*. We can also assume that the translates of v
converge in C!, then the limiting function fulfills the limiting equation. Finally we are
reduced to consider the case where v is bounded on R. In this case since

Vo' +20 < | fllo

we obtain

1
< =
v <51l



— 220 —

in contradiction with
1
00> 1/l +0

thereby proving the claim. By considering in the same way w = 1 + « and deriving the
lower estimate for w we conclude

— 1
Jim [#(0)] < 1431 /ll

valid whenever
¢>2v2, 1l <2.

Remark 5.2: The result of Proposition 5.1 is no longer true for small values of c.
Indeed for e small , let us consider the solution # of

W' +uw —u=0
with
u0)=1+¢, #0)=0.
Tt is well-known that for ¢ small enough # is periodic and in particular
E|u(z‘)| =lull,>1+e¢.
On the other hand # is positive and the maximum of |#/| is achieved when

4 =u—uw =0, equivalent to # = 1. By the energy identity

1 1
u’2—|—§u4 — :§u3 —

we find

1
/12 =5 = 1) = @G — 1) ~ 22

hence

]|, ~ev2.

Now « is also a solution of
A+ —utcd =cid =f

and

1/ lloc ~ cev2.

So we see that for any ¢ < v/2 the result of Proposition 5.1 is not valid. In addition, no
estimate of the form

tli—rgo|u(t)| <1+4C|Ifll

is valid with C fixed as ¢ tends to 0.
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Remark 5.3: When this paper is written we do not know whether an estimate of the
form

hm|u )| <1+ COfllw

1—00

is valid for ¢ small. This would be enough to generalize Theorem 1.2 (under relevant
smallness assumptions) for ¢ small , whereas at the present time the author can only
achieve that for values of ¢ slightly smaller than ¢y = 2v/2.

6. - Proor or THEOREM 1.2 AND ITS COROLLARIES

One of the main ingredients of the proof is a precise formulation of the asymptotic
stability of the bounded solutions w, , w_. Of course, changing « and f to their opposites
it is sufficient to consider w., . In this case we have

LemMa 6.1: Assume

1
Then for any 6 <1 t/aere extsts n > 0 such that the conditions

lu(ty) — 1| <0 and | ()] <1

imply

(6.2) Wzm,\MﬁfHSi
and

63 T futn -1 < Y2y

In addition if ¢ > 2\/2 , under the same assumptions we have
(6.4) tllinoo (Ju(t) — 4 ()] + |/ (1) — &, (2)]) = 0.

Proor: By setting # = 1 + v we obtain the equation for v
Vo 4204307+ =1,
Introducing

4 2
_ 3 U 2(Y
Hw—£+v+4 ”Q*Q'

We remark that

1 1 3 2
< - — < —
|v| :>20 P) < 7Y
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we now introduce
1
F(t) = 5 02(t) + P(v)(2)

and
@(t) = F(2) + avd/ (2)

. . . . 1
where a > 0 will be chosen later. First we notice that if a < 3 Ve have

Z}Z}/ ( Uz + 1}/2)

ool —

<

N

lave'| <

so that

i(vz +02) < ) = F(O) + vt/ (t) < 262 + 2)

whenever the condition
ol <2
=3
is fulfilled. Let

T= sup{t > 1o, [0(8)| < %}

and | := [#y, T). We now derive a sequence of estimates valid for ¢ € J. We have
c

Ft)=—-a? 4+ < >

Z)/2_|_2if2
c
W) =02 40" = — ) — 2% + 30 + ') + fo.

1
Since v > ~7 on | we find

1
() <o? =) — ((1 +Z>v2 + v4> +f<V? =) —? =0+

and by using
—an < %112 + 62—20’2
we deduce
P < <a—|—i>f2+ ( £+a+a—>v'2 — =
2c 2 2 2
We select
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Vo ¢
so that a(l + 3) =1 and

1 c a a 1
/ < 2 _ L2 22 22 /2 2
®_<a+2—c>f 5 s 2(v +v)+<a+2c>f

therefore we find
/ a 1 2
Vie], &< —-Dd+(a+—)f
4 2c
which is easily integrated to give

2
40 4 - 5
IA115

Vie], @) <exp <—%(i - z‘o)) D(ty) +

. 1 e
In order to achieve T = oo, we need to ensure |v| < 708 J, which is satisfied as soon as

.2
da 1\ 1
o)+ L=i(i) e

To achieve this condition it is sufficient to ensure

4q

1
@(t()) S ﬁ and

OO_128

1 1 .
The first condition is satisfied whenever 2¢7(zy) < 8 and 20 (¢y) < 198 207(y) which

corresponds to our hypothesis. The second condition is equivalent to

C
L < —Ar2ed <
= 128 2 4¢ 1024(c?2 + 1)
4 + 22

or

[ ——
RSV IV
Under these conditions we have T = oo and

2
4o+ - 5
“I71%

V> 1y, D) <exp (—%l‘) D(ty) +

and the inequality
lut) — 1| < 20(z)"/?
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together with

2
40+ 2 244202 2 4
N :8642r
ca C c C

gives the final estimate. To prove the second part, we observe that the asymptotic distance

between # and 1 is less than
L \F B
P

Then we claim that z asymptotes @, as ¢ tends to infinity and since #" is bounded in the
Stepanov space $? it will follow that / asymptotes @/,. We now use the translation-
compactness method developed in the almost periodic setting by Amerio [2] and Biroli
[3]. Assuming, by contradiction, the existence of a,, tending to infinity with

lim |u(a,) — o (a,)]=n>0
n—0o0
we can replace a,, by a subsequence, still denoted a,, for convenience, such that

ula, +1), oila,+18), [fla,+12)

converge respectively to v, w and g on R, uniformly on compacta for the first two
functions, in local I? weak for the third. Then v, w are two bounded solutions of

'+ +27 —z2=¢
with
Max{[lv = 1|, [lw = |} < 7o
In particular v = w and for # = 0 we obtain a contradiction with

lim |u(a,) — wi(a,)| =n>0.

This contradiction proves the claim and completes the proof of Lemma 6.1.

In order to complete the proof of Theorem 1.2, we need the following result

Lemma 6.2: Let | = (a, +o0) and u € C*(]) be such that u < M on |. Let

U:= lim u(z).

1—+00

Then there exists a sequence of reals t, € | such that t, — +00 and

lim "(z,) <0, lim u(z,) =U

7n—+00 n—00

Proor: It is obviously enough to prove that
Ve>O0,VI>a, Jt>T with w(t) >U—¢ and 4'(2)<ce.
Assume on the contrary for some T and & > 0

Vi>T,ult) >U—e=d"(t) > ¢.
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Pick any # > T such that u(zy) > U —e. If 4/(¢) >0 , since #"(¢9) >0 we have
u>U—¢ on [fy,t +0d] for some 0 > 0. We claim that # > U — ¢ on [#), +oo].

Assuming the contrary let
T=inf{t>1t, ult)<U-—c¢c}.

Then since #” >0 on [#,T] we have # >0 on [#,T] and in particular
u(T) > ultg + 8) > U — ¢, contradicting the definition of T. Now since # > U — ¢ on
[#9, +0c], u is increasing and strictly convex on [y, +0c]. Therefore « tends to +oo with
¢, contrary to the assumption . As a consequence

Vi>T,ult) >U—e=d"(t) >¢,4 () <0.

Now let T; > T be such that «(T;) > U — ¢ and so large that

SN =TP+U—z>M.
A simple continuation argument as above shows that

Vee [T, Ti], ut)>U—¢, 4@ <O0.

As a consequence

vee [T, T, «'(t) >c¢.
By integrating

Ve [T, Ty], o) <—e(T) —1)

and by integrating once more

lt) > u(Ty) +5 (Ty = 1)
Taking # = T we obtain

u(T) 2 alTy) + 2 (T = TP 2 U—e+5 (T = TP > M,

a contradiction showing that our initial assumption cannot be satisfied and concludes the
proof of Lemma 6.2.
In the proof of theorem 1.2, we shall use the following simple lemma

. , Lo 3
Lemma 6.3: For any € >0, the inequality u— 1w’ < e implies either u S; or

4e
>1——
#2173

Proor: If # < 0 there is nothing to prove. If # > 0 we distinguish 2 cases

) Ifu< L, then 1 — s > % and therefore

V3

2 3
u—u3:u(1—uz)§5:>§u§6:>u§§5

1 1
i) fu>—, thenu > 3 and therefore

V3

u—u3z(u—l—uz)(l—u)§62%(1—u)§5=>u21—28.
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Proor or THEOREM 1.2: Let # be a solution of (1.2) on R and introduce

M= lim u(s), m=liminfu(?), e=|f|,-
=400 t—400

As a consequence of Lemma 6.2, there exists a sequence of reals #, such that

lim #"(z,) <0, lim u(z,) =M.

n—-+00 n—00
Since #” is bounded, it follows easily that
y

lim #/(¢z,) =0.

Now we have
(u—2)t,) = —f(t,) +d(t,) + (2,
and therefore

Tim (u — °)(2,) < €.

n—o0

As a consequence of Lemma 6.2, for # large enough we have either

u(t,) < 2e
or
u(t,) >1-—2¢.
In the first case we conclude
M < 2e.

In the second case we have in fact, by virtue of Section 5

1—25§u(z‘”)§1+§.

) 1 . .
As a consequence of Lemma 6.1, since 2¢ < T and since lim #'(z,) = 0, we conclude

that « is asymptotic to w, at +o0o. In this case the proof is over.

Coming back to the first case, we now consider a sequence s, such that
d"(s,) >0, lim u(s,) =m
n—o0
and by the same argument as above we conclude that either « is asymptotic to w_ at +o0,
or
m > —2¢.
In this second and last case we have

lim |u(r)] < 2¢

t——+00
and by our hypothesis on f this implies
lim |u(2) — cwo(#)| =

t—00
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We prove this last property using again the translation method of Amerio-Biroli. Indeed
assuming, on the contrary, the existence of a,, tending to infinity with

lim |u(a,) — wola,)| =n>0

we can replace a, by a subsequence, still denoted a,, for convenience, such that
wla, +1), wola,+1), Fla,+1)

converge respectively to v, w and g on R, uniformly on compacta for the first two
functions, in local L? weak for the third. Then v, w are two bounded solutions of

L+ —21=¢
with
Max{[v]| o, lewll o} < 2.
In particular » = w and for # = 0 we obtain a contradiction with

lim |u(a,) — wola,)] =5 >0.

This contradiction proves the claim and completes the proof of the Theorem 1.2.
Proor or CororLary 1.3: Any almost periodic solution is asymptotic to one of the 3

solutions wg, w,,w_ as t — +o0o . The result follows then from the fact that an almost

periodic function tending to 0 at infinity is identically 0. The periodicity statement comes

from the fact that wy, ., w_ are T-periodic.

Proor oF CororLarY 1.4: Immediate from Corollary 1.3.

7. - Proor or THEOREM 1.5

First we show that for a fixed period T, T-periodic solutions # are such that ||z’ — u||
tends to 0 with [|f]| -

ProvposiTioN 7.1: Let f be bounded, T-periodic and let u € C*(R) be a T-periodic
solution of (1) . Then we have the estimate

4 c?

T f31 +1
(7.1). o = ull < ||f||oo<1+c - t12 IfIIic)

Proor: By integrating (1) on | := (0, T) we find

Juﬁ _Wds = J Jir
] ]
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in particular

j(zﬁ )t < |l

I
Then multiplying (1) by #' and integrating on | we get

1/2 1/2
cJu'zdt:qu'dtﬁcJu'zdtg (Ju'zdt> <Jf2dl‘>
J ]

] I I

~l -

j W2 ds < 1jf2dt<—\|f||
] ]
Hence

< VT
/1 < =1/

Next multiplying (1) by « and integrating on |

Hence

J(zﬁ—uz)dt:qudtJrJ %:>J<u o d¢<qud¢+ ~ A1
] ]
j W =2 s < szdf+zllf||2 < T(g i
4 - 2 o0 = c?
] ]

J ] J
1
A
On the other hand by Cauchy-Schwarz

Juzdtglj ddr 2L 3Ju2d¢<lju4dt+£.
3 PR
] ] ]

304, L[, 2+ 9T
4Judz Zjudt§T< )||f||
] I

9Ju4dt— J WPdr < 12T<CZ
J ]

By addition we find

multiplying by 12

i+ I

adding T

A+ 31T
132~ 12 < 12T< )|f|
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Finally we find
6 =l < NNl + 162 = a)' |y < N Flloo + 13 = 151 |1

VT 241 31T
Ius—ullooéllflloo<1+7 12T<C 2 )Ifli#T -

And (7.1) follows.
In order to prove Theorem 1.5, the following simple lemma is useful.

ProPOSITION 7.2: For any & > 0, the inequality |# — u| < € implies

inf(lud, 11— a, 11 +af} <

Proor: i) If |u| < L, then 1 — 2 > ; and therefore

V3

2 3
| —ul =|u||]l —i?| <e= §|u| <e=|u Sze

1 1
ii) If |u| > —, then |u| > > and therefore

V3

3
11—l = 1= Ju’| = |1+ [ull|L — |u]| <26 = L= lul] < 2¢

hence

4
1—lu| <2
L= Jull <3

3
< =
e<ze

and the result follows since

[1— |z|| = inf{|1 — 2|, |1 +«|}.

Proor orF Tueorem 1.5: Under the hypothesis (1.10), as a consequence of Proposition
7.1 and lemma 7.2, any T-periodic solution # of (1) satisfies, for each ¢,

. . c 5
inf{|u@)] ,|1 —u@®)] ,]1 +u@)|} < 1nf{1 /1 +ﬁ_ 1, \/;— 1} .

Since # is continuous and the 3 closed intervals centered at 0, 1, —1 with radius

p—inf{‘/lJr%—l,\/g—l}
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are disjoint, we have either

=1, < inf{

in which case # = w,. or

C
3\/5
c 5
41|l <inf —1,4/5-1
ot 1l S inf J14 55— 1,42

in which case # = w_, or

c 5 1
< inf +1,\/71 < —
Il m{ 32 3 } 3

in which case # = wy.
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