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AssTrACT. — We prove a Plemelj type formula for general potentials in C' domains. By means of
that we obtain completeness theorems in L? norm for the Dirichlet problem for the polyharmonic
equation 4”x = 0.

Teoremi di completezza per il problema
di Dirichlet per 'equazione iperarmonica

Sunto. — Nella prima parte del presente lavoro viene dimostrata una formula tipo Plemelj per
potenziali di tipo generale in domini di classe C'. Per mezzo di questa si ottengono teoremi di
completezza in norma I? per il problema di Dirichlet per 'equazione iperarmonica 47« = 0.

1. - INTRODUCTION

Roughly speaking there are two different kinds of completeness theorems for systems
of particular solutions of partial differential equations. Results of a first kind show that we
can approximate in a certain norm a solution of a partial differential equation by a
sequence of particular solutions of the same equation. For example, if we have a
holomorphic function f of one complex variable, we may ask when f can be
approximated in some norms by polynomials or by rational functions. The classical
Theorems of Runge and Mergelyan are the main results in this direction.
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These problems have been widely studied and extended to general elliptic partial
differential equations. Quite general theorems are contained in [7]. For a more detailed
description of these results and for a complete bibliography we refer to the first section of
[16] .

A second kind of results is much more sophisticated and is related not only to a partial
differential equation, but also to a particular boundary value problem.

To describe these results, let us consider, for simplicity, the Dirichlet problem for
Laplace equation in a bounded domain Q C R”: 44 =0in 2, 2 = f on X = 9Q. Let us
denote by {w,} the system of harmonic polynomials.

The completeness of {w.} in C°(X) (I(2)) implies the possibility of approximating
any f € C/(X) (I”(2)) in the corresponding norm by a sequence of harmonic
polynomials. This sequence will converge in 2 to the solution « of the Dirichlet problem,
because of known inequalities.

This idea is very old and goes back to Picone [24]. Fichera [15] was the first one to
prove completeness theorems for the Dirichlet problem, the Neumann problem and the
mixed problem for Laplace equation.

In proving such results, an important role is played by the class of functions .27
(p > 1), which was introduced by Amerio [1]. This is the class of the functions z € L?(Q)
for which there exist A, B € L?(X) such that

Jqu//dx = J(A %—Bt//)da
Q by
for any y € C*(R”).

In view of the Caccioppoli-Weyl Lemma, any function # in ..Z” is harmonic. Amerio
[1, 3] proved also that, if # € .Z?, then for almost y € 2 we have

lim 2(x) = Al(y), lim Ou = B(y)
X—y x—y Qv
where x tends to y on the internal normal at 2 in y.

As Fichera writes in [16], the Amerio result s of remarkable technical and historical
interest, since it is the first “regularization theorem” on the boundary for weak solutions of
an elliptic equation. It appeared only a few years later of the results by Caccioppoli (1938)
and by Weyl (1940) concerning the “interior regularization”.

While very general completeness theorems analogous to the Mergelyan one are
known, this is not the case for the completeness theorems as proposed by Picone.
There are several results which are connected to harmonic and biharmonic equation, to
the elasticity system, to the heat equation, to general 2nd order elliptic equations and to
higher order elliptic equations with constant coefficients in two variables. We refer again
to [16] for the corresponding references, to which we would like to add [8, 9, 10, 11, 12].

These completeness results are interesting also from the numerical point of view. In
fact, by means of the completeness for p =2, we can determine an approximating
sequence in two different ways.
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The first is the classical least squares method, while the second consists in considering
a Fischer-Riesz system. For instance, in the case of the Dirichlet problem for Laplace
equation we have considered before, we can write
Ou ow
wop —do=|f=Lde k=1,2,...
v v

P P

and consider this as a Fischer-Riesz system in the unknown 9z/8v. The completeness of
{op} in I[*(2) implies the possibility of constructing a sequence of harmonic
polynomials approximating dz/dv in L? norm. This leads to an explicit approximation
of the solution «.

In papers [1, 2, 3] Amerio investigated the equivalence between several boundary
value problems and such Fischer-Riesz systems. In particular, in [2], some boundary
value problems for the polyharmonic equation were considered. The study of the
polyharmonic equation is a classical problem, for which recently there is some renewed
interest (see, e.g., [5, 27, 6, 18, 25, 4, 26, 19, 20]).

The aim of the present paper is to prove a completeness theorem for the Dirichlet
problem for the polyharmonic equation of order 7. Namely, if we denote by {wg”)}
the sequence of polynomials solutions of the equation 4”# = 0, we prove that the
system

{(@{™, 8,0, ..., 0" ™)}

(0, denotes the normal derivative) is complete in [L2(X)]” (1 < p < o0).

So far such a result was known only for the #-dimensional harmonic and
biharmonic problem (see references in [16]). Moreover the extension of the
techniques used in these two cases to the general iterated Laplacian 4” does not lead
to completeness theorems for the Dirichlet problem, but to completeness theorems for
the boundary value problem in which the data on X are 4’# and 0,47u for
7=0,....,s—1if mw=2s, or Aufor j=1,....s and 8,4 u for j=0,...,s—1 if
m=2s+1.

We have to say that for #» = 2 and p = 2 our theorem is contained in the results of [9],
but the proof used there cannot be extended to #-dimensional problems.

We would like to stress the fact that we prove these completeness Theorems in a
bounded domain of R” whose boundary is merely required to be C'. Usually results of
this kind are proved for Lyapunov boundaries (see [16]).

While for # = 2 some results for non Lyapunov boundaries are known (see [14, 8, 9]),
this is not the case for # > 3, as far as we know. Thus our result seems to provide a
progress even in the simplest cases of harmonic and biharmonic equations.

The main ingredient of our proof is a Plemelj type formula for certain derivatives of
polyharmonic potentials on C' domains (see Theorem 6). This will be derived from
some general results of Potential Theory in the spirit of [13], which seem to be
interesting in itself.
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2. - SOME GENERAL RESULTS OF POTENTIAL THEORY

Let us introduce some notations. If 4 is a function defined in R” \ {0}, we say that 5
is homogeneous of degree a if h(px) = p®h(x) for any x € R” \ {0}, p > 0. We say that 5
is essentially homogeneous of degree a is b is homogeneous in case a < 0 or, if a is an
integer > 0, b has the form h(x) = b1(x)log |x| + h2(x), where by is a homogeneous
polynomial of degree a and 5, is homogeneous of degree a.

Lemma 1: If K(x) € CHIR" \ {0}) 45 a homogeneous function of degree —m (m € N),
there exists a constant I' such that

K) = KG)| < Tle =y Y <7l ¥ x,p € R\ {0},
h=0
For the proof, see [13, p.47].
By H(R"™') we denote the space of the functions ¢ which are bounded and
measurable in R”™!, have a compact support and are continuous at 0.

Turorem 1: Ler K(x;2) € CY(R™ \ {0}), where x = (x1,...,%,-1) € R" " and t € R.
Let us suppose that K is odd and homogeneous of degree 1 — n.
We have

(1) for any t # 0 the following integral does exist

—00

R"! |x|<M

J K(x;2)dx = lim J K(x; £) dx;

(i) there existsy € R such that
J K(x; ) dx = y; J Kx; —2)dx = —y Vt>0.
R"! R

(iii) for amy é >0

t—0

lim J K(x; t) dx = 0.

|x|>0
Moreover, for any ¢ € H(R"™Y), we bave
2.1) lm J o) [K(x: 1) — Kxs —2)] dx = 27 (0).
—0+
R"!
Proor: Since K is odd, we have
(22) J Kl7;0) dy = 0.

=1



— 157 —

It is known that from (2.2) it follows (i) for # > 0, the first equality in (i) and the limit
relation in (iii) for # — 0T (see [13, Th. I and II]). On the other hand we have

J K(x; —1) dx = J K(—x;—t)dx = — J K(x; £) dx
R"1 R R
and then (1), (ii) and (iii) are true.
Set
A) = J PK (e 0) — K, )] dx — 27 910).
R"!

Keeping in mind (ii), given & > 0, we may write

A = J o) — p(O)] [K(x: A) — Ko —0)] dx =
R

j [p(x) — (0] [K(x;#) — K(x: —)] doe

|x]<d

Jmmmmﬁ—mmqnw—mmj'mmﬁ—mm4nﬁ

|x]>6 |x|>0

where 0 > 0 is such that |p(x) — ¢(0)| < ¢ for |x| < 0.
Since the support of ¢ is compact, there exists M > 0 such that
| otoxean ~ ks —nmax= | ot 1RG0 - K01 d
|x[>d d<|x|<M

and then

tlir(r)1+ J o(x) [K(x; £) — K(x; —2)] dx = tlir(r)1+ J (%) [K(x; 1) — K(x; —8)]1 dx =

[x[>0 0<|x|<M

o(x) [K(x;0) — K(x; 0)1dx = 0.
o<|x|<M

The limit relation (iii) implies

lir(l)] »(0) J [K(x;2) — K(x; —2)]1dx = 0.
10+
|x|>d

Finally, since Lemma 1 shows that there exists a constant C such that

K(x:0) — Klx; —1)| < C m (x;2) € R\ {0}, #> 0,
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we have
¢
() — p(0)| [K(x: ) — K(x; —8)| dx < Ce J _
|x[<0 |x|<d
But
, d
¢ ' -
(23) dezwn—ljmdpéwn_1jmdp§§wn_
lx|<o 0 0

(w,1 being the hypersurface measure of the unit sphere in R” ') and then
|| 1ot = g0 K520 - K =01 < € S 1
lxj<o
We have thus proved that

limsup |A@#)] < C ;—T Wy—1 €

t—0*

and this implies (2.1).

O

Treorem 2: Let h € C2(R”\ {0}) be even and essentially homogeneous of degree
2—n. Set K(x;t) = 0bh(x;1)/0t, Ki(x;8) = 0h(x;2)/0x; (G=1,...,n—1). For any

9 € HIR"™Y) we have

lim J 9(x) [K(x; ) — K(x; —)] dx = 2y p(0),
R"!
tlir(1)1+ J o(x) [Ki(x; 2) — K;(o¢; —£)] dx = 0 (j=1,...,m—1).
R

The constant y is given by

1
mhy ~3 J Ahy(&) log|&,| do: fn=2

I¢[=1

J [2 — mb(&) — Ab(&) Tog &, doe i n>3.
[¢[=1

y:

N —

Proor: It is clear that the kernels K and K; satisfy the hypothesis of Theorem 1. The

expression of y for K and the fact that y; = 0 for K; was proved in [13].

From now on 2 is a bounded domain of R” with the boundary X of class C'.

O
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Tueorem 3: Let h € C2(R"\ {0}) be even and essentially homogeneous of degree
2 —n If p € LNX) and xy is a Lebesgue point for ¢, then

(24) Mn(meaibu—wM@—J@@%£{Mﬁ—yw%)ZZMMWWM

X—X0
z Xz

where x is a point on the inner normal to X at x, X' is its symmetric with respect to xo and
y(xo) Zs given by

bt 7% J U (&) log |E - v, |do fn=2
lei=1
@5) =4
5 | 1@=mb© - @) togle o 7 023,

[¢l=1

Proor: We first prove (2.4) in the case ¢ € CO(2).

Let (t1,...,T,—1,Vy,) be an orthonormal system and let us consider the coordinate
system (1;¢) = (#y,...,7,_1,4) with the origin in x; corresponding to the basis
(T1,. .., Ty_1,Vy,). We denote by B, the ball {n € R"™" | |y < d}. Given & > 0, let &
be the part of X which admits the representation ¢ = y(5) with y € C'(B,), 7(0) = 0,
Vy(0) =0, [Vy(p)| < ¢ for |y < d. We remark that in B; we have

(2.6) ly(m)| < elnl.

We shall suppose also ¢ < 1/2.
If we write x = (0; ), we have ¥’ = (0; —d) and

n—1 n—1
x—y==> M+ 0—y0lvy, ¥ —y== m7—[5+ 70,
h=1 h=1
Setting
(2.7) (n;2) = Zi’] T, + 1y K(n;2) = Qb (n;2)
Xo ) h X0 | 9 ) ot X0\l
we have

b — 3) = Kl =3 — ).

O i —3) = K6 — (), =

Ovy,

Therefore we can write

J(p(y) ij h(x —y) — 6? h(x' — y)} doy, = J @) [K(;0 — y(n)) — K(ng; =0 — y(n)1 dn

Ed Rn—l
n—1

where () :go[xo+ anrb—ky(n)vxo}(l+|Vy(77)|2)1/2 if |n|<d and @) =0 if
In| > d. h=1
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If we set
T ;1) = Kyt — () — KGp; —¢ — () — K(@p; 8) + K(og; —2)

we have

) o, -
[ 000 [t =)~ 5ot =) o =

24
- j Ply) T () dp + j Ply) (K5, 8) — KGy; )]
Rt R"!
Fix n # 0 and set F(v) = K(i5;0 — v) — K(5; —0 — v); we have
| 7 (3;0)| = |F(y(n) — F(O)| = |F'(a y(n))| |y()]
(6 € (0,1)). Since F'(v) = —K,(;0 — v) + K,(; —0 — v), Lemma 1 shows that

Faym| <256 > Ul + 6 —aym)’1 " 21nP + 6+ oy 10772,
h=0

Since |29 7()| <268 [y(| < 2&d[n] < (1/2)(|nf + &), we have
1
0 + (6% 0 7)) = Inf* + & £20090) + 77 0) = 5 (nl* + %)

and then, recalling (2.6),

bl e, o
(g2 + 6202 = 77 (4P 4 )2
As in (2.3), this inequality leads to

| 7 (g;0)| < C

J D(n) T (n;0) dn

R”! By

~ 0 ~ 7
chjidﬂg C*wnflg.
(‘”‘2+52)71/2 2

Theorem 2 shows that
Jli%g J D(n) [K(n3;6) — Klg; =) ] dn = 2 y(x0) @(0) = 2 y(x0) (o)
Rr/—l
where

nhy —% J Aby2(&) log |&;| dae ifn=2

Pxo) = -

J [2 = ) (&) — Ab (O) log |&,[1do= if 1> 3.

[€l=1

A simple substitution shows that y(x) can be written as in (2.5) (see [13, p. 50]). We
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have proved that

lim sup
X—X0

0 3]
J o(y) |:an0 h(x —y) — e hlx' — y)] day, — 2 y(x0) p(xo)

P

~ T
<C=w,_1¢
>~ 2 n—1

which, for the arbitrariness of &, implies

. 0 9 .
2y

This proves the Theorem for ¢ € C°(X), because

lim [ o) bt 5

X0 X0
2\Zy

h(x' — y)] da, = 0.

Let us suppose now that ¢ € L!(2) and x is a Lebesgue point. Since we know that
(2.4) is true for ¢ = 1 and that

lim J [go(y)—go(xo)][

X—X0

2\

13} a B
v hlx —y) — o h(x' — y)} do, =0

(where 2'; have the same meaning as before), we have only to show that

. 9 o
(2.8) xlg{(lo J [p(y) — plxo)] {avmb(x —y) - e hlx' — y)] da, = 0.
2y
We have
9 o
[ o0 = ot |2t =30~ 2t ), =

2y

= J [Z ()| |K(n; 6 — y()) — Kng; = — p(n))| dny
B,

n—1

where now ¥ () = {(p[xo + STy + y(n)va} —p(xo)1(1 + [ V()]
h=1

1/2

Lemma 1 shows that
)
|K(17;0 — y()) — K(ip; =6 — y(p))| < 2T ————
(n? + 62"/

and then

7n—2

d
J [ ()| |K(p; 0 — y()) — Koy = — p())| dip < 2 FJ(/)ZTW dp J ¥ (p&)| do.

By 0 I¢[=1
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We can now use a known argument (see the Appendix of [17]) which we repeat here
for the reader convenience. Set

G = [ 2dp | 122 dor.
0 <=1
Since xp is a Lebesgue point, given ¢ > 0, we may choose d in such a way r' *G(r) < &

for 0 < r < d. An integration by parts gives

d

op
doz [lwpe) s
J ¢ | (pf)l (,02 +52)n/2

n—2

0

d
=G0 2 dp <
S R

=1 0
op

(p2 4 62) "2/ dp <

d
<G + n J G(p)

d d
op” 1 T

0 0

From this (2.8) follows and the Theorem is proved. O

Consider now the tangential operators:

. 0 0
M2 = vi(xo) =— — vi(xo) p

89%

Tueorem 4: If h(x) satisfies the hypothesis of Theorem 3, ¢ € LNX) and xq is a
Lebesgue point for ¢, we have

lim (J o) Mfﬁ/o(x -y do, — J(p(y) Miﬁ(x/ ) day) =0
P

X—X0
2

where x is a point on the inner normal to X at xy and x' is its symmetric with respect
o Xxg.

Proor: If /=% or vi(xg) = vp(xg) =0, the Theorem is true. Otherwise let
(T1,.++,Tu—1,Vx,) be an orthonormal system, where 7; = (111,...,71,) is given by
T = —Vi(xo), T1; = ve(xo), 71;; = 0 if / # 7. The result can be proved by means of the
same arguments used in Theorem 3, because

MiETh(x — )1 = Kp; £ = ()
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where

0
Ky 2) = — a—/ﬁm(n; 1)
m

and by, is given by (2.7).
The next Theorem shows that the function y can be expressed my means of the
Fourier transform.

TueoreM 5: Under the same bypotbesis of Theorems 2 or 3, we have

(2.9) y(x) = % T (4b)(vy) = =277 (h)(v,)

where the Laplacian A has to be understood in the sense of distributions and .7 denotes the
Fourier transform.

Proor: Let us first consider the case 7 > 2. Since 4 is homogeneous of degree 2 — 7, its
second derivatives are homogeneous of degree —#» and we may write

Ah(x) = §,|2}(:;) x € R”\ {0}.
Let us prove that
(2.10) Ab:%%;+ Q—n)Jb@MQ 5
<=1

in the sense of distributions, where 0 is the Dirac delta. Let ¢ € C>(R"). We have

(2.11) (4h,g) — de(pdx: lim J b dpds — 11%1< J pAbdsx+

R” |x|>¢ |x|>¢

+o | b 6edo+ @) | b(é)w@éﬂ%) -

=1 j¢j=1

I<

= lim J p(x)Q()|x| "dx | + | 2 —n) J h(&)dae | ¢(0).

e—0F
x| >e [€]=1

This shows that, for any ¢ € CO”(R”), the limit

(2.12) lim J 0(x) Q(x')/|x|" dx

e—0F

|x[>¢
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exists and is finite. It follows that

J Q&) do: =0

[€l=1

and then Q(x')/|x|” is a singular convolution kernel which defines the temperated
distribution (2.12) (see, e.g., [23, 157-162]). We denote this distribution by the same
symbol Q(x')/|x|".

Formula (2.10) follows from (2.11).

Keeping in mind that  is even, we have

F@W)/ ) = | 2@ logle- ¥ do
<=1

(see, e.g., [23, p.98]) and since .7 (d) = 1, (2.10) implies the first equality in (2.9).
The second follows form the very well known equality

T (UT)(x) = —472|x|>.7 (T)(x)

which holds for any temperate distribution T.
If # =2, b is essentially homogeneous of degree 0, i.e.

h(x) = b1 log |x| + ha(x)

where 4 is a real constant and 5, (x) is a homogeneous function of degree 0.
Therefore

Abh = Aby + 21 by o
and (2.9) follows as in the case 7 > 2. O

3. - ON PoLyHARMONIC POTENTIALS

In this section we shall apply the results of the previous section to the polyharmonic
potentials

Jsﬂ(y)D;me(x*y)day, la| = 2m — 1,
>
where

1w

Fm(X) = 22mn-ﬂ/2[‘(m)

for odd # and for even 7 > 2, and
(— 1)(;172)/2
T 22 2 — D (1 — 1)2)!

F,(x) Ix[*”" log |x|

for even # < 2m.
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It is well known that F,,,(x — ) is a fundamental solution for the iterated Laplacian 4”
(see [21, p. 43-44]).

THEOREM 6: Let ¢ € 1P(X) and xy € X be a Lebesgue point for ¢. For any multi-index o
with |a| = 2m — 1, we bhave

X—X0

z z

61)  lim (jm)D;Fm(x—y)day - J(p(y)D;Fm(x' —y)do-y> = (x0)p(x0)

where x is a point on the inner normal to X at xy and x' is its symmetric with respect
10 Xo.

Proor: Let us write a = ag + a1, with |ag| = 1, |a1| = 2 — 2. We may write

J(p(y) DJF,(x —y)da, = =D} J(p(y) DJ'F,(x —y)doy ;
3 by

Theorems 3, 4 and 5 give

lim ( Jw(y) DJF,(x —y)do, — J(p(y) D(;Fm(x’ —) d@) =

X—X0
X x

_ }}EEO (J ¢(y) DY D' F,(x — ) doy, — J(p(y) DYDJE,(x — ) day> =
3 b5
— 2" (x0) 7,, (%0) p(x0)
where
Vo, (%) = =277 (D" E,,)(v,).
On the other hand

T (D"F,)(x) = (= 21" 5.7 (F,,)(x)
and since (1)

(=" 1

FE)) =
( )(X) 4mn-2m ‘x|2m

we get

iy () =3 V(2.

(!) From 4”F,, = 8, we deduce .7 (4”F,,) =.7(9), i.e. (— 472|x|*)".7 (F,,) = 1.
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Lemma 2: Let K be a kernel such that
K(x,9) = O(|x —y|"™")
for (x,9) € R” x R” with x #v. If p € LP(X), the potential

u(x) = J(p(y) K(x,y) do,

P

belongs to LI (R").

Proor: Let s be such that (# —1)/n <s <1 and set a =sn/p, f=n—1—0a. We
have

p
) < Co (J% day) <
X
, J plq
<[220 | [=25]  w=ro-0
Jy = L1y =

Let us fix a compact H C R”. Since fig < n — 1, we have that

J do, <G
ly —

b
for any x € H. Therefore

[ apas < ¢ [iporras, |
x H

dx
|X . y|(lp S C3 H(p||1[7ﬁ():‘)
H

and the result is proved. O

CoroLLary 1: Let a be a multi-index with |a| = m — 1. Let us denote by u the potential

) = [ O)DLE, by~ 01 dor, .

b
If p € LP(X), then u € WP (R").
Proor: If x¢ X we have
62) D) = [ ) DEDSTE (y — ) o,
b

Lemma 2 shows that the potential (3.2) belongs to L

loc

(Q), provided || < 7 — 1. To
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prove the result, we have to verify that (3.2) is a weak derivative. Indeed we have

J (o) DPyp () dx — J Dbyx) d J #9) DATF,(y — )] o, =

R” R” z

= Jcﬂ(y) da, J Dijy(x) DSLE,(y — x)] dx =

Xz R”
=(-/ Jqo(y) do, J y(x) DIDSIF,,(y — x)] dx =
P R”
= (=0 [y de | ) DEDYIE, 3 = 20,
R” P

foranyy € C(R") and for any f§ with || < 72 — 1. We could integrate by parts because
DfD; [F,,(y — -)] is locally integrable for any fixed y, provided |f| < 7 — 1. The last
equality follows from the Fubini and Tonelli Theorems, because

J w0 dxj 190 [DEDELE,,(y — 01| doy < C [9llis Wl
R” P

in view of Lemma 2. O

4. - COMPLETENESS THEOREMS

We begin this section by recalling a known existence and uniqueness result. Let P be
the operator

(4.1) Pu= Y (= 1D"Dapx)D'n)

|af,|B|<m

where 4,4 are complex valued functions belonging to C°(Q).
TueoreM 7: If P satisfies the Garding inequality

(42) 7 J S gD uDludy > Clulfyug ¥ e CX(Q),
Pl

there exists one and only one solution u € W"?(Q) of the Dirichlet problem
Pu=/, u—g W (Q)
where f € WP(Q), g € W"P(Q) are given.

This result is a particular case of a general existence and uniqueness theorem given in
[22, p. 303]. We remark that Theorem 7 can be obtained by means of the usual
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variational methods for p =2 , but for p # 2 is very delicate, especially if we do not
assume the boundary 2 to be smooth. According to [22], Theorem 7 holds if Q satisfies
the so called N;fl/ P condition (see [22, p. 287]). This is a mild condition and is certainly
satisfied if X € C1.

Tueorem 8: There exists one and only one solution u € WP (Q) of the Dirichlet problem
Ay =, u—g eW”(Q)

where f € W"r(Q), g € W”P(Q) are given.

Proor: Define

Z ap éa’?ﬁ

{zénléz“lnlzx if 72 =25+ 1;
|a|=|p|=m

= &7l if 7 = 2s.

The corresponding operator (4.1) is 4”. By Theorem 7, it suffices to prove the
Garding inequality (4.2).
We have

IV (Lu)Pdx if m =25+ 1;

o lel=IBl= | ul? dx if 72 =2s.

-]
J Z aa/;D“uDﬁudx }
Q

Integrating by parts we get

J Z aap D uDPudyx = J|Vmu|2dx VueC®Q)

Q |a|=|pl=m 0

(where V,, denotes the gradient of order 7z) and (4.2) follows from Poincaré’s
inequality. O
Let us denote by {w(ém '} a complete system of polyharmonic polynomials. This means
that any polynomial solution of the equation 47« = 0 can be written as a finite linear
combination of polynomials wZ”). Such a system can be obtained in the following way.
If {Yy} =1,...,pm,h=0,1,...) is a complete system of ultra-spherical
harmonics, where p,, = 2b +n —2)(h +n — 3)!/((n — 2)'1!), the system

x| Yb5(| |) =1, ... pyh=0,1,...)

provides a complete system of harmonic polynomials {w;}.
A classical theorem of Almansi (see, e.g., [5]) states that « is a solution of the equation
A"u =0 in a star-shaped domain if, and only if, there exist 7 harmonic functions
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Uy, . . ., ty—1 such that
m—1
.
= Z x| 21 (x)
7=0

It is easily seen that if # is a polynomial then #; are polynomials. Hence a complete
system of polyharmonic polynomials {a)gﬂ)} is given by

|X|b+27Y (l |> (]':0,-"77%_15&:17"'7Pﬂbab:0’1"")'

TreoREM 9: Let Q be a bounded domain of R” such that R" \ Q is connected. Let
1 <p < oo. The system

{@{™, 0,0, .... 0" o)}

is complete in [LP(2)]"”

Proor: Let 1 < p <ooand g =p/(p —1). Let (py,...,9,,) € [L/(2)]"” be such that
(4.3) Jwgﬂ) b, de =0 Vol € {of”).

b5

If we prove that ¢, = ... = ¢,, = 0, the assertion follows.

We first show that there exists R > 0 such that, for any x with |x| > R, we have
(4.4) F,ly —x) = Z ¢ (x) 1w

|a|=0

uniformly for y € Q, where " are #-polyharmonic polynomials (%).
Since F,,(¢) is analytical for # # 0, for any fixed & such that || = 1, there exists 7z > 0
such that

(45) ZZ [D"F,,(0)],__st*

k=0 l|a|=Fk

uniformly for |#| < 7. From the compactness of the unit sphere § = {{ € R” | |£] = 1} it
follows easily that we can choose » > 0 independent of & such that (4.5) holds uniformly
for |¢| < r, for any £ € S.

Let us fix x = |x|&, £ € S.

Let us suppose # odd or # even with # > 272. We have

PE /x| = &) = |« ”Z Z (D En )],/ 15"

k=0 |a|=F

F,(y —x) = |x|

(®) Our proof of (4.4) hinges on a idea due to G. Fichera (private communication).
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uniformly for |y/|x|| < r. Since the function F,, is homogeneous of degree 272 — 7, we
may write

(4.6) Z Z o), "

k=0 |a|=Fk

uniformly for [y| < 7|x|.
Let us now R(lk)(x), Rfi)(x) be a basis for the functions [D*F,,(v)],=_, (|a| =
Then (4.6) can be written in the form

(4.7) F,ly—x) = i i:Rfk)(x) po

k=0 j=1

where P/(k) are homogeneous polynomials of degree £.
If # is even with # < 2w, since we may write

log |x — y| = log |x| + log y/[x| — ¢I,
we find
Fuly — %) = qlx,9) + [x["""F,(y/|x| —
g(x,y) being a polynomial of degree 27z — # in y. Therefore

Fuly =) = gule) + 3 Z |2 DA (0)] ey |])°

k=0 l|a|=

uniformly for |y| < r|x|. This shows that also in this case the expansion (4.7) holds
uniformly for |y| < 7|x|.

This expansion can be derived term by term and since 4”F,, =0, we find that
A’”P](k) = 0 and (4.4) is proved.

Setting d = max g |x|, R = d/r, we have that (4.4) holds uniformly for y € Q,
provided |x| > R.

For any x € R” with |x| > R, we have

ZJ(ﬂ,v(y) 9, 'F,ly — x)do, = Z ZC((ZM)(X)J% O™ da, =0
j=1 b la]=0 s=1

in view of conditions (4.3).
The potential

m
= Z J 9;(y —x)do,
7=1
is analytic in R” \ 2. Since R” \ Q is connected, we see that
u(x) =0 VxeR"\Q

On the other hand, in view of Corollary 1, the function « belongs to W;="(R"). Since
Q satisfies the restricted cone hypothesis and z = 0 in R” \ Q, we can find a sequence
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U, € CO°°( ) such that #, tends to z in W”?(Q) (see [7, p.148-149]). This means that «
belongs toW”?(€2) and Theorem 8 shows that # = 0 in Q.
Let us suppose now 7z even, i.e. 72 = 2s. We have in particular

Aulx) =0 VxeR"\ X
Le.
2s

(4.8) ZJ(P/ () a{y_lﬁi[sz(y —x)]do, =0 VxeR"\ 2.

=
If # is even and # < 2 we have
A (F3(x) = @ 5Fi() + by |1
for some constants a,,;, b, (a,; # 0). If # is even with # > 2m or » is odd, we have
A (Fa(x)) = a,:F,(x)
with a,, s # 0. In any case, from (4.8), we find that

2s
lim 3 [ 4,002 Rty = = 0 Fly — X)) day = 0
0T 3

where x is a point on the inner normal to X at xg and x’ is its symmetric with respect to x;.
On the other hand, keeping in mind (3.1), we have almost everywhere
25—1

tin 3 [0,0)(2 By~ =20 =) de, =0
0 3

lim Jgpzkf(y) (82‘ 'F(y 82‘ TF(y )) da, = —¢,,(xo).

X—X0

3
Therefore ¢,, = 0 almost everywhere on X
If 72 is odd, say 72 = 25 + 1, we write again Az = 0, i.e.
25+1
(4.9) > J(oj(y) O A [Foi(y —x)]doy, =0 VxeR"\ X
=15
By means of an argument similar to the previous one, we find that (4.9) implies

25+1

3Lr2)jzjj¢jﬂ(y)(8‘yxo3f}y1F5+1(y—X) 00,0 Ferly — ) do, = 0

In view of (3.1), we find again ¢,, = 0 almost everywhere on X

If 72 = 1, the completeness is proved. Otherwise, since we have shown that (4.3) leads to
m—1

> [ 0 0fde =0 Vo e fof)

=15
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and then, in particular,

3

~.
Il
_

—1
J\¢/ &;—lw’(émfl)do. =0 % 60}:}171) c {w(kM7l)}7
>

an induction argument gives the result.
Finally the completeness for p = 1 follows easily from the completeness for p > 1.
O
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