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AsstracT. — We study the global attractor A° of the non-autonomous complex Ginzburg-
Landau (G.-L.) equation with singularly oscillating external force of the form go(x,#) +

1 . . .
+ 3 (g,t), t>0,xeQcR”, n>3,0<p<1. We assume that the dispersion coefficient

B(#) in the G.-L. equation satisfies the inequality |$(z)| < +/3, £ > 0. In this case, the Cauchy
problem for the G.-L. equation has a unique solution in a weak sense and the corresponding
semiprocess { U,(¢, 1), £ > 7 > 0} acting in the space H = L,(£2; C) has the global attractor .A°® such
that ||A%|| < Ce™” for & > 0. Along with this G.-L. equation, we consider its “limit” equation with
external force go(x,7). We assume that the function gi(z,#) has the following divergence
presentation: g1(z,4) = 27,0, Gi(z,1) (z = (z1,...,2,) € R}), where the norms of the functions
G;(z, t) are bounded in the space C,(R,;Z),Z = LIZ’(R;’; C) (see (50) and (51)).

We have found the estimate for the deviation (in H) of the solutions of the original G.-L.
equation from the solutions of the corresponding “limit” equation with the same initial data.

When the coefficients and the external force of the G.-L. equation are almost periodic (a.p.)
functions in time ¢ € R, we consider the family of G.-L. equations whose coefficients and external

forces (61(1‘),[;’(1‘)7R(z‘),go(x7 t) +alp§1 <§,l> belong to the hull of the initial coefficients and

external force. We have proved that if all the functions g1(z,#) belonging to the hull of the initial
function g1(z,#) admits a divergence presentation described above and the exponent p in the

. 1. - . .
amplitude — s sufficiently small, then the global attractors A° are uniformly (with respect to
P

£,0 <& <1) bounded in H : | A°||;; < C(p), where C(p) is independent of ¢.

We have also studied the case where the global attractor A° of the “limit” G.-L. equation is
exponential. In such a situation, we have proved the estimate for the deviation of the global attractor
A? from A% distg (A%, A%) < Clp)e! " foralle, 0 < ¢ < 1, 0 < p < 1, where the constant C(p) is
independent of e.
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INTRODUCTION

The complex Ginzburg-Landau equation plays an important role in the theory of
superconductivity and in the nonlinear optic. It appears in many mathematical models of
various pattern formation systems in mechanics, physics, and chemistry. This equation
also describes the finite amplitude evolution of instability waves in large variety of
dissipative systems in the points of transition from regular to turbulence behaviour, for
example, in the theory of hydrodynamic instability: the Reyleigh-Bérnard convection, the
Poiseuille and the Taylor-Couette problems, etc. (see the review [1] and the literature
cited therein). The mathematical questions related to the Ginzburg-Landau equation
such as well-posedness of solutions, the properties of special solution classes, the study of
global attractors of the corresponding semigroup, the number of degrees of freedom of
the related dynamical systems, etc., were studied in many papers and books (see, for
example, [2]-[14]).

Some problems related to the homogenization and averaging of global attractors of
evolution equations of mathematical physics with rapidly (non-singularly) oscillating
coefficients and terms were studied in [15]-[24].

In the paper, we study the non-autonomous Ginzburg-Landau (G.-L.) equation
with singularly oscillating external force of the form

(1) B = (04 ia0)du+ ROu— 1+ P+ a0+ (5,0, o =0,

where # = u1(x,t) + fup(x,2) is a complex function, x € QcR”, 0 € 2, + > 0. The
coefficients a(z), f(¢), and R(¢) are real functions belonging to the space C,(R,). We
assume that

BOI < V3, 1€ Ry,

In (1), p is a positive parameter such that 0 < p < p, < 1. The value of p, will be given
explicitly. We shall use the spaces H = L,(Q; C) and Z = L5(R”; C). We assume that
golx, ) € LY(R; H), that is,

+1
@) oot Mg ap = sup J lgo(-, lyds < +oo,

relR,

and the function gi(z,2) € L3(R;Z) (z= (21,2, .. .,2,)), where Z = L3(R?; C). The
norm in the space Z is defined in Section 1 (see (19)).

For every uo(-) € H, the Cauchy problem for equation (1) with initial data
u|,_o = up(x) has a unique solution #(#) := u(x, #) belonging to the space

3) Co(Ry; H) N ISRy ; V) NIS(R 5 Ly),

where V = H}(Q; C), Ly = L4(€2; C). The function «(¢) satisfies equation (1) in the weak
distribution sense (see Section 1).
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In Section 1, we prove that the semiprocess {U,(¢, 1), > t > 0} corresponding to (1)
(recall that U,(z, T)u; = u(z), ¢t > 1, where u(z) is a weak solution of (1) with initial data
u. € H) has the compact absorbing set By ,:

(4) Bie={v eV |lllly < CO+lleolliyw, .o + & lleillw, 2)}-

We note that the norm |B1 .
e—0+.
Along with equation (1), we consider the “limit” equation of the form

(5) 9’ = (1 +ia(®) 4’ + R@)u® — (1 4 i)’ P’ + go(x,2), 4°],0 = O.

This equation also generates a semiprocess {Uy(#,7),# > t > 0} acting in H and having
the compact absorbing set Big = {v € V| |||y, < C(1 + ||g()||Lb R}

We assume that the function gi(z,2),z € R”,#> 0, in the rlght hand side of (1)
satisfies the following condition (see also (50) and (51)).

’H< Ce”, 0<e<l,and |B1€|H may tend to infinity as

ConprrioN . There exist functions G;(z,#) € C,(R; Z) with —* 9G, LZOC(R+, Z) for

7=1,2,....,n(z=1(z1,...,2,), such that Oy
e |
(6) ; 7% (z,6) = g1z, 1), t € R.

Let u(x, ), > 0,and #°(x, ), ¢ > 0, be solutions of equations (1) and (5) respectively
with common initial data

ul,_g = to(x), MO\;:O = up(x), uo(-) € H.

Weset R = sup,., R(#). In Section 2, we prove that the deviation w(z) = (-, ) — #°(, )
of the solutions satisfies the following estimate:

(7) ()| = |-, 2) — a0, 2)||y < Ce'Pe”, Ve > 0,

where 7 =0 for R < A; and » =R — A; + 6 for R > J; (6 > 0 is arbitrary small, and
C=C(9). Here Ay is the first eigenvalue of the minus Laplace operator
{—=4u, u|y, = 0}. Notice that, in some sense, estimate (7) is a generalization of the
known estimates of N. N. Bogolubov (see [25]).

In Section 4, we study the global attractor A* of the non-autonomous G.-L. equation
(1). We assume that the coefficients a(¢), f(¢), and R(#) are defined for all # € R and they
are almost periodic (a.p.) functions with values in R. We also assume that the functions
20(x, #) and g1(z, #) are defined for # € R and they are a.p. with values in H = [,(Q; C)
and Z = L5(R"; C), respectively (see Section 3 ).We recall that a.p. functions with values
in function spaces were introduced in the works of S.Bochner and L.Amerio (see [26]).

Along with equation (1), we consider the family of equations

(8) i = (1 + i) dit + RO — 1+ B i + gole, ) + gipgl (Z.1). il = 0.

The function 6°( 1), p(2),R(2), go(x,8) +— ! g1< )), t € R, is called the symzbol of
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this equation. The symbols 6¢(¢) of equations (8) belong to the hull H(6%(#)) of the symbol
fm:WMﬁmRM@Mﬁ+$g€J)dmﬂMmemﬂﬂTkhMMfw

is taken in the space C,(R; R? x H) and it is compact in this space since the function ¢*(¢)
is a.p. with values in R’ x H (see Section 4). The family of equations (8) with symbols
6° € H(c") generates the family of processes {Us:(¢,7), ¢t > 1,7 € R}, 6° € X*, acting in
H. In Section 4, we prove that this family has the compact absorbing set By, (see (4)).
Moreover, the family of processes {Us:(¢,7)}, 6° € 2°, has the global attractor A® such
that A* C By,. It follows from (4) that

©) A <Ce? 0<p< L.

In Section 4, we present the condition that provides the uniform boundedness (w.r.t.
¢ € (0,1]) of the global attractors A°.

CONDAITION I For every 21(z,¢) € H(gy), there exist functions G/(z, 1) € C(R; Z)
with 0, G; € LY(R;Z) forj = 1,2,...,n (x = (z1,...,2,)), such that

" 0G;

(10) —L(2,8) = 41(z, 1), V2 € R”, t € R,
=1 81]'

and

(11) G-, MNe,wiz) <M,

where the constant M is independent of g;(z, #) (recall that the function g (z, #) is a.p. with
values in Z).

In Section 4, we prove the following main result of the paper. Let the number p satisfy
the inequality

0< P < Po>
where py =1 for R <A and py=21/R for R> Ay (R = sup,.g R(2)). Then, under
Condition I, the global attractors A® of equations (8) are uniformly (w.r.t. e € 10,1])
bounded in H, that is,
[ A% < Clp), Wp, 0 <p <1,

where the constant C(p) is independent of ¢ (compare with (9)).
In Sections 5 and 6, we consider the “limit” family of G.-L. equations corresponding
to the family of equations (8):

(12) 9" = (1 +ia0)4i® + R0 — (1 + ifO)a’Pi + golx, 1), 2]y = 0,

with symbols 6°(z) = (&(t),[}(t),R(t),go(t)) € H(a°), where H(c°) is the hull of the
symbol ¢°(z) = (a(2), B(£), R(2), go(2)),# € R, whose terms are taken from the original
equation (1). Recall that the function ¢(¢), 7 € R, is a.p. with values in R’ x H. Then the
family of processes {U(z,7)}, 6° € H(a®), corresponding to equations (12) has the
global attractor A” such that the set .A° is compact in H and .A° C B; (see Section 5).
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We now assume that
(13) R(t) <1 —k, Vt€R, (k> 0).

In this case in Section 5, we prove that the global attractor A° attracts bounded sets of
initial data with exponential rate. Finally, under Condition I and inequality (13) we prove
that the Hausdorff distance (in H) from the global attractor A° of the original equations
(8) to the global A° of the “limit” equations (12) satisfies the estimate

(14) distgr (A7, A%) < Clp)et ™", Ve, 0<e<1,Vp, 0<p<1,

where C(p) is independent of &.

In this paper, we have developed the method that can also be successfully applied to
the study of various reaction-diffusion type systems with singularly oscillating terms. The
similar results can be obtained for many other non-autonomous partial differential
equations and systems arising in the problems of mathematical physics.

1. - ComPLEX GINZBURG - LANDAU EQUATION WITH SINGULARLY OSCILLATING EXTERNAL FORCE
We consider the following non-autonomous Ginzburg-Landau (G.-L.) equation:

. . 1 /x
(15) Oy = (1+ia(e) du+ Ry — (1 + B0l + golx,0) + —g1 (; : t), U]y = 0.

Here u = ui(x,) + fuy(x,#) is an unknown complex function of the arguments
x € QCR”,0€Q, t>0. The real functions a(z), f(¢),R(¢) € C,(R,) are given and

(16) 1B < V3, teR,.

In equation (15), p is a positive parameter, 0 < p < p, < 1. The value p, will be given
below. We set H = [,(2;C) and Z = LE’(R”; (). The norm in H is denoted by || - ||;z-
A function f(z) € Z = LY(R!; C) (z = (21,22, ..,2,) € R") if

1+1 2+1
(A7) £z = 1/ yec = sup J J |F & LIPS - dE, < +oo.
z€

We assume that the function go(x,#) = goi(x, ) + go2(x, 2), x = (x1,%2,...,%,) € R”,
belongs to the space LY(R ;H) and the function g(z,#) = g11(z,2) + ig12(2,2),2 =
= (21,22,---,2:) € R", belongs to LE’(]RJF; Z), i.e. the following norms of these functions
are finite:
+1 +1
(18) ”gO("')Hi‘Z’(R‘:H) == sup J g0, lfy ds = sup J J|go(x,s)|2dx ds < +o0,
Q

TeRy TeR4
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T+1
2 2

(1) Nt My = s | a9 e =

+1 z1+1 2, +1

= sup J (Sup J J g1(<17~c~,Cn75)|2dC1"'dén) dS<+OO,
R, 2€R”

T 21 Zn

where z = (21,22, ..., 24).

Equation (15) is equivalent to the following system of two equations for the vector-
function u = (uy, 1) " :

1 - 1 - 1
(20) 81‘“ = (a(t) al(t)>Au+Ru_ (ﬂ(t) ﬁl(t)>|u|2u+g0(9€7t)+§ 81 (9_;;[)7

where g) = (go1,202) " and g; = (g11,g12) -
Under the above assumption for every fixed &, 0 < & < 1, the Cauchy problem for
equation (15) with initial data

(21) ul,_y = uo(x), up(-) € H,

has a unique weak solution «(#) := u(x, #) such that

(22) u(-) € Co(Ry; H), ul(-) € LY(Ry; V), u(-) € LE(R.; Ly),
V =Hj(2;C), Ly = Ly(2;0),

and the function «(z) satisfies equation (15) in the sense of distributions of the space
D(Ry; H"), where H" = H7(Q; C) and » = max{1,7/4} (recall that » = dim (Q)).
In particular, 8,u(-) € L,(0,M; H™') + L4/3(0,M; Lyj3) for any M > 0. The existence
of such solution #(¢) is proved, for example, using the Galerkin approximation method
(see, e.g. [2, 28, 3] ). The proof of the uniqueness theorem is also standard (see Section 2
and, e.g., [3, pages 42, 118]) and relays on inequality (16). (We note that, if (16) does not
hold, the uniqueness theorem for 7 >3 and for arbitrary values of the dispersion
parameters a and f is not proved yet, see [1, 10, 12] for important partial uniqueness
results).

For brevity, we set || - || := || - || - Any solution #(),# > 0, of equation (15) satisfies
the following differential identity:

(23) %%HW)IV + |Vald)|? + D)7, — RO D) = (¢(0), ul0)), V2 >0,

where we denote g°(#) := go(x,#) + ¢ g1 (f , t). The function [«(2)||* is absolutely
continuous for # > 0. é

The proof of (23) is analogous to the proof of the corresponding identity for weak
solutions of the reaction-diffusion systems considered in [3, 27] (see also [14]). For
reader’s convenience, we sketch the main idea of this reasoning.

A weak solution «(¢) of problem (15) and (21) can be written in the form
(24) Qyult) = w(t) + h(2),
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where
(25)  w(t) = (1 +7a@)4u(t) + &), h(t) = ROule) — (1 + iB(e)|u(e) Pult).

It follows from (22) and (25) that w(z) € L,(0,M; H ') and h(z) € Lyy3(0,M; Lys5) for all
M > 0. Then we use the following natural generalization of the theorem proved in [29,
Ch.III, Sec.1.2].

Tueorem 1.1: Let H be a Hilbert space and let V,E, X be Banach spaces such that:
VCHCV CXand ECHCE CX.

Assume that u(-) € L,(0,M;V)NL,(0,M;E) (p > 1) and the distribution O,u(-) €
€ D'(0,M; X) is presented in the form 0,u(t) = w(t) +h(2), where w(-) € L,(0,M; V') and
h(-) € LO,M;E) (1/p+1/q=1). Then u(-) € C(Ry; H), the function ||u(t)|3 is
absolutely continuous on [0, M], and
%Hu(
To apply Theorem 1.1 to a solution #(¢) of problem (15) and (21) we observe that
(@), u(2)) = (1 + a(2) Au) + g(0), u(0)) = — | Vu@)|* + (¢(2), u(2)) and (h(z2), u(r)) =
= R@)|u(2)|]* — ||u(z‘)|\14 (see (25)). Thus, (26) implies (23) (see also [3, 14]).
Using the standard transformations and the Gronwall lemma, we deduce from (23)
that any weak solution #(#) of equation (15) satisfies the inequality

(27) a@|]” < [|a0)|?e 24 + C3 + C2e72, Ve > 0.

where 2; is the first eigenvalue of the operator {—Au, u|y, =0}, the constant Cy
depends on [R|c, = Szlig [R(#)] and ||go\|L§(RA; g and the constant C; depends on

(26) D3y = 20(), u(®)) + 2(b(2), u(t)), V¢ € [0,M].

lg1llzsr, . z) (see (18) and (19)). We also use the following inequality:

t

LA T 2
(28) o1 (Zo5) [ e dnds < Cllailye,, 0
0Q

where C is independent of ¢. Indeed,

! t
J“gl (g ; s) ‘zef’ll(tﬂ)dxdx = Je%(’fﬂ) (8” J lg1(z, x)|2dz> ds <
0 E

0Q 10

Z€R”

t z1+1 2+1
sC’Je‘Wﬂ (Sup J J If(él,...,ims>lszil"'CZC”>CZSS

21 2n
2
< C"(il)||g1||Lg(jR+; Z)

since we can cover the domain ¢7'Q by C’e™” unit boxes and, therefore, (28) is proved
(see [3] for more details).
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Clearly inequality of the type (27) holds with 0 and ¢ being replaced by any 7 and # + 1,
respectively, i.e.,

(29) at + 0)|]° < |Ja(D)|Pe™2H" + C2 + C2e%, Ve > 7> 0.

Integrating (23) in # and using (27), we obtain that
!
1 2 2 4
60) Sl + | (IVa@I + Jatol, )ds <

0 ! t

<5 IO + IRl [P+ [ 10 o as,
0 0

[ (rvats + o, ) s <
0

<SNOIP + Cole+ 1) + G (ol an + & ¥l 20)

N —

(see (18) and (19)).

We consider the semiprocess {U,(¢,7)} := {U,(¢,7),£ > 7 > 0} corresponding to
problem (15) and (21) and acting in the space H (see [3]). Recall that the mapping
U,(t,7): H— H, t >t >0, is defined by the formula

Ut,Duy = ult), t >t >0, Yu, € H,

where u(¢), t > 1, is a solution of equation (15) with initial data «|,_. = #.. It follows from
estimates (27) and (29) that the semiprocess {U,(¢,7)} has the uniformly (with respect to
7 € R,) absorbing set

(31) By, ={ve H||v| <2(C+ Cie?)}

that is bounded in H for every fixed & > 0.
We now demonstrate that the semiprocess {U,(¢,7)} has a compact in H uniformly
(with respect to T € R ) absorbing set

(32) Bi,={veV||olly <C+Ce’}

To prove this fact we take the scalar product in H of equation (15) with the term —z4u.
After the standard transformations, we obtain

d 2\ 1 2 2 2
(3) 5 (eIVal’) =3IVl + 2l 4l = Rt Vel -

1
2

—((1+ iBO)ulu, thu) = —(go, tAu) — " (g1 (x/e), tAu).
We denote

f(z‘,v)|v|2<ﬂ(1t) /i(”>v, v = (01,02).
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We notice that since |(¢)|] < v/3 the matrix /22, v) is positive definite, that s,

(34) filt,v)w-w >0, Yo = (v1,07), w = (wy,w,), Yt >0

(see [3, page 42]). Therefore, the term in (33) containing f(¢) is also positive. Indeed,

(35) —<(1 + z'[)’(t))|u|2u7 tAu> = —f(t,u) - tAdu = z‘Zf;(t, u)O,u-Oyu >0, Vt > 0.
i=1

Integrating both sides of (33) in # and taking into account (35), we have

06) IVl = [ IV ds + [ sl s - [ Rs| Tut) s <
0 0 0

< - J(go(x), sAu(s))ds — & J(gl(x/.s, 5), sAu(s))ds.
0 0

Using (30), we obtain

t

t
1
(B7) Va0l +Gs Js”du(&)“zds <Rl Jf”Vu(:)szH—
0 0

t t
+GCs (Jngo(x)szs + 8_2pjs\|g1(x/8, x)|2dx) .
0 0

Applying in (37) an inequality similarly to (28), we find that
2 2 2 _ 2
HVu)|” < Gl|«O) + 2+ 1+ #llgolliye, .y + 22 2| g1 75, 2))-
Assuming that #(0) € By, and setting # = 1, we obtain
(38) IVaD] < CGs(1+ llgollrpw o + &l lzpr s 2)-
Clearly, the same inequalities holds if we replace 0 and # with 7 and 7 + ¢ :

(39) HVule + )| < Ce|a@|f +2+1+ f||go||ig(][<+;y) + f3_2ﬂ||g1||i§(na+;2))v

[Valt + D[] < Cs(1 + llgollpr,. mry + ¢ et llpw,: 2)), Y22 0.

It follows from (39) that the set
(40) Bio={veVIlvly <G+ llgollpe,.m+&"lallp)}

is uniformly (w.r.t. T € R ) absorbing for the semiprocess {U, (¢, 7)} corresponding to the
G.-L. equation (15). The set B;. is bounded in ¥V and compact in H since the
embedding V € H is compact. Recall that a semiprocess having a compact uniformly
absorbing set is called uniformly compact. We have proved the following

Prorosition 1.1: For any fixed ¢ > 0, the semiprocess {U,(t,7)} corresponding to
equation (15) is uniformly (w.r.t. © € R,) compact in the space H. It has the compact
uniformly absorbing set By, defined in (40).
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Along with the G.-L. equation (15), we consider its “limit” equation
41) 04" = (1 +ia() 4’ + RO)u" — (1 + i) P + golx, 1), ]y =0,

where the coefficients a(z), f(¢), R(¢) and the external force gy(x, #) are the same as in (15).
In particular, conditions (16) and (18) hold. Therefore, the Cauchy problem for this
equation with initial data

(42) i|,_o = uo(x), uo(-) € H,

also has a unique weak solution #°(x,#) and there is the corresponding semiprocess
{Uo(t,7)}in H : Up(t, 1)y = u°(£),¢ > © > 0, where «°(#), ¢ > 7 is a solution of equation
(41) with initial data #|,_, = #,. Similar to (29), the main a priory estimate for equation
(41) reads

(43) 27 < a2(0)]Pe 2 + C2.

Following the above reasoning, we prove that the semiprocess {Uy(¢ 1)} has the
uniformly (w.r.t. 7 € R, ) absorbing set

(44) Boo = {ve H | |v| <2Co}
(Comparing with (31), we observe that here the parameter ¢ is missing since the term

1
=& (f , z‘) is missing in equation (41).) Moreover, the semiprocess also has the uniformly
& €

absorbing set
(45) Bio={ve V||V <Gl + Hg0||L‘2“(i[{+;H))}

which is bounded in ¥V and compact in H. Consequently, the semiprocess {Uy(z, 1)}
corresponding to the “limit” equation (41) is uniformly compact in H and Proposition
1.1 holds for the “limit” case ¢ = 0.

Using this results, it follows easily that the semiprocess {U.(#, 1)}, &> 0, and
{Uo(#,7)} have the uniform (w.r.t. 7 € R;) global attractors A, and Ay, respectively
(see [3]). However, the formulated above conditions for the function gi(z,#) is not
sufficient to establish that the global attractors A, are uniformly (with respect to & > 0)
bounded in H. In the next sections, we shall present assumption that provide this
uniform boundedness of global attractors A, for 0 < & < 1. Moreover, we are going to
estimate the deviation of the attractors A, from Ay in terms of &.

2. - DEVIATION ESTIMATE FOR SOLUTIONS OF THE GINZBURG-LANDAU EQUATION WITH OSCILLATING
EXTERNAL FORCES FROM SOLUTIONS OF THE “LIMIT” EQUATION

We consider equation (15)
1
(46) O = (1+ ale) A+ RO — (1 + B+ goloe, 0+ 1 (5,7), #lag = 0.

We assume that the coefficients of this equation satisfy conditions (16)-(19) and
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0 < p < 1. The corresponding “limit” equation is

(47) B® = (1 + 7a(0) 4° + R@0)u® — (1 + iB)|® P + golx, ), 4°]yq = O,
For ¢t = 0, we consider the common initial data

(48) Uiy = t0(x), ], g = uo(x), wol-) € H,

for equations (46) and (47). Let u(x, ), > 0, and 2°(x, 1), # > 0, be solutions of problems
(46), (48) and (47), (48) respectively. We set w(x, ?) = u(x,#) — u°(x,¢). The function
w(t) == w(-, ?) satisfies the equation

(49) =1+ ia(®) dw+R(Ow— (1 +if(©) (jul’u— ") + glpgl (2.1). wlog=o0.

and has the initial data w(0) = 0.
We now assume that the function gi(z, #) satisfies the following additional condition.

ConprrioN L. There exist functions Gi(z,1) € Cp(Ry; Z) with 6_G/ € Lé‘”(RJr; Z) for

7=12,....n(z=(21,...,2,), such that 9z

A+1 0 A4l

2 2

(50> HG](7 .)||C;,(R+;Z):: tseljgp ZEEIR)n J T J ‘G/(Z, t)’ dz S ]\J2
+ ! 2 ]

and

", 0G; )
(51) —L(,t) =g(z,0), V2€R”, t € Ry.

= 0z

We set
(52) R = sup R@).
teRy

TueoreMm 2.1: Under Condition I, the difference w(t) = u(-, t) — u°(-, t) of the solutions
u(x, 1) and u°(x,t) of equations (46) and (47) respectively with common initial data (48)
satisfies the following inequality:

(53) ()] = ||u(-, ) — (-, 0)|| < Cel=¢,
where
0, for R < 1y
(54) r=9 B :
R—21+6, forR>X}

0 > 0 is arbitrary small, and C = C(9).
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Proor: Taking the scalar product in H of equation (49) and w, we have
(55) Ll + IVl ~ R, w)+
(L + B (P = [P )= 1) = &7 (g1 (5 1) ).
Since |B(2)| < /3, it follows from (34) that
(56) {1+ ) ([ufPu — | Pu) 0 — u®) > 0
(see, e.g., [3, page 42]). From (55) and (56), we obtain

d 2 2 ) 2 - X
< P —
(57) dt”w” +2||Vwl||* < 2R||w||” + 2¢ <g1(8,t>7u)>,

where R = sup,c, R(2). Applying (51), we find that

) 267 (0,6 o)
206 ) -2 o) )
_;;gzwiji

( )‘dx—l— J|wat)|dx 0> 0.

Q
Using (50), we have

2
(59) J Gi(%.0)[ dx=e J 1Gi(z.1) P < C|G(-, A5 < CM2.
Q 10
It follows from (58) and (59) that

_ X 11 _ 20
» X <M 2.201-p) 4 ¢ 2 )
2¢ <g1(8,z‘),w> < S5nCMEE NP 2V, 6> 0
Consequently from (57), we have
(60) %Hwﬂz + (2 = 2047 Y)||Vaw|® < 2R]jw|? +25C M2,
We assume that < 4;. From the Poincaré inequality, we conclude that
d 2 = 2 M _
(61) 7 wl|* <2(R = 41 + 0))|Jw]|” + %Cleem ”,
If now R > /4, then » = R — 21 + 6 > 0 and hence
d 2
Tl < rlle]? + S5 CiMZ0 ),

20

Integrating this differential inequality, we have

2
(62) lw(@)])? < <||w(0)||2 ot #ew—w)eﬁ, Vi > 0.



— 135 —

Recall that w(0) = 0 and we obtain
”w(t)” < C(é)s(l_p)e”7

o\ 1/2
where » = R — 41 + 6 and C(9) = (51 M) )

2r
If R < Ay, then —r; = R — J; 4+ 6 < 0 for a sufficiently small § > 0 and we have
d )
(63) Tl < —nifle]? + S5 QM.
Integrating this inequality we have
21 C1M?
JwIF < e + 67 A 200, vy >
1
and since w(0) =0
aw(2)]] < C@)e" ),
WCM2\ 2 _
where C(0) = (61222 ) 4 =4 —R—-6>0.
27’1
Inequality (53) is proved. |

We note that estimate (53) is a generalization of the classical estimate of N. N.
Bogolubov for the deviation of solutions of equations with oscillating term from the
solution of the corresponding averaged equations (see [25]).

Remark 2.1: It is clear, that an estimate of the form (53) holds for the difference of
solutions u(t),t > t, and u°(t),t > 1, of equations (46) and (47), respectively, with the
common initial data at t = 7T for every T > 0.

3. - A.p. FUNCTIONS WITH VALUES IN THE SPACES H AND Z

A function ¢(z, #) belongs to the space C,(R; H) if it is continuous and bounded in
¢t € R with values in H. A function ¢(z, t) € C,(R; H) is called almost periodic (a.p.) with
values in H if the family of its translations {¢(z,z+ /), h € R} is precompact in
C,(R; H). Notice that this definition of an almost periodic function with values in a
Banach space E was formulated by Bochner and Amerio (see, e.g., [26, 30]). Recall that
the set

Hip) == [{ot +h), h € R} e, m)

is called the hull of the function ¢ in the space C,(R; H). Here, [X]z denotes the closure
of a set X in a topological space Z. By definition, a function ¢(¢) € C,(R; H) is a.p. if and
only if the hull H(p) is compact in C,(R; Z).



— 136 —

Similarly, one defines a.p. functions with values in the space Z = L5(R”;C). By
definition, a function w(z) € C,(R; Z) is a.p. if and only if the hull

Hly) == [{yt+h), b€ R}k 2
is compact in C,(R; Z).
ProrositioN 3.1: If a function g\(z,t) is a.p. with values in Z, then for every fixed
¢, 0 < e <1, the function g, (;—C,t> is a.p. with values in 1,(Q; C) = H.

Proor: We have to show that the set {gl( %,t—i—b), he ]R} is precompact in

Cy(R; H). Let {h,,n =1,2,...} be an arbitrary sequence of real numbers. Since the
function gi(z,#) is a.p. there exists a subsequence of indices {#'} C {#} such that the
sequence g1(z, ¢ + h,7) converges to a function g;(z,#) € C,(R; Z) as ' — oo, i.e.,

(64) llgi( 2+ hy) = 21(, l‘)ch(J@;z) — 0 (7 — 00).
Recall that the norm in the space C,(R; Z) is defined by the following formula:

eR \ zeR”
21 Zn

21+1 2, +1
g1 16, x; 2) = sup (Sup J J |g1(517-~~,5mf)2dé1"'an)-

We set g,y(z,t) := g1(z, £ + h,y) — 31(z, £). Then we have

e 2 _x 2 Y B
©) [erCoo)|= [es o) ax =2 [ lastannftz <
Q e 1Q
z20+1 2,41
< Ce” sup &' J J 2v(z.0)dz = Cllai (-, )7
20€R”

20 Zn
Here, in the second equality, we have changed the variable x/¢ = z, dx = ¢"dz, and then,
in the last inequality, we have used the fact that the domain £~'Q2 can be covered by unit
boxes the number of which does not exceed Ce™ for some positive C = C(Q).
Thus, from (64) and (65), we observe that

(66) sup

eR

. 2
& (20)[[ < Csup lar ol — 0 6 — o0
& H teR

Therefore, the set {gl (g 1+ b), he R} is precompact in the space C,(R,; H). W

Similarly to Proposition 3.1, we prove

Prorosition 3.2: If a function g1(z,t) belong to the space Cy(R; Z), then, for every
6,0 <& <1, the function g (§ , t) belongs to C,(R; H) and moreover

(©7) oo G )| < Cllast i, ve e

where C is independent of t and £,0 < & < 1.
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ProposITION 3.3: Let a function go(x, t) be a.p. with values in H and let a function g1(z, t)
be a.p. with values in Z. For every fixed ¢, 0 < ¢ < 1, we consider the function g°(x,t) =

= golx,t) + gipgl (g , z‘) as an element of the space Cy,(R; H) (here, p > 0) and its hull H(g")
is taken in the space C,(R; H). Then the hull H(g®) = H (go(x, 1)+ %pgl (g , z‘)) (in the
space Cp(R; H)) consists of (a.p. in C,(R; H)) functions 3°(x,t) of the form §°(x,t) =
= go(x, ) +$§1 (g,;) for some @o(x,t) € Higo(x, ) and 31(z,t) € H(gi(z,2)), where
H(go) and H(g1) are the hulls of functions go(x, t) and g1(z, t) in the spaces C,(R; H) and
Cy(R; Z), respectively.

Proor: Let {4, } be an arbitrary sequence of real numbers. Consider the sequence of
functions {go(x,# + b,)} in C,(R; H). Since the function gy(x, #) is a.p. with values in H
there is a subsequence {5, } C {h,} such that

(68) g0, 2+ hy) — golx, ) as ' — oo in C,(R; H)

for some go(x, ) € C;(R; H). Consider now the sequence of the functions {gi(z, # + 5,/) }
in Cy(R; Z). The function g(z,#) is a.p. with values in Z. Therefore, passing to a
subsequence {h,»} C {h,s}, we may assume that

(69) a1z, t 4+ b)) = 21(z,8) as #”" — oo in Cy(R; Z),
where 2(z,£) € C,(R; H). It follows from (67) that
. 2 2 R 5 |
larGot+b0) = (Cor) | < Cllantt 4+ b) =0l Ve € R.
Then owing to (69) we conclude that
X A (X 1" : >
g1<g7t+/7,,u) — gl(g,t) as n"' — oo in C,(R; H),
and, combining this relation with (68) we obtain

(70) goloc, £+ b))+ g (g,t + bﬂw)—>§0(x, t)+e g (9—; , t) as 7" — oo in C,(R; H).

1
Consequently, the hull H <go (x,8) + s (1—6 , z‘)) consists of a.p. functions with values in
1
H and each function g%(x,#) € H (go(x, 1)+ s (g , z‘)) has the form @(x,?) =

1
2o, 0+ (i; , z), where 2(x, ) € Hlgo(x, ) and 21(z, ) € Hg1(z, 7). u

4. - UNIFORM BOUNDEDNESS OF THE GLOBAL ATTRACTORS .Af

We assume that the coefficients a(z), 5(¢), and R(¢) in equation (15) are defined for all
t € R and they are a.p. functions with values in R. In addition, we assume that the
functions go(x, #) and g1 (z, ) are also known for all # € R and they are a.p. with values in
H = 1,(Q;C) and in Z = [5(R"; C), respectively.
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In this section, we consider the equation (15) on the entire time axis:
. _ 1
(T1) Q= (1+ia()dn+ R — (L + B |+ gole. 1)+ — 1 (’-8“ : ;),If e R

Tt follows from Proposition 3.1 that the external force g°(¢) = go(x, 2) +& g (f , z‘) ,EER,
is an a.p. function with values in H. ¢

The function ¢°(z) = (a(z), B(£),R(2), &), ¢t € R, is called the symbol of equation
(71). Here the parameter ¢ is fixed. We note that the function ¢°(2),¢ € R, is a.p. with
values in R® x H. By definition, the Aull H(c*®) of the function ¢® in C,(RR; R’ x H) is
the following family of functions:

(72) Ho") = [{"(t +B), b € R i =: ="

Recall that, for a fixed ¢, the hull H(¢*) is compact in C,(R; R®> x H) since the function
0°(¢) is a.p. in this space. Elements of the hull H(¢*) will be denoted by 6%(¢), 6° € H(o?).

It follows from Proposition 3.3 that, for any 6%(¢) = (&(z‘)ﬁ(t), R(z‘)7 () € H(o*), the
last component &(¢) can be written in the form g*(¢) = go(x,2) + & 7§ (¥,¢) for some
Zolx,2) € H(gy) and gy(z,#) € H(g1), where the hulls H(gy) and H(g;) of the functions
go(x, 2) and g1(z, #) are taken in the space C,(R; H) and C,(R; Z), respectively.

For every fixed 7 € R similar to Section 1, we consider weak solutions «(z),# > t,
of equation (71) belonging to the space Cy(Ry; H) NI (Ry; V) NLE(R,; Ly) that
satisfy equation (71) in the sense of distributions of the space D'(R;; H™"). Here, we
denote R; = [r,+00). Recall that any weak solution «(z), > 7, is uniquely
determined by its initial value u«(r). Therefore, to the equation (71), there
corresponds a process {Uy(s,7)} = {Uy(¢,7),£ > 1,7 € R} acting in the space H
by the formula

Upt, Dty = ut), t>1, 7€ R, u, € H,

where #(¢) is a solution of (71) with initial data «(t) = u,.
Along with equation (71), we consider the family of equations

(73) 0 = (1+ia()Ai* +R(0)ir — (1 + ()| P + golx, 1) + lgl( )’5‘”89207

with symbols 64() = (a(#), B(1), R(2), g°(¢)) € H(o*) = 2*, where the function g*() =
= golx,2) + "1 (g,t>, 20lx, ) € Hlgo), 81(z,8) € H(g1). We note that the processes

{Us(t,7),¢ > 7 € R} corresponding to equations (73) satisfy the same properties as the
semiprocess {Uy:(¢,7),2 > 1> 0} = {U,(¢,7),¢ > 7 > 0} considered in Sectlon 1. In
particular, for every fixed ¢, 0 < ¢ < 1, the farmly of processes {Us:(¢,7)}, 6° € 2° has
the compact absorbing set BI,E defined in (40). It is necessarily to replace Ry with R in
definitions (18) and (19). These norms are also bounded since we assume in this section
that the functions go(x, ) and g (z,#) are a.p. with values in H and in Z = L5(R"; C),
respectively. For the absorbing set By, we clearly obtain the estimate

Bi,={veV||ly<Cl+ 2ollc,r: m) + & "ll81l ¢, r: 2))}-
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We also have that
2ol c,r: 1y <ll2ollc,r: b

I21llc, v 20 <llgillc,r; 2):

since the functions go(x,#) and gi(z,¢) are a.p. in the corresponding spaces. Thus,
repeating the reasonings from Section 1, we prove

ProposiTioN 4.1: For any fixed €0 <& <1, the family of processes {Us(t,7)},
6¢ € Hia®) = 2°, corresponding to equation (73) has the compact (in H) uniformly
(w.rt. T € R and 6° € H(0%)) absorbing set By ,. The set By, satisfies the inequality

(74) 1B, < Ce,

where C is independent of 6°(¢) € H(c®) and e.

Since the Cauchy problem for equations (73) is uniquely solvable, the family of
processes {Uz:(£,7)}, 6° € X% satisfies the following translation identity:

(75) Usg(t+h,t+h) = Urge(2,7), V> 1, TER, Vh >0,

where T(h) is the time translation operator acting on a symbol ¢° by the formula
T(h)ot(t) = a4t + h), Ve € R,h > 0.

For every fixed ¢, the family {Us(¢,7)}, 6° € 2%, is (H x X%, H)-continuous in the
following sense: for every fixed # and 7, the mapping («;, %) — Us:(¢, T)u, acting from
H x 2* into H is continuous in the norm of these spaces:

(76) Us: (¢, D)t — Upe(t, Dutr (in H) as 6% — ¢° (in 2°) and ! — u, (in H).

The proof of this property is standard (see, e.g., [3, Proposition 2.3, page 116], where
a more general reaction-diffusion systems were considered). (We note that the complex
Ginzburg-TLandau equation (73 ) is a particular case of a reaction-diffusion system). The
proof is based on the inequality |f()] < /3,V¢ € R, which is true since |(£)| <
< sup |B(#)] < V3,V € R. Then one uses the key inequality

o (4 BV Pir — i Pie) it — i) > 0
similar to (56).

Proposition 4.1 and properties (75) and (76) imply that the family of processes
{Us(2,7)}, 6° € 2°, has a uniform (w.r.t. 7 € R and 6° € 2*) global attractor A°c H
such that A° C By, where By, is the uniformly (w.r.t. 7 € R and 6° € H(¢%)) absorbing
set (see (74)). Recall that A° has the following properties:

(i) for any bounded (in H) set B,
(77) sup distgy(Us(¢,7)B, A%) — 0 (t — T — +00);

Gtel®
(i) A°®is the minimal closed set that satisfies (77).

We now define the kernel Ks: for equation (73) (and for the corresponding process
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{U;:(¢,7)}). The kernel K4 is the family of all complete weak solutions #(¢),z € R, of
equation (73) which are bounded in the norm of H :

(78) |i£@)|| < M;, Yt € R,
The set
,C&F(S) = {Z:ts(s) | Z:lg € ’C&S}7 NS Ra
is called the kernel section at time ¢ = s.
We have the following

Tueorem 4.1: Under the above assumptions, the uniform global attractor A° of equa-
tions (73) can be represented in the form

(79) = |J k&0

Gt€H(0?)

Moreover, the kernel K- is non-empty for every 6¢ € H(a®).

(The set H(o?) is translation invariant. Therefore, the number 0 in (79) can be
replaced by an arbitrary fixed s € R). The proof of this theorem is given in [3]
(see Theorem 5.1 at page 89). Since the absorbing set By, satisfies (74) and A* € H we
conclude that

(80) A< Ce”, 0 < e < 1.

We now formulate the condition that provides the uniform boundedness (w.r.t.
¢ € (0,1]) of the global attractors A® in the space H.

ConpITION I For every 81(z,¢) € H(g)), there exist functions G]-(z, 1) € Cy(R; Z)
with 0,,G; € LR Z) forj =1,2,....n (x = (21, .. .,2,), such that

A+ 41
~ 2

81 Gilz1, -y 2, 8| dz1 - = z
0w [ [ G = G <

2 2
and

8G

(82) Ty L(2,0) = g1(z,1), V2 € R, t € R,

where the constant M is mdependem‘ of 81(z,8) (recall that the functions g\(z,t) and
21(z, t) are a.p. with values in Z).

TueoreM 4.2: Let Condition I hold and let the exponent p (see the initial equation (15))
satisfies the following inequality:
1, forR<n}

0<p<p = _ _ .
0 {)vl/R, fOi"RZil
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Then the uniform global attractors A® of equations (73) are uniformly (w.r.t. ¢ € (0,1])
bounded in the norm H , i.e.,

| A% g < C, Ve € (0,1] (C = Clp)).

Proor: From formula (79), we conclude that the global attractor A° is the union of all
the values of all the bounded complete trajectories z¢(¢), # € R, of equation (73):
(83) A= | {#6) | i €Ks}, VseR.

G*eH(o?)

Along with equations (73), we consider the family of their “limit” equations:
(84) 8 = (1 + (1) 4i2° + R0 — (1 + iBW0))|a°Pa° + go(x, 1), ) 50 = 0,
with symbols  6°() = (a(e), B(e), R(1), () € H(6°) = 2°, where () = go(x, 1),
Zolx, ) € H(go). Similar to Section 2, we consider the difference

W, 1) = & (x, 1) — il (x, 2), t > 1,

of solutions of equations (73) and (84) having the common terms a.(2), [3 (2), li(t), and go(2),
while the term §1(z,#) in (73) is taken quite arbitrary, g;(z,#) € H(g;). Moreover, we
assume that initial data at # = 7 are identical, i.e., #(-, 7) = #°(-, 7). Since, by assumption,
every function g;(z,#) € H(g;) satisfies conditions (81) and (82), we can apply Theorem

2.1 (replacing the initial time # = 0 with an arbitrary # = 7, see Remark 2.1). Then we have
the following estimate

(85) |t 4 2)|| = ||#(x + 1) — & + 1)|| < C(Oe e, Ve > 0.
where p > 0 is taken from (73) and r is defined in (54). Here ¢ is small, § < 4;.

Now let # be an arbitrary point of the global attractor A°. It follows from (83) that
there exists a symbol &° = (&(t),[f(t),li(z‘),go(x, 7) +s*/’g1<§,¢)) € H(c®) and a
bounded complete solution #(z), # € R, of equation (73) such that
(86) #(0) = o".

We consider the point #*( — T), where the time T will be specified below. Since
#(—T) € A° from (80), we observe that

(87) |a5(=T)|| < ||A% < C'e”,0<e<1, (recall that |- || =] - ||z)-

Let 2°(t),t > —T, be a solution of the “limit” equation (84) with symbol 6° =

= (a(0), B(t), R(2), 3o (x, #)) and with initial data
(88) (= T)=a(-T).
According to estimate (43), we have
(89) 122 =T + )| < [|a°( = T)|le ™" + Co.
Using in (89) identity (88) and inequality (87), we find that
(90) |2°( =T + 0| < C'ePe™™ + Cy, Yt > 0.
We set 7 = —T in inequality (85)
(91) (=T + || = l#( =T +8) —i’(= T +8)|| < C(Oe e
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Using (90) and (91), we observe that
(92) 6= T+ 8)|| <||##( =T 48 — (= T+ || + [|8°(= T+ )|

<CE) e + Cere™ + C.

We now specify the number T from the equation

8(17/))67*]" — 87/)6‘7/11T,
that is
1 1

(93) Tﬁr—i—ll 10g<8>.

In (92), we set £ = T, where T is defined above. Then we obtain
(94) 1720)]| < (C(B) 4+ Ce'Pe 7 + Cy = (C(6) + C')e o 1 C.

Now, if R < 11, then = 0 (see (54)), i.e Ll) = 1, and owing to (94)

1

(95) J#O)] < (CO) +C)et* + Co.
In this case, if p < p, := 1, then
(96) ||| = ||a°(0)]] < C(0) + C' + Cy = C, Ve,0 <& < 1.

IfR > 1y, then r = R — ; + 3, (see (54)) and, therefore, 4 721 . From (94)

btai r+ A "R +0
we obtain '
#(0)| < (C(é) + e 4 G
Hence, if p < py := %, then p < e 5 for some small J = d(p) and
l£°]] = |a°(0)|| < C, Ve,0 < e < 1.

where C = (C(3) + C") + C,.

In both cases, since #* is an arbitrary point of A°, we conclude that

| AN g < C, Ve €(0,1]

if p < py, where C = C(p). The proof is complete. |

ReMARK 4.0: If R < 2y, then the statement of Theorem remains true for the limit case
p=py =1 (see (95) and (96)).

5. - GLOBAL ATTRACTOR WITH EXPONENTIAL ATTRACTION RATE FOR THE “LIMIT” EQUATIONS

In this section, we study the family of the “limit” equations
(97) i = (1 + ia(e) it + R0 — (1 + i) |a*i + go(x, 1), 4o = 0,
with symbols 6(2) = (a(2), B(2), R(2), 30(#) € H(a), where H(o) is the hull of the symbol
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a(t) = (al2), f(2),R(2), g0(2)),t € R, taken from equation (41). We assume, that the
function o(¢),# € R, is a.p. with values in R’ x H. Then, clearly, o € C,(R; R> x H)
and every function & € H(o) is a.p. as well.

We assume that

(98) B <V3,
(99) R(t) <)y — K, Vt € R,

where the number £ > 0 and 4; is the first eigenvalue of the operator {—4, [y, = 0}.
We note that these inequalities also hold for any functions f(z) and R(#), such that
(a(2), p2), R(2), go(2)) € H(a).

THeOREM 5.1: Let the above assumptions hold. Then

(i) the family of processes {U;(¢,7)},6 € H(o), corresponding to equations (97) has
the uniform global attractor A,

(i) the set A attracts bounded (in H) set of solutions of (97) with exponential rate,
that is,

(100) sup distg(Us (2, 7B, A) < Ce™™=9 C = C(||B| ),
GeH (o)
where k is taken from (99);
(i) for every & € H(a), there exists a unigue bounded (in H) complete solution
25(t), t € R, of equation (97) with symbol & € H(v), i.e., the kernel K consists of the unique
element 25, and, in this case, the formula (79) for the global attractor A has the form

(101) A= U {z:(5)}, Vs € R;

G€H(o)

(iv) the complete solution 25(¢),t € R, attracts any solution ti5(¢) = Us(¢, 0)ur, t > 7,
with exponential rate:

(102) d16(8) — 258)|| < ||its(0) — 25(0)]| e ™", V¢ > 7, T € R.

Proor: The existence of the uniform global attractor A follows from the reasoning
given in the beginning of Section 4 and from Theorem 4.1 since we can set g (x,z) = 0in
equation (71). Then, in this case, the family (73) is independent of ¢ and coincides with
(97) (see also [3] for more details). Here, we only use inequality (98).

We now prove that, under the assumption (99), the uniform global attractor A is
exponential, more exactly, i.e. it attracts bounded sets of initial data B = {u,} with
exponential rate. We consider an arbitrary symbol 6 € H(o). Then, by Theorem 71, the
kernel K5 is non-empty and, therefore, there is at least one bounded complete trajectory
25 € Ks, 1.e. 25(2),2 € R, is a solution of (97) and ||z;(#)|| < M, for all # € R. Let us prove
inequality (102). We set w(#) = i15(¢) — z5(2), ¢ > 7. The function w(z) satisfies the equation

(103) O = (1 +ia(t)dw + R(Hw — (1 + lﬂ(l‘))(|5l&|251& - |Z&|ZZEI)7 w|po = 0.
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Taking the scalar product in H of (103) with w, we obtain
1d
(104) 5~ el + IVl = ROl + {1+ iB0) (|as 6 — |25 *25) fle — 25) = .

Since the last term in (104) is non-negative (recall that |8(2)| < v/3, see (56)) we have that
1d
2dt

Using the Poincaré inequality || Vzo||* > 2, [|wl||* and condition (99) we find that

(105) leel* + | Ve0l* = ROao]* < 0.

%Hw(z‘)”z + 26]lw@|? <0, Vi > .

Then
(106) @) < w@)||e ", ve > 1,

and (102) is proved.

It follows from (102) that the function z;(#),# € R, is unique. Indeed, let 2/ (#), 7 € R,
be any bounded complete solution of (97) with symbol &. Then the difference
w(t) = 2,(2) — z5(¢) satisfies inequality (106), i.e.

(107) 12,(2) — 25(D)]| < ||125(0) — 25()]| e "7, V£ > 1, T € R.

By assumption, the function ||z}(t) — z5(7)|| is bounded for all 7 € R, thus, letting
7 — —oo and fixing ¢, we deduce from (107) that

12,(2) — 25(8)]| = 0, V£ € R.

Consequently, a bounded complete solution is unique. Thus, we have proved point (iii) of
the theorem. The formula (101) is also established.
Finally, we notice that the set {z;(#),# € R} C A. Moreover, ||A|| < C'. Combining
(101) and (102), we obtain that
distg (U; (¢, 7)B, A) = sup dist g (Us (¢, )z, A)
u.€B
— k(1)

< sup ||Us (2, 1)ur — 25(2)|| < sup ||i5(1) — 25(7)]|e
u:€B u€B

<(|IB|| + C)e " = C(B)e ™7, W6 € Hlo),

and point (ii) of Theorem 5.1 is also proved.

6. - ESTIMATE FOR THE DEVIATION OF THE ATTRACTOR 4% FROM THE ATTRACTOR AO

In this section, we consider the family of the G.-L. equations (73) with singularly
oscillating external force

. . 1
(108) 9y = (1+1ale) A + R0t = L+ BN P + dole, )+~ (5.2 100 =0,



— 145 —

having symbols 6°(2) = (a(2), B(2), R(2), & (1)) € H(a?), where g(2) = go(x, ) +& 7" (g,;)
for some go(x,2) € H(go) and gi(z,#) € H(gi). Recall that the symbol o%(¢) =
= (a(2), B(#), R(2), g°(#)) of the original equation (15) is a.p. We assume that the assumptions
of Theorems 4.1 and 5.1 hold. Thus properties (81), (82) and inequalities (98), (99) are valid.

We consider the difference w(z) = ##(t +¢) — #°(t + ¢), where #(¢) and #°(2)
satisfies, respectively, equations (108) and (97) with common terms (), f(2), R(2), go(£)
and with common initial data at r=r, #|_, =#°,_, = u, € H. The function
21(z, t) € H(gy) is arbitrary. In a standard way, we obtain the identity

(109) 1 P + | Vol — (Rw, )+
: ~e12 ~e ~01220\ ~e ~0 -/~ (X
A +ipo) (| i — a7 a), i —a') = ¢ /’<g1(g,t>,w>.

Since Condition I holds we repeat the reasonings from the proof of Theorem 4.2 from
(55) to (57) and we obtain that

d - /A (X
Gl + 2 Vel = 2Rl < 267 (@ (5. ) ),
where R = sup R(z). We estimate the right-hand side of (110) similar to (58). We set

(110)

reR
0 = k/2 and we obtain similar to (63)

d A
Ll < —nllwlf + 2 b1,
where 71 = 4 — R — /2 > 1/2 > 0 (see (99)). Then
JCiM?
(111) lw®|? < n*l%gﬂlﬂ”, vt >0,
1

and we find from (111) that
()| < CYP, e > 0,

I C M2\
St ) . Consequently,

K71

where C = (

(112) itz + 1) — i’ (t 4 2)|| < Ce*P) ve > 0.

It was proved in Section 4 that the family of processes {Us(¢,7)}, 6° € H(o?),
corresponding to equations (108) has the uniform (w.r.t. 7 € R and ¢° € H(c*)) global
attractor A° € H such that
(113) A= Ke0

atcH(o?)
where s € R is arbitrary and fixed (see Theorem 4.1). It follows from Theorem 4.2 that if
p < py =1 (we note that R < 14, see (99)), then the global attractors A° are uniformly
bounded (in H) with respect to ¢ :

(114) A < Clp), Ve, 0 <e< 1.
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In Section 5, it was established that under the conditions (98) and (99), the global
attractor A" of the “limit” equations (97) is exponential. We use this result to prove the
main theorem of this section.

Tueorem 6.1: Let 0 < p < 1. Then, under the assumptions of Theorems 4.1 and 5.1,
the Hausdorff distance (in H) from the global attractor A° to the “limit” global attractor A°
satisfies the inequality
(115) distg (A%, A°) < Clp)e! ", Ve, 0 < e < 1.

Proor: We fix ¢. Let #° be an arbitrary element of A®. By (113), there exists a
bounded complete solution #°(#),# € R, of equation (108) with some symbol

5 = (au), B),R(2), 0%, 0) + £ "2 (g , ;)) € H(o), such that

(116) u’ = i’(0).
We consider the point #*( — T) which clearly belongs to .A* and hence
(117) ll2*(=T)|| < Clp)

where C(p) is independent of ¢ and T.

Consider the “limit” symbol &° = (a(s), B(£), R(2), do(x, 1)) € H(6®) and the
corresponding “limit” equation (97). We set t = —T. Let 2°(),# > —T, be a solution
of this equation with initial data

(118) i, g =a(=T).

It follows from Points (iii) an (iv) of Theorem (5.1) that there is a unique bounded
complete solution 2°(¢), # € IR, of equation (97) with symbol 6° such that

(119) 1°C=T+2) —L(=T+0)| <||&°(=T)=L(=T)|e", V¢t >0.
Recall that 2°(z) € A° for all # € R and in particular
(120) [22(=T)|| < C,
where C' is independent of T and by (118) and (114)
(121) 12°( = D)|| = [|#( = T)|| < Clp)
From (119) and (121) we find that
(122) |72 =T +¢) = (=T 40| <C'e™, vVt >0,

where C" = C" + C(p).
We set in (112) t = —T and have

(123) |#(=T+0—i’(= T+ < C=P, ve > 0.
Using (122) and (123), we see that
(124) |i#f(=T+0)-(=T+| <

=T 40— =T+ 0|+~ T+0 -2~ T 40| <
< Cg(lfp) + Cllefnt'
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We now choose T from the equation
. 1-— 1
1P = T thatis, T = bl 4 log (—)
K

and we set in (124) + = T. We obtain that
[#£(0) — 2°(0)|| < (C 4 C")e''=" = C(p)e!t =
and hence
dist g (s, A°) < ||lu* — 2200)|| = ||7#°(0) — 22(0)|| < C(p)e=.
Since #* is an arbitrary point of A° we find that
distgr(A°, A°) < Clp)e .
The theorem is proved. |
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