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Some Estimates for Non-Linear Homogenization

AssTtrACT. — Under minimal assumptions of regularity we discuss estimates for zero and first
approximation to the solution of non-linear monotonic equation of the second order with highly
oscillating symbol. They are analogues of operator estimates for resolvent in linear case obtained
before by several authors.

1. We study the homogenization problem for the nonlinear equation in the whole
space R”:
(1) u, € H'(R"), Aguty + 1, = —dz'va(g,Vug) +u, = f(x) € L*(R"),
where a(y,&) is a vector-valued monotonic function that verifies suitable growth
condition in & and is 1-periodic in y, & > 0 and tends to zero.

The homogenized equation associated to (1) is the following (see [JKO])

(2) uy € HY(R"), Agug + ug = —diva® (V) + uo = f(x),

where a9 is a function depending only on ¢ that will be defined later.
The simplest result of homogenization of the equation (1) consists in L?-convergence

(3) etz — 20| 2 gy — O Vf € L2(R").
We are interested in operator type estimate in L?-space

(4) et = 240 2 gy < el Fll 2 rery-
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First we recall linear case. By applying spectral or Bloch method M.S. Birman and
T.A. Suslina in [BS] have recently established the estimate (4) for a broad class of linear
elliptic problems in R”. In particular this class includes the so called acoustic equation

(5) —dz'vd(%) Vu, + u, = f(x),

where 4(y) is a measurable periodic symmetric matrix satisfying the boundedness and
ellipticity condition

iE-E<ay)EE<aTie g

For this equation the constant ¢ in the estimate (4) depends only on the dimension 7 and
the ellipticity constant A.

On the other hand, by special analysis of the first approximation in method of
asymptotic expansions there were proved in [Zh] some new type estimates for the
solution of (5) and its gradient, which imply (4). These new type estimates involve
additional averaging in auxiliary “shift parameter” w.

Here we extend the approach of the paper [Zh] to non-linear homogenization
problem (1). First we investigate some regularity properties of cell problem solution.
Then we prove the estimate (4) under smoothness assumptions. After this in general case
[?-estimate is obtained through some “uniform approximations”. Finally we derive H'-
estimate for the difference between the solution #; of (1) and the first approximation with
smoothed corrector.

2. Assume that the vector-valued function a(y, &) verifies the following structure

conditions:
/) a(y,&) is 1 — periodic and measurable in y;
i) foranyy ae. and any &;,& € R”
(6) (@(y,&1) = a(1, %)) - (&1 — &) > alé — &,
la(y,&1) —a(y, &) < alé — &,
a(y,0) =0.

The function #y can be considered as zero approximation of the solution #, (see (3)).

Let us recall the construction of the first approximation.

Denote 0 = [—1,1)" and (-) = [+ dy. Introduce the periodic problem depending
0

on parameter ¢ € R”

7) N, &) € HL, (@), divya(y,¢ + V,N(3,9) =0, (N[, &) = 0.
It is known that function 4 in (2) is defined by formula

(8) (&) = (a(-,¢+ V,N(-,9))).

Let us pose

9) ve(x, @) = up(x) + eN(y + o, Vi), yz%, w e R”,
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where ) is the solution of the homogenized problem (2). Then function v,(x) = v,(x,0)
is usually called the first approximation of the solution of (1) and its second term is known
as a corrector.

Our main goal in the following result.

TueoreM 1: The estimate (4) holds with constant ¢ depending only on dimension n and
co, ¢1 from (6).

To this end we prove
TueoreM 2: The following inequality holds:

(10) J J (It + 209) — 0,(06,0) P4Vt + 200) — V(. ) ) dideo < e szdx,
OoRr” R”

where constant ¢ depends only on dimension # and ¢y, ¢; from (6).

As in [Zh] the estimate (4) is deduced from (10) in the following way. Recall that
Juy(x + ew)dw is the Steklov smoothing of the solution #; and [v,(x, w)dw = wuy(x), (see
0 m

(9)). It follows from (10) and the Cauchy-Schwarz inequality that
2
J ‘ Jug(x + ew)dw — up(x)| dx < cé? szdx,

rR” O R”

whence the estimate (4) is straightforward consequence if we apply the following property
of Steklov smoothing (see Lemma 2 in [Zh]):

2
rR” O R

We can clarify the role of shift parameter w. Generally, under the condition
f € L2(R") the first approximation v,(x) = v;(x,0) does not belong to H'(IR”) or even
to L?(R"). Besides, it is a problem how to give sense to the corrector N(y, V). On the
contrary, we will see that N(y + @, Vg (x)) exists as an element of L?(R” x [J) and it is

possible to consider function N (}—; + w, Vuo(x)). Moreover N (9—‘; + w, Vuo(x)) has a

generalized gradient belonging to the same space. So function N(E+ , Vu()) is an

element of H'(R”) (for details see section 6). Parameter w becomes useful also by
estimating the residual in asymptotic expansion method (see section 5).

As we have seen, under our assumptions it is impossible to obtain usual H'-estimate
(see, e.g. [JKO], chapter 1) for the difference between the exact solution #,(x) of the
original problem and its first approximation v,(x). But H'-estimate is true if we take
instead of v,(x) the first approximation with so called smoothed corrector. For details see
section 7. Some analogous approach to regularise a corrector was made in [G] for H!-
estimate in linear case for the elliptic problem in bounded domain.
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3. In this section we establish some usefull properties of the cell problem solution

N(y,&).

Lemma 3: The function NNy, &) is Lipschitz in & with values in L*(0) = Lﬁer(I:l) and
its Lipschity constant depends only on cy, ¢y from (6).

Proor: Denote Ne(y) = N(y, £) and

I= [(@0:+ TN = a0+ T N)) - (€ + TN = (14 VN
O

By monotonicity of a(y, -) (see (6ii)),

I>¢ J}f + VN = (n+ V,N,)[*dby.
O

Since divya(y, & + V,N¢) = 0 and divya(y, n + V,N,) = 0 we have

I= (@& + VN = a4 T,N) - € - i
0
Since a(y, -) is Lipschitz, then
I<all—n| J|é+vyNg»— (n+V,N,)|dy < a1]& — | (J|§ + V,N¢ — (n+V,N,) |zdy> :
0 0

Hence

1

(JM + V,Ne = (n+ VyNﬂ) |2dy) < 2 €=l

€
O

and then &+ V,N¢ is a Lipschitz functions in ¢ with values in L?(0J) (with Lipschitz
constant given explicitly above). The same is true for V,N¢. |

The last lemma and the lipschitzianity of a(y, -) imply, by composition, the following
results.

CoroLLARY 4: The function a(y, & + V,N¢) is Lipschitz in & with values in I?(00) and its
Lipschitz constant depends only on cy, c1 from (6).

CoroLLary 5: The function a°(&) is Lipschitz and its Lipschitz constant depends only on
o, c1 from (6).

The proof of the last assertion is also given in [FM].



— 105 —

Lemma 6: The function N(y, ) is Lipschitz in & with values in L?(0) and its Lipschitz
constant depends only on dimension n, and on cy, c1 from (6).

Proor: Since (N) = 0, by Poincaré inequality

jw(y, &)~ NPy <, j\vmy, &) — VN(y.n)[dy < €l — P,
O O

where constant C is controlled by ¢y, ¢; from (6) and Poincaré constant c,. [ |
From Lemma 6 we have the following

CoroLLary 7: There exists V:N(y, &) as a bounded function of & with values in [*(0)
such that

J|chN(y7 &Pdy < C,

O

where the constant C depends only on dimension n and cy, ¢, from (6).

4. We prove Theorem 9 in several steps.

First we assume that a(y, ) is infinitely differentiable. From the elliptic theory we have
that the solution of cell problem N(y, ) is also infinitely differentiable together with the
limit function a°(&). We also assume that / € C°(R").

In this case the solution #; of the homogenized problem is differentiable and
exponentially decays to zero with all its derivatives.

Now consider the first approximation v;(x) = v.(x,0) (see (9)). Its full gradient is

V,(x) = Vug(x) + VyN(y, Vaug) + eV2ugVeN.

We pose

a(y, Voe) = a(y, Vo + VyN(y, Vawo)) + 7, 9 = g
where
12) 1 — V) — ooy T+ TN
Since a(y, -) is Lipschitz function, we have
(13) |r] < 1| Vo, — (Vg + VyN) | = c16| VugVeN|.
Denote

g(ya é) = ﬂ(%f + VyN) - ﬂo(f)-
By (7) and (9), we have
divyg(y,&) =0 and (g(-,&)) = 0.
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By representation of solenoidal vectors (see [JKO], §1, chapter 1) there exists a matrix

G h th
(7€) such that 1) G(y,¢) is differentiable in y, &,

2) G(y,¢) is skew-symmetric,
3) g(9,¢) = din,G(y,4).

Moreover G(y,¢) is a Lipschitz function in & with values in H'(CJ) and with Lipschitz
constant depending on dimension 7 and ¢y, ¢;. In fact

2(:€) = a(y, &+ V,Ne) = a’(&) = a(y, &+ V,Ne) — (a(y, &+ V,Ne))

is Lipschitz with values in L?(J) by corollaries 4, 5.

According to construction given in [JKO], the transformation of vectors into matrices
2(,&) — G(y, &) is a linear operator and so G(y, -) is Lipschitz. Then we can deduce that
there exists V:G(y, £) such that

jMG(y, &Pdy < C,
O

where C is a constant dependent on 7, ¢, ¢;.
We have

(14) a(y, Vuy + VyN) — (V) = g(y, Vo) = divyG(y, Vug) =

€

= edivG(y, Vug) — ediv,G(y, Vug) =72, y = g

We observe that divG(y, Vup) is a solenoidal vector. In fact, since G is a skew-symmetric
matrix and V2 is a symmetric one, we have

J divG(y,Vuy) - Vodx = — J G(y, V) - Vipdx =0 Vg € CF(R").
R R

So

(15) divr? = — ediv|div,G(y, Vug)| = —ediv {(Vzuo)

X

GP/'(y7vu0):| Y= A ) p: 17 .

0
70&;
Then

. X .
div {a(;,Vz;J - aO(Vuo)} =div(rl +77).
According to previous section, we have

A(ve — u) + (v, — u;) = —diva ,Vyg) + v, + dz‘wz(g,Vug) — U, =

,va) to,—f =

= —diva

= —diva

N TN Y
KR®mIR ™[R

™

-, va) + v, 4+ diva®(Vug) — uo =
= —di {a (E,Vva) - aO(Vuo)} + v, —uy =
= —dz'v(rel + 7?) + erg,

where 70 = N(y, V), rl, 7> are given in (12), (14) and (15).

r et
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For the equation A.2* + z° = fy + divF the following estimate holds
&2 2 2
(16) 11 ey < (1A ey H IR )
Here and hereafter we denote by C a constant that depends only on the dimension 7 and

co, ¢ from (6).

So , 5 5
it = vl gy < C2 J 10 Pdx + C J It + 2.

R" R”
By (13) and (15), we obtain
2 2 (X X 2 2 2
(A7) o — ooliingen < CF J(N (Eovmo) + (5 7m )| 2] >dx,
R
where b(y, ) are functions of the form V:N(y, &), V:G,(y, ). In general case functions
b(g , Vuo) do not belong to L>*(R”) and, hence, cannot be excluded from the above

estimate. The appropriate estimate of N (g , Vuo) is also problematic. Now we shall cope

with these difficulties in the same way as in [Zh].

5. Along with original problem (1), we consider the problems corresponding to the
“shifted” function a(y + w, &), where w € [,

(18) fdm(’—; + 0, Vit (x,0)) + w(x,0) = f(x) in R,

with the same right-hand side f(x). Equation (1) is obtained if @ = 0, i.e. #,(x, 0) = #,(x).
Note that homogenized function °(£) does not depend on @, because the function N(y, w, &)
as well as the remaining functions 5(y, w, &) are obtained from the initial ones by means of a
shift: b(y, w, &) = b(y + w, ). In particular, the first approximation is given by (9).
For every w € O the estimate of the type (17) holds, that is
J (1L, 0) = 043, @)+, (5, ) = Vo (x, ) ) v <
R 2
< Cé J (N2 (f + w, Vuo> + ’19(f + w, Vuo) ’ ]V2u0]2> dx.
€ €
R
Integrating this estimate with respect to @ € [0 and using properties of the functions
N(y,&), b(y, &) (see sections 3,4), we obtain

(19) ” (|ug(x, @) — (%, @) P+ Vet (x, ) — Vo (x, a))|2>dxa,’co <

o < CSZJ J (NZ (g + w, Vuo> + ‘b(g + o, Vuo) ’2 |V2u0|2> dxdw <
OR”
< Cé J (|Vuo|2—|—|vzuo}2)dx < Cé szdx,

R” R”
since [|2o|| 2+ can be estimated by || f]| 2 (g in virtue of equation (2).
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It remains to compare solution #(x,®) of the shifted problem (18) with shifted
function #,(x + ew), where #, is solution of the initial problem (1). To this end we observe
that #,(x + ew) is solution of (18) with f(x + ew) instead of . So it is sufficient to
compare the right terms f(x) and /(x + ew) and apply the energy estimate.

By Lemma 3 in [Zh], we have

1/ + e) = F Ol (e < elol| /| oqzey ¥ € LA(RY).
Then by the energy estimate we obtain
J (|m(x, ) — t,(x + £0) P+ Vo (x, 0) — Vet (x + sw)|2)dx < Ce szdx Vo € 0,
R R”

and so we can replace in (19) #.(x, ®) with #,(x + e).
6. We have proved estimate (10) under the assumption that a(y, &) was infinitely

differentiable and / € C°(R”). In general case it is possible to find sequences of infinitely
differentiable functions 4°(y, ¢) and £ € C*(R”) such that

2 (9,&) — a(y, &) for ae. y € O, Y& € R”,
0 — fin 2(R").
For every 6 > 0, let us consider the problem (1) with 4° and f? instead of  and f
(20) AU + i) = —~diva® (g : Vuf) + 4 =f(x)
with its set of homogenization attributes. That is homogenized equation
(21) AU + 4 = —div af) (Vug) +ud = f(x),

cell problem with solution N°(y,&) and the corresponding shifted family of first
approximations

0 (x,0) = ud(x) + eN° (3, Vi (x)), y = f

Lemma 8: The solution u® of the problem (20) converges in L2(R”") to the solution u, of
the problem (1) when 6 — 0.

LemmMa 9: Let ug and ug be the solutions of the problems (2) and (21). Then
”8 € HZ(R”)» ||ug||H2(R”)S Cllf”LZ(]R”)v
where constant ¢ depends on dimension n and on co, ¢y, and
) — uy in H*(R”).

We observe that the constant ¢ in estimate of the type (10) for the equation (20) does

not depend on . Therefore it remains only to pass to the limit in it in terms 2?(x, ) and

V?(x, ) to obtain (10) itself. To this end, the following lemma is available.
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Lemma 10: Let us assume that

) M(y, &) is infinitely differentiable function such that:

(22) ﬂWum%@4$ﬁWWum%@dw$qum%@a
0 O 0
where ¢ does not depend on 0,

i) M°(-,&) — M(-,¢) in HY(O) V¢ € R,

iit) @ — & in H'(R")".
Then for a.e. w € O the function

P(x,0) = M(x + w, D(x))
belongs to HY(R") and its generalized gradient is defined by formula
V.P(x,w) = V,M(x + o, P(x)) + VP - VeM(x + w, D(x)).
Moreover if P(x,w) = M? (x + w, ®°(x)), then
P°(-,w) — P(-,w) in H'(R") for a.e. w € O.

This lemma can be applied to the solutions of cell problems N°(y, &) (= M°(y, ¢)) and
Vud(x) (= ¢°(x)). Here we also take into account the following

Lemma 11: For each & € R” we have
N°(-,¢) = N(-,¢&) in H'(R")

and conditions (22) are satisfied uniformly in 9.

7. After the change of variables x +&w — x and order of integration due to the
Cauchy-Schwarz inequality it follows from the estimate (10) that
(23) J (\u;(x) — Do) P4+ Vg (x) — Vﬁ,(x)|2)dxda) <cd szdx,
RV/ M{fl

where the function

(24) Bi(x) = Juo(x—aa))dconteJN(g,Vuo(xfew))dw
O O

can be called as a smoothed first approximation. Applying inequality (11) to functions
up(x) and Vup(x) we eliminate in (24) smoothing of the zero approximation #y(x) and,
hence, replace in (23) 7,(x) with

(25) B(x) = wo(x) + J N(E, Vol — ew) ) dos,
Od

that is first approximation with smoothed corrector. So the following result is valid.
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TueOREM 12: It is true that

J (1) — 20) P+ Vitel) — V(P ) dsdo < e J P,

R” R”

where v,(x) is defined in (25), ¢ is a constant depending only on dimension n and cy, ¢,

from (6).
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