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On a Mathematical Model Relative
to the Doping of Semiconductors

ABssTRACT. — A mathematical model relative to the doping of semiconductors is studied and an
existence and uniqueness theorem is proved.

Un modello matematico relativo al drogaggio dei semiconduttori

Sunto. — Si studia un modello matematico relativo al drogaggio di semiconduttori e si dimostra
un teorema di esistenza ed unicita.

1. - INTRODUCTION

It is well known that the process of doping semiconductors (normally silicon) has
lately assumed very great importance, in particular in the manufacture of electronic
devices.

A mathematical model which is widely used in applications is expressed by the
equations (see for instance [1], [2])

d
 Ox
where # is the concentration of the dopant, @ is the diffusion coefficient, / the quantity of
dopant introduced.

If # is “small” (< 10”cm™) @ does not depend on # and (1.1) reduces to the well
known Fick’s law. For high concentrations the relationship between diffusion coefficient

(1.1) Uy (D()uy) = f
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and concentration is given by the formula
(1.2) D) = a + Plu| + yi

with a, f8, y positive constants, depending on the nature of the dopant. Some indications
regarding values of these constants are given in the table below

TABLE FOR Si:
a B Y
P £0 #0 #0
As £0 £0 0
Sb #0 #0 0
Bi #0 £0 0
TABLE FOR GaAs:
a B ”
Zn() 0 0 £0

(") Zn is not considered a dopant

In the sequel we shall limit our study to the most common dopant, phosphorous, since
the other materials can be considered as particular cases.

The model described above will in what follows be called classical model.

This model has been criticized owing to the fact that in its deduction the solubility
limit of dopant is assumed to be infinite, a condition which is not physically verified in
applications (see for instance [3]).

For a more detail discussion of the physical aspects of the problem considered see
references [4] to [16].

The aim of the present paper is to introduce and study a model obtained essentially
from (1.1), but which takes into account the fact that the concentration of dopant is
bounded by the solid solubility constant M; : |z| < M.

Precisely, this will be done by substituting to equation (1.1) an inequality associated in
a natural way to it, see for instance [17], [18], [19] .

The corresponding model will be called inequality model.

In what follows, we shall assume that the silicon crystal is homogeneous (i.e. the
coefficients a, #,y are constant). Since the temperature is fixed during the process, the
solid solubility is also constant.

2. -Tue INEQUALITY MODEL

Let us observe first of all, that both the classical and the inequality models are
“atomic”, precisely we assume that the material is constituted by “atoms” of a given
diameter J; hence the following two conditions hold

ulx +5h) — ulx)

< :M3 vh >0

!
5

(the second condition (2.1) follows from the first; where Mj; is a constant).



Finally, since the model is not relativistic the velocity of the“atoms” must not exceed
the speed of light, hence

(2.2) o] < M,
(M, is a constant).

In what follows, relations (2.1), (2.2) will be called consistency conditions.
Let now Kt be the closed convex set defined by

(2.3) Ky ={ue*(0,T;Hyy) : |u| <My, |u| <Ms, |u| <My}
where
1 1 3%
Hy,=que H u(0,7) =0,— =0 Vrel0,T]
ox|,_,

and consider the inequality associated to (1.1)

(2.4) %Hv(t) AT

t ¢

t
+j<<pt, v — phade + j (@ + Blo] + 7)o, 05 — 912 YL SJ(f,v—co)deC
0 0 0

where ¢ is an arbitrary test function € Kr.

The inequality model is then defined by (2.4) and by the consistency conditions
introduced above.

We shall say that v is a Kr-solution in (0, T) of (2.4) satisfying the initial condition

(2.5) v(x,0) =0 (0<x<))
and the boundary conditions
ov
. = — = <r<
(2.6) v(0,) =0 x|, 0 (0<¢<T)

if
i) veKr
i) v satisfies (2.4), (2.5), (2.6) V ¢ € Kt .

The second condition of (2.6) means that there is no flow of dopant through the
surface (see for instance [9], [23]) which is physically reasonable. Moreover we observe
that the first condition of (2.6) has been taken into account by imposing that v € H},,
while the second condition of (2.6) is automatically satisfied since the boundary terms,
which normally appear when Green’s formula is applied to (1.1), vanish.

The relationship between the classical and the inequality model is expressed by the
following well known proposition (see for instance [17]). Assume that there exists T"> 0
such that v € K+ (internal set of K7+ ) then the Ky« -solutions are also solutions in (0, T*)
of (1.1), with the same initial and boundary conditions. Thus, on (0, T*) the solutions of
the two models coincide, while, when # > T" the two models may differ; in this case,
however, neither model is physically acceptable, since it does not comply with the
consistency conditions.
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It appears therefore reasonable to substitute the classical model with the inequality
model, since this last holds on the largest possible time interval.

In the next section 3 we shall prove an auxiliary theorem. Subsequently in sections 4
and 5 we shall prove an existence and uniqueness theorem for the Kr-solutions relative to
the inequality model.

3. - AN AUXILIARY THEOREM

Consider the regularized inequality associated to (2.4)

6.1) 200 - ¢(¢>||22+J(¢,, v — p)pdi+

0
t

+ J{s(Gv, v— )z + ((a+ Blo| + p*)vg, vx — 9, )12 pdC Sj(ﬂ v—@)dl
0 0

where G is the (positive, self-adjoint) Green’s operator relative to the equation z, = b
with 2(0) = z(T) = 0.

We shall say that v is a K-solution in (0, T) of (3.1) satisfying the initial and boundary
conditions (2.5), (2.6) if

i) ve Ky
i11) v satisfies (3.1), (2.5), (2.6) Vo € Kr

Let us prove the following auxiliary theorem.

TrEOREM 1.

Assume that f € L?(0, T; L?).There exists then Ve > 0 in (0,T) a Kr-solution of (3.1),
with the initial and boundary conditions (2.5), (2.6).

The proof is based on the classical Faedo-Galerkin method.

Let {g;} be a basis in H{,(0,/) and set

(3:2) v="1 og
=1

X

(3.3) v, = O

~.
Il
_

with

We consider now, for each fixed & > 0, the system of # ordinary differential equations
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in the unknowns g,,(¢)
0
641 (v gl Bl i) +4Go, +aPl0) ~frgy) =0
LZ
where P is a penalization operator relative to the convex set K7 .
The system (3.4), thanks to well known properties, admits local solution.
Multiplying (3.4) by ¢,; and adding with respect to 7 from 1 to 7, we have

1d
(3.5) 5% 04|72+ Blog] + 7020, )12 + (G 0) 12+

+(7’1P(Un)az)n)L2 - (f7 Un)LZ =0.
Bearing in mind that by definition of penalization and Green’s operators
(3.6) (P@,212 >0,  (Gz,z)p2 = (G2,GV?2)p2
we obtain by (3.5) integrating between 0 and ¢ € (0, T),
t
1 2 1 2 2
(3.7) > ||Un(t)||L2_§ 2,072+ | (@ + Bloa| + 0,0, Va2 dl+

0 ! I3

+e [IGM0n dt < [, oot

0 0
with
(3.8) v,(00=0 V.

Hence, by (3.7), (3.8), we have
(3.9) onll20.1: H) 10,1 1S G

2

(3.10) &| G0, || < &G
(3.11) o7 < Cs

with C; independent of 7 and ¢, (/ = 1,2, 3).
By well known embedding and interpolation theorems see, for example [20], [21],
[22] it follows then, V ¢ fixed > 0

(3.12) lim v, =»  in C°((0,) x (0, T)).

n—0o0

Moreover, by the semicontinuity of weak convergence we have

6.13) G20l < minlima] G2
(3.14) a||v,||7. < minlim al|v,|7>
(3.15) Bllox|I7< min lim B|v, |7

(3.16) VHUUxHiZS mingmyuvﬂynxuiz'
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From (3.9), (3.12) it follows in particular that the solution of (3.4) exists globaly in [0, T].
Let us prove that v is a solution (i.e. satisfies 7), 71). In order to prove condition #),
consider an arbitrary function ¢ € H?(0, T; H3,) N Kt where

ou

Z{(O,l‘) = O, a

Hé(): {ueHz

=0 Vre|o, T]}
x=I[

and set

00 P
0= gy 0,0=> Py
= =

~ p; for j<p

= 0 for j>p
If we suppose # > p, multiplying 3.4) by ¢, — p; adding with respect to 7,
integrating in (0,7) and bearing in mind that P is mononote (= (Pv,,0,—¢,)1> =

= (Pv,~Pg,,v,—¢,)1> >0) we obtain
!

1 2
(317) 5 Un(t) - wp(t) L2+J((a + ﬁlvn| + Wi)vnx, Unx — (ppx)LZdéq'
t 0 t
+J{8(Gl/zym Gl/zvn - Gl/z(ﬂp)LZdC - (f7 Up — (0p)L2 }dC+J(¢pt7 Z)n—(ﬂp)deC <O0.
0 0

Let now 7 — oo (keeping ¢ fixed); by (3.12), (3.13), (3.14), (3.15), (3.16), the
semicontinuity of the weak limit, and the definition of P, » satisfies condition 7)
Vo € H?(0, T; H3,) N K7, see [23].

We shall prove now that the Ky-solution belongs to the convex set K.

Moreover, again from the equation (3.5), integrating in (0, #) and bearing in mind
conditions (3.12), (3.13), (3.14), (3.15), (3.16) we have

(3.18) ﬂJ(P(v”),vn))dez‘ < Cy,
0

and consequently v, € Kt ; hence v satisfies condition 7;) (where C, is a constant).
By the usual density argument, inequality (3.1) is satisfied also V¢ € Kr.
The existence theorem of the regularized problem is then completely proved.

4. - AN EXISTENCE THEOREM

THEOREM 2.
Assume that f € L?(0, T; L?). There exists then in (0, T) a Ky-solution v of (2.4),
(2.5), (2.6).
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Let v, be a solution of (3.1), (2.5), (2.6) corresponding to the value ¢. Following the
same procedure as in Theorem 1, we can prove that

(4.1) lirrévg =v

in the weak topology of L?(0, T; Hy,)) N L>°(0, T; L?) N H}, (0, T; L?) and strong topology
of L2(0,T;L?).
The limit function v is a solution of (2.4), (2.5), (2.6). In fact consider the inequality

I

(4.2) %Hyg(;) _ ¢<z>||§z+J((a - Blowl + 1000, v — 0 )12dC+

0
!

!
+ J{s(cl/zvﬁ, G0, — G'Po)2dl — (f,v. — 9)12 }duJ(%, v,—0)2d{ <0
0 0
with ¢ € H2(0, T; H3,) N Kr.

Let now, in (4.2) ¢ — 0. Bearing in mind the semicontinuity of the weak limit, the
definitions of P and G, v satisfies condition #) Vo € H*(0, T; Hj,) N Kr.

We can prove that v satisfies also condition 7) Vo € H?(0, T; H3,) N Kt by the same
procedure of theorem 1.

Again by a density argument, inequality (2.4) is satisfied also Vo € Kr.

5. - AN UNIQUENESS THEOREM

THEOREM 3.
Let us now prove the uniqueness of the solution of
5.1) (e, 00 = )2 + (@ 4y ety e — 9 )12 < (f 0 — )12

under the further condition f = 0.

This condition is justified by the fact that in most pratical cases the coefficient f “is
small” (see [16], [23]).

Following a classical procedure (see for instance[17]), let us assume that there exists
two solutions, #, v, of (5.1), (2.5), (2.6).

(52> (ul‘v U — (D)LZ + ((a + yu2 ) Uy Uy — wx)ng (f7 u— (U)LZ
(5.3) o=z + ((a+77 ) ve,ve —w,) < (fLo— )2
with ¢,y € K¢

Setting ¢ = v and w = u (which is obviously possible) and adding (5.2), (5.3), we
obtain

G4 (u—v,u—0), + ((a+pe?) we,u, — ve)p + ((a+ WP Uy, Uy — i), <0
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Bearing in mind that # and » € Kr it follows
10
(5.5) > o |lee — Z)||L2+ allu, — vaLZ +((yPuy — pPo e — v )1, <0

Now using a standard procedure we obtain

(5.6) ||u fv||L2+a||ux UX”LZJFVUZ”th vaszLyM((u—v) Uy — v, <0

1

20
a>0,y>0 M>0

hence

yM 0

2
(57) > ol —sl,< 0

2
o= 2llL, +

N —
SIS

and consequently

The theorem is completely prove.
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