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Asstract. — Our aim in this paper is an extension of the definition of nonlinear p-homogeneous
Dirichlet form to the case where the domain of the form is a Banach space possibly non reflexive.

Forme di Dirichlet nonlineari p-omogenee su spazi di Banach non riflessivi

Sunto. — 1l nostro scopo in questo articolo & estendere la definizione di forme di Dirichlet
nonlineari p-omogenee al caso in cui il dominio della forma sia uno spazio di Banach anche non
riflessivo.

1. - INTRODUCTION

Our goal in this paper is an extension of the notion of strongly local (regular) Dirichlet
form and of the related fundamental properties to the nonlinear case when the domain of
the form is a general Banach space possibly nonreflexive . For the notion of (bilinear)
Dirichlet form we refer to the book of Fukushima-Oshima-Takeda, [FOT]. In [FOT] a
purely analytical proof of the fundamental properties of a (bilinear) Dirichlet form is
given, this type of proof firstly appeared in [M]; we recall also the papers [BM1], [BM2],
where an analytical investigation of the properties of the harmonic functions relative to a
(bilinear) strongly local “Riemannian” Dirichlet forms is carried on. On the ground of the
Beuerling-Deny representation formula, [Beu], a (bilinear) Dirichlet form is represented
as the sum of a strongly local part, of a “killing” part and of a global part. The Beuerling-
Deny representation theorem is the fundamental tool allowing to prove that in the
(bilinear) strong local (regular) case same properties of Dirichlet forms (in particular the
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Markov property) hold again for the energy measures. Using the above mentioned
properties of the energy measure it can be proved that for the energy measure of a
(bilinear) strongly local (regular) Dirichlet form a chain rule and a Leibnitz rule hold;
those properties are the starting point for an investigation of the local regularity of
harmonic functions relative to a (bilinear) strongly local (regular) Dirichlet form, see in
particular [BM1], [BM2]. The Beuerling-Deny representation theorem is proved using
Riesz theorem on representation of measures, which is an essentially linear tool, then it
seems that it is difficult find a nonlinear version of this result.

Previous work on a possible extension of the notion of Dirichlet form to the nonlinear
case has been given by Benilan-Picard, [BeP], and Cipriani-Grillo, [CG1] [CG2]. In
particular in [BeP] the relations between the maximum principle and the Markov
property are investigated generalizing to the nonlinear monotone case previous results
obtained in [Beu] and [Hirsch] in the linear case. In [CG2] a notion of nonlinear
Dirichlet form is given and the relations with a class of nonlinear semigroups (the order
preserving contractions semigroups with a cyclically monotone generator) are
investigated. The above papers deal with the general global case and are interested in
the properties of the corresponding nonlinear semigroup; then the existence of an energy
measure is not ensured and there is no proof of chain or Leibnitz rule for the energy
measure, when such a measure exists. The first paper dealing local forms was [MM],
where a suitable chain rule for the energy measure connected with the form is assumed
and the Sobolev-Morrey inequalities are proved as a consequence of a Poincaré
inequality. In [C1], [C2], [C3], [CL] some nonlinear forms on fractals are explicitely
given and it is proved that the assumptions in [MM] hold (see also the more recent papers
[S1, [HPS] on the p-Laplacian on the Sierpiski gasket).

In [BV1] a notion of nonlinear strongly local Dirichlet form is introduced; we give our
assumptions (in particular the Markov property) directly on the energy measure of the
form, whose existence is assumed. We are able to prove in this framework (by purely
analytical methods in the line of [M]) suitable Leibnitz and chain rules, which are the
starting point for an investigation of the local regularity of the harmonic functions relative
to the form and in particular for a proof (under suitable assumptions) of a Harnack type
inequality for positive harmonic functions given in [BV2] (we observe that the chain rule
proved here is the same assumed in [MM] and that a Harnack inequality for positive
harmonic functions in the bilinear case has been proved in [BM1], [BM2]).

In [BV1] the domain of the Dirichlet functional associated with the form is assumed
to be a uniformly convex Banach space (under a suitable norm) and the functional is
assumed to be locally uniformly convex. There are cases, as the p-energies on fractals
considered in [S], [HPS] or the p-energies on metric spaces considered in [KM], where
the above assumptions can not hold (conditions under which the reflexivity is assured are
given in [Chee]). The goal of this paper is to prove that the results in [BV1] (then also the
results in [BV2]) hold again without the above assumptions. Of course there is a cost to
pay; in [BV1] the chain rule for the energy measure of a Dirichlet functional is proved
without assumptions on the existence of a Dirichlet form associated to the functional
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(existence of a Gateaux derivative of the energy density of the functional in the weak*
topology) here we assume the existence of a Dirichlet form associated to the functional.

2. - THE capacCITY

Concerning this section we observe that all the results in section 2 of [BV1] hold again
and we recall in this section only the most interesting for the following.

We consider a locally compact separable Hausdorff space X with a metrizable
topology and a positive Radon measure 7 on X such that supplm]= X. Let
@ : [P(X,m) — [0,+00], 1 < p, be a ls.c. strictly convex functional with domain D,
ie. D= {v; ®(v) < +oo}, such that @(0) = 0. We assume that D is dense in [2(X, )
and that the following conditions hold:

(Hy) D is a dense linear subspace of I7(X, #2), which can be endowed with a norm
||.|| p; moreover D has a structure of Banach space with respect to the norm |||, and the
following estimate holds

allolfy < @10) = 00) + [l dor < ol
X

for every v € D, where ¢, ¢, are positive constants.
(Hz) We denote by Dy the closure of D N Cy(X) in D (with respect to the norm |||
and we assume that D N Cy(X) is dense in Cy(X) for the uniform convergence on X.

Remark 2.1: We observe that, since @ is convex, @ is Ls.c. also with respect to the
weak topology of I7(X, ). Moreover from the assumption (H;) it follows that @ is
continuous on D for the norm ||.|| p, [PS] Ch.1 Sec.2 pg. 20, then from (H>) the restriction
of @ to D, coincides with the relaxation of @ defined on D N Cy(X).

(H3) For every u,v € DN Cy(X) we have Vv € DN Co(X), u Av € DN Cy(X) and
D(uNv)+ Dunv) < D(u) + d@).

We observe that from (H,), from Remark 2.1 and from the ls.c. of our functional on
L7 (X, m) we have that the above inequality hold again for every «,v € Dj.

Remark 2.2: We observe, [DS] pg. 15-19, that given an open set O, whose closure is
contained in an open relatively compact open set Q, there exists a function # € Cy(X)
suchthat z > 1+¢, &> 0,0on Oand #z = 0 on €, then from (H,) and (Hj;) there exists
u € DNCyX) with # > 1 on O. Moreover we observe that, since Co(X) is dense in
I?(X, m), we have that Dy is dense in L (X, z).

Remark 2.3: We observe that the assumption (Hs) is connected with the assumptions
in [CG2], moreover if @ has a subdifferential & with values in D’ (the dual space of D) at
every point in D, then (H;) hold if 8@ is T-monotone.
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The assumptions (H;)(H,) and (H3) allow us to define a capacity relative to the
functional @ (and to the measure space(X, 72)). The capacity of an open set O is defined as

capy(O) = inf{P1(v); v € Dy, v > 1 a.e. on O}

if the set {v € Dy ,» > 1 a.e. on O} is not empty and
capp(0) = + 00
if the set {v € Dy ,» > 1 a.e. on O} is empty. Let E be a subset of X we define
capy(E) = inf{cap(O); O open set with E C O}.

We observe that from Remark 2.2 it follows that given an open set O, whose closure is
contained in an open relatively compact open set 2, we have caps(O) < + co; moreover
the infimum defining cape(O) is attained and the corresponding function is called the
potential of O. As in [BV1] we can prove that capp defines a Choquet capacity on X. We
say that a property holds quasi-everywhere (q.e) if the property holds up to sets of zero
capacity. We observe that the potential of an open compact set Ois 1 g.e. on O. We recall
that every function in Dy is quasi-continuous for this capacity; moreover if we have that a
sequence #, converges in Dy to # we have also that the sequence u, converges quasi-
uniformly (for the capacity capg) to u, [BV1].

Finally as in [BV1] we have that any function # € Dy is a measurable with respect to
every positive Radon measure v, which does not charge sets of zero capacity.

3. - STRONGLY LOCAL DIRICHLET FUNCTIONALS AND FORMS

The assumptions (H{)(H;) and (H3) have a global character; now we will define a
strongly local Dirichlet functional with a homogeneity degree p > 1. Let @ satisfy
(H1)(H) and (H;); we say that @ is a strongly local Dirichlet functional with a
homogeneity degree p > 1 if the following conditions hold:

(H4) @ has the following representation on Dy @(u) = [ a(u)(dx) where a is a non-
b
negative bounded Radon measure depending on # € Dy, which does not charge sets of

zero capacity. We say that a(«) is the energy (measure) of our functional. The energy a(«)
(of our functional) is convex with respect to # in Dy in the space of measures , i.e. let
u,v € Dy and ¢ € [0, 1] then a(zu + (1 —2)v) < talu) + (1 — #)a(v), and is homogeneous
of degree p > 1, i.e. a(tu) = |t|’a(u), Vu € Dy, Vt € R.

Moreover the following closure property holds: if #, — # in D and a(u,) converges to
x in the space of measures then y > a(u).

(Hs) a is of strongly local type, i.e. if #,v € D and « — v = constant on an open set A
we have a(z) = a(v) on A.

(Hg) a(u) is of Markov type, i.e. let § € C'(R) such that #'(#) < 1 and $(0) = 0 and
u € DN Cy(X) then f(u) € DN Cy(X) and a(f(«)) < a(x) in the space of measures.



In the following we denote by M the space of Radon measures on X.
We now prove that (H;)(H,)(Hy)-(Hs) imply (Hs).

Lemma 3.1: Let u, be a sequence in Dy weakly converging (in Dy) to u. Assume that
a(u,) weakly converges in M to y, then y > au).

Proor: From (Hy) the epigraph of a(.) (i.e. the set {(1,v) € M x Do; u > a(v)}) is
convex and closed in M x Dy, then is closed also in the weak topology (see Th. 2.9.3 pg
36 [HP]). The result follows.

LemMA 3.2: Let u, be a sequence in Dy converging (in Do) to u; then alu,) weakly
converges in M to a(u). Assume that a,, are measures, Such that |a,,| does not charge sets of
zero capacity, and such that |a,| are weakly convergent in M, so also a, are also weakly
convergent in M and we denote by a the weak limit. If v, is a uniformly bounded sequence
of quasi-continuous functions, which converges quasi-uniformly to v, then v,a, weakly
converges in the measures to va.

Proor: We observe that a(u, — u) converges to 0 in M. Moreover we have
(3.1) alu,) < 2P Nalu, — u) + alu)

(where we use assumption (Hy)). From (3.1) and Th. 2 pg. 306 [DS] we have, that, at least
after extraction of subsequences, a(x,) weakly converges to y in M. From (H4) we have
% > alu); since @ is continuous on Dy, we obtain

J 2ldx) = Ja(u)(dx).
X X
Since y > a(u), we have y = a(u).

Since v is quasi-continuos and «,, is a Radon measure that does not charge sets of zero
capacity, we have that v is measurable for all the measures a,,. Since v is bounded va,, are
measures. Let ¢ > 0; since v, is quasi-uniformly convergent to v (at least after extraction
of subsequences), there exists an open set A with capep(A) < ¢ such that v, converges
uniformly tovin X — A. Let |v,| < M and & > 0. From (3.1) and Th. 2 pg. 306 [DS] there
exists o, and #, such that for ¢ < g, and # > #, we have

|a,|(A) <&

lv—v,] <e onX—-A.
Then
lv — vullan| < éla,| +2M14)a,]|
so |v — v,||a,| converges to 0 in M. Since v is bounded, we have that the measures va,
weakly converges in M, at least after extraction of subsequences (see Th. 2 pg. 306 [DS]);

using again Th. 2 pg. 306 [DS] we obtain that the weak limit of va,, in M is va and the
result follows.
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ProposiTion 3.3: Let the assumptions (Hy)(Hy)(Hy)-(Hg) hold, then also (Hs) hold.

Proor: Let () = ¢* for & > 0 there exists f8,(¢) in C! such that
Bt)=0 ifr<e 0<B)<1

lif(l) f.(2) = p@)
uniformly on R. Let # € DN Cy(X), from (Hg) we have that f,(z) € DN Cy(X) and
a(f. (1) < a(u) in M. Then f(u) € DN Cy(X) and

llfé B.(u) = plu)
weakly in Dy and strongly in L7(X, 7z) for every finite ¢ > 1. Let now «,v € D N Cy(X),
we have uVo=u+ @w—u)", unv=v— w—u)". Consider the functions r, = u+
+B.v —u), p.=v—P.(v—u), from assumptions (Hy)(Hs) we have that r,p, €
€ DN Cy(X) and alr,), a(p,) < Cla(u) + a(v)), moreover we have

limr,=uVo

&>
limp, =unv
e—0
weakly in Dy and strongly in L7(X, 72) for every finite ¢ > 1.
Th. 2 pg. 306 [DS] implies that we have, at least after extraction of subsequences,
lima(r,) = x
e—0
lima(p,) = ¢
e—0
in the weak topology of M, then by the lower semicontinuity of @ on L”(X, 7) we have
that # V v, u A v are in Dy N Cy(X) and

D(u Vo) < JX
X

D(uNv) < JC .
X
We observe that from (Hs) a(r;) and then y restricted to the set {v < «} are equal to a(«)
and a(p,) and then ( restricted to the set {v < «} is equal to a(v) then y + { < a(u) + a(v)
on the set {v < «}. Interchanging the role of v and « we have also y + { < a(«) + a(v) on
the set {# < v} and the result follows.

Now we will prove that, as in the linear case, the Markov property (Hs) has an
equivalent form:

ProrosiTioN 3.4: Let the assumptions (Hy)(H,)(Hy)-(Hs) hold, then the assumption
(He) is equivalent to the following one:

(Hy) Let u € DN Cy(X) then v =0V u N1 isin DN Cy(X) and a(v) < a(u).
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Proor: Assume that (Hg) holds. Then (Hj) is a consequence of the Corollary 4.2 in the
next section.

Assume that (Hy) holds. Let at first ff be defined as
B)=0 forr<0; fl#)=¢t for0<¢<I;
P=kit—1)+1 forl<t<a pt)=kla—1)+1 fort>a.

We will prove that () € Dy

a(Bu)) < 1jocycrya(u) + Rl cyeqyalu).
Let f8, be defined as

p.6)=0 fort<eg f(t)=t—¢ fore<r<1-2¢
P(t)=1-3¢ for 1-2e <t <1+42¢ f,(t) =kz—(1+2¢)+(1—-3¢) for 142e<s<a—g
B.(t) =kla—e) —(1+2)+(1—3¢) fora—e<t

From (Hj) we have that f,(x) € Dy and

a(f () < Ljocyaryale) + klpc,cyalu) .
Moreover we have that }13(1) P.(u) = p(u) uniformly on X.

We have for & < 2¢ < &
B.t)—B.t) =0 fort<e B.(t)—Pu(t)=t—¢ fore<r<é;
B.(t)—B.t) =& —¢ ford <t<1-2¢;

P(t) = Pyt) =t —(1=26))+ (€ —e) for1—2¢ <r<1—2¢
B()—P.)=3E —¢) forl—2e<t<1+2g

B.() —P.(t) =kt —(1+2¢)+3( —e) for1+2e<r<1+2¢;
() —Ps(t) =B + k) —e) forl4+2d <r<a—¢

Bt) —But) =kt —(a—&)+B+E( —e) fora—éd <t<a—e

B.(t) =B () =B +2k)( —e) fora—e<t.
As in the first part of the proof we have

a(ﬁs’(u) - ﬂe(u)) < (’% + 1)p(1{1731:’<u<17;:} + 1{1+;:<u<1+3;:’})0~(%) +
+ (1{2*1£<u<2£’} + 1{a72s’<u<472*16})a(”)
So we have that ,(x), (¢ = 37"), is a Cauchy sequence in Dy so
hrn Pelu) = flu)
in D()
11'_{% a(B.(u) =
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in M, so
a(f(u)) < x < 1{0<u<1}a(“) + 1{1<u<a}a(74)
in M. Consider now a set of number 4; with 7 = 0,1, ...,7 and the piecewise linear
function
B@) =nfort <ayg, Pt)=Fkit—a,_1)+pla, 1) fora; 1 <t<a

with £(0) = 0.
From the above proof we have that (&) € Dy and

a(Be) <Y 1y cucqyales) .
=1

Consider now a function f in C! with #’ < 1 and B(0) = 0; there is a sequence f3,(¢) of
piecewise linear function such that £,(0) = 0 and f,(#) converges to f(¢) uniformly on
every bounded set moreover f3.(¢) is derivable up to a finite number of points with
f () <1 and we have that for every ¢ > 0 there exists ¢, 1 such that for & < &, 1

IB'(t) =) <o
for |¢] < T. We observe that from the above proof
a(B.(u) — By () < oau)
for e < g, 7 with T = 2 max |u«|; so

lim () = p(u)

&e—0

in Dy and uniformly on X.
We have also

a(B,(u) < alu).

Then, at least after extraction of a subsequence,
lim a(B, () = 1
E—

in M and from (H,) we have
a(f(u) < x < alu)
So (Hg) holds.

We observe that the assumptions (H,)(Hs) allow us to define the domain Dy () of our
functional with respect to the open set Q as the closure of D N Cy(Q) in D. The result of
Proposition 3.1 allows us to define the capacity capa(E, Q) of a set E with closure
contained in 2 with respect to the open set Q. We observe that all the results recalled in
section 2 hold again for capg(E, Q) and for the functions in Do(2). Moreover we can
define the potential of a relatively compact open set O CC  with respect to the open set
Q and from (Hj) the potential of O with respect to 2 is equal 1 on the closure of O g.e.

Finally we say that a function v is locally in Dy () if for every fixed compact set K in
there exists a function w € Dy(2) such that # = w in K g.e.
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Let @(u) = [ a(u)(dx) be a strongly local Dirichlet functional with domain Dj.

X
Assume that for every «,v € Dy we have

ooalu+ ) — alu)
lim —————— = pu(u,v)
t—0 t

in the weak* topology of M uniformly for #,v in a compact set of Dy, where u(u,v) is
defined on Dy x Dy and is linear in . We say that ¥(«,v) = [ u(u,v)(dx) is a strongly
local Dirichlet form. X

Remark 3.1: From the above assumptions it follows that if #,, 7 = 1,2, ..., converges
to « in Dy then
lim p(e,,v) = plu,v)

n——+00

in the weak* topology of {M}.

Tueorem 3.5: The following properties hold:

(1) uQa,v) = |22 A, v) for A # 0 real and 10, v) = 0 (here and in the following
we assume |t >t = sign(t)|e’")

(2) the measure |1(u,v)| does not charge sets of zero capacity

(3) If we have uy — uy = constant on the open set A, ui,ur € Dy, then p(ui,v) =
= wlup,v) on A for every v € Dy

(4) If we have vy — vy = constant on an open set A, vi,vy € Do, then wlu,v;) =
= wu,v2) on A for every u € Dy

5) palu) = plu, u)

(6) |ulu,v)| < 2P7 g Pa(u) + 2P~ 1a??~Va(v) for every a > 0 where u,v € Dy

(7) For any f € L (X, a(u)) and g € 1P(X,a(v)) with 1/p + 1/p' = 1, fg is integrable
with respect to the absolute variation of u(u,v) and Va € RT

\fa) e, 0)|(dx) < 227102 |£)7 alu)dx) + 2P a?? Vgl a(v)(dx)
14

r_
where p =1

Proor: We have

a u+£v)—a(u) a(u—i—zv —a(Au)
alAu + tv) — a(lu) — P A _ M|p72/1 F) !
t ¢

t
2
Passing to the limit as # — 0 we obtain (1).

The measures a(v), v € Dy, does not charge sets of zero capacity, and
alu + tv) — alu) <

= 1'
wlat,v) lim ;

< lim (1 — Halu) + talv + u) — alu)

=0 ! =< 2" a(w) + a(v) + alw).
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Interchanching v and —v we obtain
|, v)] < 277 Halw) + a(w)) + alu)

and the result follows.

We observe that (3) and (4) follow easily from the definition of x(x,2) and from the
locality assumption on a(z).

We observe that

alu+tu) —alw) . 1+ -1
= lim

W, u) = 11113 p lim p a(u) = palu) .
Then (5) is proved.
We have
alu+tw) —alw) . al(l = Hu+ tu+v)) — alu)
wWu,v) = lim BT T B iy )
t—0 t t—0+ t

Since a is convex we obtain

(3.2) ,0) < lim (L= 90 + 1l +0) — alw)

<alu+v).
t—0 t

Using the convexity and the homogeneity of a, we obtain for 2 > 0

Wu,v) = ﬂ(g,aplv> < a(z + aplv> <
a a
< or1 < ) + 207 (g 1y) < 207 g Pa(u) + 27 10?0 Vg (y)
a

Then (6) is proved.
We prove at first an integral version of the inequality in (7)
[ vt o) < 201070 1Y atania + 2710 [ gt atwran.
X X X

We firstly prove the inequality for £ and g simple functions measurable with respect to

a(v) and a(u). Let f = > a,1g, and g = > 1,

jwmwmm=ZMMMMMw=Zﬁme%mwms

X E;
<2} Jg p|ai| PV ) (d) + 27~ 1ZJ V1B |o)(dx) =
E E;
=2r71 Z a P[P’V ) (dx) 4+ 2771 Z """ V1B, u(w)(dx) <

i El

E
Szp—lﬂ—pj|f|13 Ndx) + 27~ 1,p(p=1) J|g|p dx) .
X X
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The integral inequality follows by approximation for all functions in D N Cy(X) and then
for all function in Co(X) and using again an approximation we obtain the stated
1nequahty Let now ¢ be positive in Co(X) and apply the integral inequality to f ¢p and
to ggﬁﬁ then

j|fg|¢ t,0)|(d) < 271 aP J 7176 aludx) + 201 4?0 j|g|P¢ )(dx)

X X

and the result follows.

Remark 3.2: From (6) it follows that if »,, # = 1,2, ..., converges to v in Dy then

lim wlu,v,) = ulu,v)

n——+00

in the weak* topology of M.

4, - CHAIN RULES. THE cASE OF FUNCTIONS IN D N Cy(X).

Let
D) Ja(u)(dx)
X

be a strongly local Dirichlet functional with domain Dy. Firstly we prove a chain rule for
functions in D N Cy(R2).

ProposiTioN 4.1: Let u € DN Co(X) and f € CH(R) with B(0) = 0; then
— 1B )P ate)

Proor: We observe that |#| < M and f’(#) is uniformly continuous on [ — M, M].

Let ¢ > 0 be arbitrary and let ¢ > 0 be such that |f/(#) — /()| < g for |t — | < ¢,
H,t €[ —M,M].

We fix a point xp, then |f’(#) —ﬁ’(u(xo)| < g, for |ulxg) —¢| < e Let Uy, be a
neighborhood of x such that |u(x) — u(xy)| < & for x € U,,. Let ,i)’t be such that

_ B’ B'(2)
BO) =0, B ) (ﬁ oo [0 A 1) V(- » ; We observe that §'(¢ 7% T
. !
on the set |u(xg) — ¢| < &. Then () — Bt +0 cston the set |u(xg) — #| < &. Asa
Blulx))

= st on U,,. We have that f/(¢) <

consequence we have B(u(x))

From (Hg) we have |B/(ulxo))| + &

a(B) <
then
) < (|8 (u(x0))] + oV a(u) < (|B ()| + 26) alu)
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on U,,. By a covering argument we obtain
a(fe) < (|B'(u(x))] + 20) alu)

on X. Since ¢ > 0 is arbitrary, we obtain

(4.1) a(Be) < |B' () ale)
on X. From (4.1) we have in particular that
(4.2) a(p@)(K) = 0

where K = {8’ (u(x)) = 0}.

Consider now a point xq and assume that |’ (#(xg))| > ¢ > 0, then there exists ¢ > 0
such that |B'()] > g for |u(xg) — #| < 2¢ and a neighborhood of xq in which we have

|u(x) — u(xo)| < 2¢. Since B € C! then f is invertible on |u(xg) — ¢| < 2¢. The inverse
function y on |u(xg) — ¢| < & may be extended to a function in C*(R) with y(0) = 0. Let
U,, be such that |u(x) — u(xo)| < ¢ in U,,. By (4.1) and the strong locality of a we have

a(u) = aly(B@)) < W' (B) P a(Bu))
on Uy,. Then
(4.3) 1B (@) a(u) < a(Bu))

on Uy,. A covering argument prove that (4.3) holds on the open set A = {|f'(«)| > 0}.
From (4.1) we have that

(4.4) a(B(u) = B’ () alu)
on A. From (4.2) and (4.4) we have the result.

CoroLLary 4.2: Let the assumptions (Hy)(Hp)(Hq)(Hs) and (Hg) hold, then the
assumption (H}) also holds.

Proor: Let 8 be defined as f(¢) = 0 for # < 0, f(¢) = £ for 0 < # < 1 and B(¢) = 1 for
¢t > 1. Let f,(¢) be function in C! with 8,(2) = 0 for < &, ,(¢) = 1 for > (1 — &) (¢ > 0)
and f! < 9, where J; — 1 as ¢ — 0. Moreover we can assume that

4.5) }133 p.() = )

uniformly on X and
(4.6) llg(l)ﬁ:(l) = 1{O<t<1}

for the pointwise convergence.
Let # € DN Cy(X). From (4.5) we have

li_l?(l)/)’g(u) = Bu)
uniformly on X and (from bounded convergence theorem)
(4.7) }%ﬂ:(”) = 1{O<u<1}
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in LY(X, a(«)). Then B/ (u) is a Cauchy sequence in L' (X, a(«)). From Proposition 4.1 we
obtain that ﬁ (u) is a Cauchy sequence in Dy, which converges to f(z) € Dy. Moreover
from (4.7) we obtain

E%a(ﬂs(u —hm/)’ Nalu) = 1ocyeryaln)

in M. Then
a(B@) < Lyocy<yalu) < alw)

in M.

Prorosition 4.3: Let u,v € DN Cy(X), then uv is in D N Co(X). Moreover if u,,v, €
€ DN Co(X) converges respectively to u,v in Dy and in Co(X) and supp(u,,), supp(v,) C K
where K is a fixed compact set. Then u,v € D N Cy(X) and u,v, converges to uv in Dy and
in Co(X).

Proor: From polarization equality we have
1
w =, [+ 0 — (u — )]

Since by Proposition 4.1 (« + )%, (u — v)* € Dy N Co(X) we have uv € Dy N Cy(X). The
sequences #,,v, € Dy N L>®(X, 7) converge respectively to #,v in Dy and in L®(X, 72).
Moreover we have

lim (4, +v,) = @w+v)

n—-+00

lim (4, —v,) = @w—0)
n——+00

in L®(X, 7) and in Dy. We observe that the proofs of Proposition 4.5-4.7 do not depend
on the results in the present Proposition.

Then from Proposition 4.7 we have that (x, + v, converges to (u =+ v in
L>(X, ) and in Dy. The result now follows.

PropostTionN 4.4: Let u in Dy and v € D N Co(X) then we have
W, v?) = 20u(u, v).

Proor: Consider a relatively compact ball B(xo, ) we have
fler, 0?) = plor, 0 — v(x0)?) = plar, (0 + lx0)) (@ — v(x0))) =
= plat, (v — v(x0))?) + 20(x0) lat, v — v(xo))
on B(xy, 7). We have, for ¢ > 0 arbitrary,
|, (0 —v(xp)) | <ea(w) + Coallv — v(x0))?) = ealu) + 22 Cylv(x) — v(xo)[Pal(v — v(xp)))

on Bl(xo, 7).
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We choose 7 such that for x € B(xg, ) we have
€

—olx)fP <
[o(x) — v(xo) " < <3

then
ety (0 — v(x0))%)| < elaler) + av))
in B(xo, ) We obtain
|\, %) — 2000 u(u, )| < elalu) + a@)) + 2|p(x) — v(xo)||plu, v)| < 3ela(u) + av))
in B(xg, 7) (Where we assume C, > 1). By a covering argument we obtain
|1, v7) — 2000, v)| < 3elalw) + a(v))
on X, then, since ¢ > 0 is arbltrary

W, v?) = 20(x)ulu, v)
on X.

Prorosition 4.5: Let u € Dy and v,w € DN Cy(X), then vw € DN Cy(X) and the
following Leibnitz rule holds

wlu, vw) = vulu, w) + wulu, v).
Proor: We have
o= [0+ wf — - w)).
From Proposition 4.4 we have vw € Dy; moreover we have
it v10) = 5 L, 0+ 0 — (0~ )] = § Ll 0+ ) — s, 0 — )]
From Proposition 4.4 we obtain
wlu, vw) = % 2@+ wplu, v+ w) — 20 — wulu, v — w)] =

= % [2(v + w) (e, v) + pla, w)) — 20 — w) (o, v) — plu, w)] = vulu, w) + wplu, v) .

ProposiTioN 4.6: Let u € DN Cy(X), v € DN Cy(X) and B € CH(R) with B(0) =
Then we have f(v) € DN Cy(X) and

wu, p) = ' ) ulu, v).

Proor: By Propositions 4.4, 4.5 the result holds in the case fi(¢) is a power of ¢, then in
the case f(¢) is a polynome of any degree. In the general case there exists a sequence of
polynomes f,(¢) such that f8,(#) and S’ (¢) converges locally uniformly to f(#) and ' ()
We have that §,(v) converges to f(v) uniformly on X. Moreover

Jm alf,@) = p,@) = lim B, ) = B, @)al) =0

in M. Then the sequence f,(v) converges to fi(v) in Dy and f(v) € Do.
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From (6) Theorem 3.4 and Remark 3.2 we have
4.5) lim pulu,p,@) = ulu, fv))

n—+00

weakly* in M. Moreover
(4.6) ﬂgrpm wu, f,(0) = ”Erfooﬂ;(v)u(u, v) = ' )ulu,v)

in M, where we use the dominated convergence Theorem. From (4.5) (4.6) the result
follows.

ProposiTion 4.7: Let u,,u € DN Co(X), B € CHR) with P0) =0, assume that
supp(u,) C K, where K is a fixed compact set cmd u, converges to u uniformly on X and
in Dy. Then B(u,) converges to Bu) uniformly on X and in Dy.

Proor: We have

mv>awmm—MMh{wwww—mmﬁw»—mmh:

LuBlay) — Ba), Blu,)) — pw(Blaa,) — Blu), Blu))] =

S N e RN IS

(B () i Bler,) — Pa), ) — B (@) B,,) — ), )] =

(B () (Blat,) — Bla), st — ) + (B (w,) — B @) u(Bus,) — Bu), )]

Consider the first term on the right hand side; we have that
B (e )| s Blat,) — Blaa), 11, — w)] <
< CiBlu, — ) T (alBlu,) + alB) + Cola, — ) Fal, — ) <
-1

< G Dy — )T (B up)alu,) + B (wal)) + Pl — ) Falu, — )] <

g@m%—mfwm+am+@%fm%m—m
where we take into account that the functions #, are uniformly bounded. Then the first
term in the right hand side of (4.7) converges to 0 in M.
By similar methods we have that (8'(z,) — () u(B(,,) — f(a), u) converges to 0
in M.
Then a(B(x,) — p(u)) converges to 0 in M and so the result is proved.

PropositioN 4.8: Let u € DN Co(X),v € DN Co(X) and p € CHR) with B(0) =
Then we have f(u) € DN Co(X) and

Blu),v) = B @) *B el v) .



— 70 —

Proor: Assume f# € C2(R ) We have
4.8) alflu+ 1)) — alfw) = |B'(u + )| alu + tv) — |B' (W) alu) =

= (B (u+ )] — |B'@|alu + tv) + |B @) (alu + tv) — a(u)) =

1
= (pwj 1B+ Ceo)lP 2B (e + Cto) B (u + Ctv)dC) alu+ t) + |B' @) (alu + tv) —aln)).
0

We have that
lin% alu + t) = alu)
t—
weakly in M. Dividing by # and passing to the limit as # — 0 in (4.8) we obtain

hm(l(ﬂ(u + ) — a(B(x)) :pv|/)’/(u)|p_2/)”(u) "(walu) + |B ) ulu,v).

t—0 t

weakly* in M. We have also

1
4.9)  alflu+ w) — a(p(u) = a(flu) + thﬁ'(u + ()dl) — af(u) =
0

1
=a (ﬂ(u) + tv( J(/)”(u + () — B10)dC + ,8’(0))> — a(Blu) .
0

We observe that by Proposition 4.1 we have (8'(x + ) — /(0)) € Dy. Moreover
alf(u+tw) — B0) = B"(u+ tw)alu + ).

By Proposition 4.6 we have

(4.10) 151(1) B (u+ ) — B'(0) = p'(u) — p'(0)

uniformly on X and in Dy. Then
(4.11) }Iil'é (B (u + () — B(0)) = ' (w) — p'(0)

in Dy uniformly for { € [0, 1]. From (4.11) we obtain
1
4.12) lim J (B'(u+ C2v) — B'ONE = () — B(0)

0

in Dy. From (4.12) we obtain
1

}in(l)v J/)’/(u + {r)dl = vB' ()

0
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in Dy. Dividing by # and passing to the limit as # — 0 in (4.9) we obtain

hma(/)’(u + w)) — a(B(

t—0 t

D _ (B, o8 @)

weakly* in M. Then using the Leibnitz rule of Proposition 4.5 on the second argument

lim 2P+ ) = alB)) s ) + BB, v) —

t—0 t
= vB" (W) (), u) + B () pu(f(u), v) .

By Proposition 4.1 we have

a(B@) = |B" ) ala) |/3 )P sl =%u<ﬁ<u>,ﬁ<m>=%ﬁ’<mu<ﬂ<m,u>

weakly* in M. We have also proved that
i @B+ 20)) — alf@))

t—0 t

= polB" @I 2B )" W) + B (w)u(Blu), v)

weakly* in M. Then we have
(4.13) p(Bler), v) = |B' )"~ ()plee, v)
on the set {8/(4) # 0}. From (4) in Theorem 3.4 we have
{(Bu),v) < 207 1ePP V() + 2071 Pa(Bu) < 207160 Va(w) + 2771 ?|B ()| alu
where & > 0 is arbitrary. Then on the set {#'(«) = 0} we have
(B, v) < 2771l Vg(p)
so on the set {#’(x) = 0} we have

(4.14) wWPu),v) =0.
Then we have
Bla),v) = B )P~ B (sl v)

Assume now f# € C(R) and u € DN Cy(X) with |u| < M; there is a sequence 8, € C*(R)
such that f8,, f/, converges to f, f’ uniformly on [ — M, M].
We have

(B, (), 0) = |B ()P B ()l 0)

and

lim 18,760 = |G ")
uniformly on X, then (at least after extraction of subsequences) in L>°(X, |u(x,v)|) . Then

(4.15) hm up, = 1B )" B (o) palea, v)
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in M. Moreover we have
nEToo a(f,(u) — f(u) = ﬂEToo B! () — B' () alu) = 0.

Then
lim B,(u) = pu)

n——+00

in Dy. Taking into account Remark 3.1 we obtain

(4.16) lim w(B,(u),v) = u(fu),v)

n—-+00

weakly* in M. From (4.15),(4.16) we obtain the result.

5. - CHAIN RULES. THE CASE OF FUNCTIONS IN Dy N L®(X, 772).

We begin this section by a generalization of Proposition 4.7.

ProposiTioN 5.1: Let u,,u € Dy, B € CY(R) with B0) = 0; assume that the u, are
uniformly bounded and converge to u in Dy. Then P(u,) converges to f(u) in Dy.

Proor: We recall that, since u,, converges to « in Dy, u, converges to # quasi-uniformly
i.e. for every ¢ > 0 there exists a set E, such that «, converges to « uniformly on X — E,
and cap(E;) < e. We have

6.1 alBlu,) — Blu) = %ﬂ(ﬁ(uﬂ) = Bw), flu,) — plu)) =

= }) LBe,) — Q) Pu,)) — u(Pla,) — ), f(u))] =
= % (B ()1 Blety) — Bua), ) — B ()i Blas,,) — Plua), )] =
= ]% (B () Blat,) — Bua), ety — ) + (B (w,) — B @) u(Blus,) — Bu), )] .

Consider the first term on the right hand side; we have that

B G 1 Bat) — Blat), 4, — )] <

(p—1
2

< CiP(u, — M)_)(a(ﬁ(uﬂ)) + a(B() + C;(u, — ) 2alu, — u) <

(p—1)

< Gl Dy — 1) T (B (wy)alu,) + B @alw) + Plty — u) 2alu, — u)] <

(-1

< Cul Dy — 1) 7 (alu,) + alw) + Blu, — 1) 2alu, — )]

where we take into account that the functions #, are uniformly bounded. Then the first
term in the right hand side of (5.1) converges to 0 in M. For the second term in the right



hand side we observe that for every ¢ > 0 there exists an open set E, such that
| a(u)(dx) < ¢ and the sequence #, converges uniformly to # on X — E,.

E; By methods similar to the ones used in the first part of the proof we have that
(8 (u,) — B ()| |t(B(es,) — Plut), u)| restricted X — E, converges to 0 in M. We have
also that

1g,au) <ga.
Then
1 (B () — B |a(Bla,) — B, )] < Col0™atann) + o~Hala)
SO
|18 = Bt — ool < Cato'= .07,
Eq
We obtain

i [1086) — B Bl) ~ o, 0](@) < Cilo'S" .07

for every ¢. Then a(f(x,) — f(«)) converges to 0 in M and so the result is proved.
We will give now a result on approximation of functions in Dy N L*(X, 72).

ProrosiTion 5.2: Let u € Dy N L®(X), there exists an uniformly bounded sequence of
functions u,, € D N Co(X) which converges in Dy to u.

Proor: There exists a sequence #,, € D N Cy(X) such that «, converges to « in Dy. Let
|#| <M and let f be a C' function such that f(z) = ¢ for |¢{| <M+ 1, p(z) = C for
|#| > M + 2 and f'(#) < 1. Define v, = f(u,), we have that v, € D N Cy(X) is uniformly
bounded. From Proposition 5.1 we obtain that v, converges to () = u in Dy.

We are now ready to give the proof of the chain rule for Markov functionals
corresponding to a p-homogeneous (strongly local) Dirichlet form.

TueoREM 5.3: Let u € Dy N L=(X, m) and f € C*(R) with B(0) = 0; then
a(B(u)) = |B" @) alu).

Proor: From Proposition 5.2 there exists a uniformly bounded sequence #, such that
u, converges to # in Dy. From proposition 4.1 we have

(5.2) aBu,)) = B ) alu,) .

We observe that f/(«,) is an uniformly bounded sequence converging to ff/(«) quasi-
uniformly; then by Lemma 3.2 the right hand side in (5.1) weakly converges in M to
1B () alu).

From Proposition 5.1 we have that §(«,) converges in Dy to ff(«) then from Lemma 3.2
we obtain that the left hand side in (5.2) weakly converges in M to a(fi(«)). Then the
result follows.
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Tueorem 5.4: Let u € Dy and ,(¢) = inf (¢, M), §,(¢) = sup (¢, —M), f§; = inf (sup (7,
— M), M), M,M;,M; > 0, then (u) € Dy and
a(By(w)) = 1yapyaln)
a(Br(@) = 1y, yyalw)
a(Bs (@) = 1 p,<uciryalvn)
where 1g denotes the characteristic function of the set E (which is defined up to sets of

capacity zero).

Proor: We prove the result for f8;, the proof in the other cases is the same.
Assume u € Dy. There exists a sequence of functions f,,(#) in C'(R) such
1 2 2
that f,,0)=0, f,,0)=M for t>M - B, =1 + for t<M -
2
0<p),B)=1+ e 11111 1 ,,(8) = B, (¢) uniformly on R, liIP B, =1,y pointwise

on R. From Theorem 5.3 we have

(5.3) a(fy ) = By (@) = 1B, () — B, @) alu)

We have that B4, («) is uniformly bounded and converges quasi-everywhere to £ («).
Then B, () converges to fi(u) strongly in /(X a(«)) so B ,(u) converges in Dy to
pr(u) € DO Since f37 ,(u) converges to f8 ’l(u) strongly in L*(X, a(«)) we have

(5.4) ﬂgrfooa B, (1) = 1, pnyalu)
in M.

Since f; ,(u) converges in Dy to f3;(«) € Dy, from Lemma 3.2 we have
(5.5) nllgl a(By (@) = a(fy(«))

weakly in M. From (5.3)and (5.4) the result follows.
By Theorem 5.4. the result in Theorem 5.5 follows:

Tueorem 5.5: Let u € Dy, then |u| is in Dy and
allu|) = sign(u)1y,,0ya(u)
where we define sign(0) = 0.
THEOREM 5.6: Let u,v € Do N L¥(X, m), then uv is in Dy N L>¥(X, m). Moreover if

Uy, v, € Dy N LX(X, m) converge respectively to u,v in Dy and in L®¥(X,m) then u,v,
converges to uv in Dy and in L®(X, m).



Proor: From polarization equality we have
1
uy :Z[(u—i—v)z —(u—)].

Since by Theorem 4.3 (u + v)?, (u — v)* € Dy N L¥(X, 72) we have uv € Dy N L®(X, m).
Let now #,,v, € Dy N L™(X, 7) converge respectively to #,v in Dy and in L>°(X, ).
From Lemma 3.2 we have

lim alu, +v,) = alu+v)
n—=+00

lim a(u, —v,) = alu—v)
n——+00

weakly in M. Moreover we have

lim (4, +v,) = @w+v)

n—+00

lim (4, —v,) = (u—70)
n—+00

in L*(X, m) and in D,.
Using the Proposition 5.1 we have that (#, + v,)* converges to (# + v)* in L(X, )
and in Dy. Then the result follows.

By Theorem 5.6 we have that Dy N L*°(X, #2) has the structure of a continuous Banach
algebra.

Now we prove the chain rules concerning a p-homogeneous (strongly local) Dirichlet
form. We begin by the following lemma:

Lemma 5.7: Let u,, € Dy and v, € Dy converge respectively to u and v in Dy. Then

lim w(u,,v,) = ulu,v)
weakly* in M.

Proor: We have
Wy, v,) = ey, v) — oy, v — v,) .
Consider the second term in the right hand side; we have
|, v — v,)| < 2P e Palv — v,) + 2P 1?? Va(u,) .
Then

lim w(u,,v—v,) =0

n—0o0
in M. Moreover from Remark 3.1 we have

lim u(u,,v) = ulu,v)

in the weakly* topology of M, so we obtain the result.
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Tueorem 5.8: Let u € DyNL®(X,m), v € Do NL®(X,m) and B € C'(R) with
p0) = 0. Then we have f(v) € Dy N L>®(X, m) and
wlu, B0)) = B’ )ulu,v).

Proor: We can consider two sequences %, € Dy N Cy(X), v, € Dy N Co(X) uniformly
bounded and converging to # and » in Dy. By Proposition 5.1 we have that f(v,)
converges to f(v) in Do; moreover ' (v,,) converges to ' (v) quasi-uniformly and ' (v,,) is
uniformly bounded. We observe that

|1, 00)| < Clalay,) + alv,))

so from Th. 2 pg. 306 [DS] and lemma 5.7, we have that u(x,,v,) weakly converges to
1(u,v) in M. By Lemma 3.2 we obtain that

im0, ) = B/l )
weakly in M and by Lemma 5.6 we obtain
lim p(u,, f0,)) = plu, fv)

weakly* in M. So
W, p)) = ' @)plu, v)

By the same methods we obtain also:

TueoreM 5.9: Let u € DyNL>®(X,m), v € DoNL¥(X,m) and B € CHR) with
p0) = 0. Then we have f(u) € Dy N L>(X, 1) and

u(p = B ()P B (u) s, v).

As in the bilinear case we can obtain a Leibnitz rule in the second term of the form:

TueoreM 5.10: Let u € DyNL®(X,m), v € DyNL®(X,m) and w € Dy, then
uv € Dy N L®(X, m) and

Ww, uv) = uu(w, v) + vp(w, u) .

We don’t have a Leibnitz rule in the first term of the form but we have a Leibnitz
inequality for the energy density a(.) of the functional associated to the form:

TueoreM 5.11: Let uw € DoNL®(X,m), v € DyNL>®X,m); then uv e DyN
NL>®(X, m) and

alur) < C@Wlalu) + v av)) .
Using Theorem 3.4, we have

aluw) + 290V (a(u) + al))

paluw) = pluv, uv) = vp(uv, u) + up(uv, v) < %
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