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Asstract. — For a given class A of Banach space valued functions on R, a corresponding class
of A-distributions D/,(R,X) can be defined, analogous to almost periodic (=ap) Schwartz’s

1
loc

distributions Bzgp' For A = ergodic functions £ or more generally Av = {f € Li = with only

T
lim (1/2T) [ f(2)dt exists}, the mean there can be extended to D,, and with this Fourier
7

coefficients ¢, the Bohr spectrum op and a Fourer series is definable for § € D7,
TAv = {f € Av: &®'f € Av for w € R}. The classes A of ap, asymptotic ap, Eberlein weakly
ap, Weyl W?-ap, Besicovitch B?- ap and pseudo ap functions are all C T Av, the distributions § €
corresponding D', are tempered and have countable spectrum o, with ¢, (§) = O(1 + |w,|?) with
some g € N if for example A C W?AP; conversely to such ¢, € X and @, — oo not too slowly
always an S € D/;p with this given Fourier series exists. For A = any of the above classes and
S € D/, Bohr-spectrum a3(§) C supp S.

0. - INTRODUCTION

In an earlier paper [8] we extended the almost periodic (= ap) distributions B, of
Schwartz in two directions: First for X a Banach space X-valued distributions were
admitted, second instead of starting with the class AP of ap functions, a quite arbitrary
class A C L{ (R, X) was admissible, the class of .A-distributions D', being defined as the
set of those X-valued distributions T € Schwartz’s D'(R, X) for which the convolution
T x ¢ € A for all complex-valued test functions ¢ € D(R, C). So various extensions of
the class of ap functions AP, for example asymptotic ap AAP, Ebetlein weakly ap EAP,
Zhang’s pseudo ap PAP and generalized ap GPAP, Besicovitch ap B?AP and various

(*) Indirizzo dell’Autore: School of Math. Sci., P.O. Box No. 28M, Monash Univ., Vic. 3800.
E-mail: bolis.basit@sci.monash.edu.au.
(**) Indirizzo dell’Autore: Math. Seminar, Univ. Kiel, Ludewig-Meyn-Str., 24098 Kiel, Germany.
E-mail: guenzler@math.uni-kiel.de.



36—

ergodic classes can now be extended to A-distributions D/, with applications to the
study of the asymptotic behaviour of solutions of differential-difference equations and
systems [8, §5].

Here we show that for such distributions harmonic analysis still is possible : For the
class £ of (uniformly) ergodic functions and even the class Av of functions for which only

the average m2(f) :=limr_. (1/2T) f f(s+ 1) ds exists uniformly with respect to

¢t € [0,5] for some 6 > 0, it can be shown (S 4) that this mean 7 can be uniquely
extended to the corresponding distributions D/, (R, X), so that one can define Fourier
coefficients ¢,(S), the Bohr spectrum o(S) and Fourier series for distributions § € D7,
fortunately still tempered C §'(R, X), where TA := {f € A: ¢?'f € A, forallw € R}.
Since AP ¢ AAP C EAP Cc TE C TAv, AP C Weyl WPAP C B?AP C TAv, PAP C
C B?AP, all these extensions of the Bohr ap functions are included.

In § 2 we further show that Boht’s, Bochner’s and von Neumann’s characterizations of
ap functions still hold for vector valued distributions (see Theorem 2.1).

In § 3 various classes of ergodic (see (3.1)), totally ergodic (= 7€) and functions with
non-uniform mean (see (3.4), (3.13)) are introduced and their relations discussed (see
(3.2) and also (3.3), (3.8)-(3.10), (3.13).

In § 5 we give the usual formulas for Fourier coefficient for § € D7, (R, X), the
Bohr spectrum a5(S) of § € D7, is countable if it is for f € TAv; if |w,| — oo not
too slowly and ¢, = O(#?), there is § € D);p(R, X) with 3 ¢,&" as Fourier series. For
all the A considered above and § € D/, one has o5(5) C supp S. We also indicate
how ap distributions of D/;p(IR, X) can be subsumed by the Bochner-von Neumann
theory of ap functions with values in a suitable locally convex topologically complete
vector space [13], giving thus summation methods for the Fourier series of ap
distributions.

1. - NoTATION, DEFINITIONS AND PRELIMINARIES

In the following J will always be an interval of the form R, (a, c0), [a, 0o) for some
ac€ R, R, =[0,00), R" =(0,00), N ={1,2,---} and Ny = {0} UN. Denote by X a
real or complex Banach space, with scalar field K = K(X), K = R or C.

If # is a function defined on J — X, then £, 4, f will stand for the functions defined on
J by £;(¢) ft—|—s A f(1) = () — f(¢) for all s € R with s +J C J, | £ | will denote the
function |/ |(2) := || f(2)|| for all z € J and ||/ ||, := sup,e;|| /)]

ForUVcXorCX U~V :={u—v:ucU,vecV}similarly for U+ V.

If f 6 L, (J,X), then Pf wil denote the indefinite integral defined by

f F(s)ds (where ag = a + 1 respectively 0 if J = R, all integrals are Lebesgue-

Bochner integrals (see [2, pp. 6-151, [23, p. 791, [16, p. 232], [21, p. 50, 97 1, [35,
p. 132]), similarly for measurable).
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In X’ the spaces of all constants, continuous, bounded continuous, uniformly
continuous, bounded uniformly continuous, continuous with relatively weakly compact
range, vanishing at infinity continuous and continuous with compact support will
respectively be denoted by X, C(J,X), C,(J,X), C,(J,X), C,p(J,X), CuelJ,X),
Co(R, X) and C(J, X).

AP, SPAP, WPAP, B AP, AAP, EAP,,, EAP, PAP and GPAP

will respectively stand for the spaces of Bohr-Bochner almost periodic (= ap),
Stepanoff S?-ap, Weyl W?-ap, Besicovitch B?-ap, asymptotically ap, Eberlein weakly
ap with relatively compact range, Eberlein weakly ap, Zhang’s pseudo ap and
generalized pseudo ap X-valued functions. For ap see [1], [2, p. 285], [13], [20],
[26], for asymptotically ap [2, p. 3041, [31, [18], [29], [31], for $?-ap, W?-ap, B?-ap
[12], [14], [27], for Eberlein weakly ap [31, [11], [15, p. 801, [171, [19], [28], [29],
[30], for pseudo ap [10], [36], [37] and for generalized pseudo ap [37, p. 67] and
below after (3.5).

Here ¢ € B?AP(R, X) means ¢ € L (R, X) and it can be approximated in the || - ||, -
norm by X-valued trigonometric polynomials, with

T

- 1
I8l = Ty [ﬁ |

1/p
[EOIE 4 .
-T

Various classes of ergodic functions &, &y, TE and Av are introduced in § 3.
For general A(J, X), with y,,(¢) := &,

(1.1) TAUX) ={f € AU, X) : 9, - f € AJ, X) for all € R}.

A has (I') means A =T A.

D(J,K) denotes the Schwartz test functions (infinitely differentiable K-valued
functions with compact support in J) (see [33, pp. 21, 24]).

D'(JJ, X) denotes the set of linear continuous T : D(J, K) — X asin [33, pp. 24, 30] or
[32, p. 49]. Here J in D(J, K), D'(J, X) is always open.

Similarly, S(R, K) will stand for the Schwartz space of all rapidly decreasing infinitely
differentiable K-valued functions defined on R (see [35, p. 146]) and S'(R,X) is the
space of Banach valued tempered distributions of linear continuous T : S(R,K) — X
(see [33, p. 2341, [35, p. 149]).

Translates T, for distributions T are defined in accordance with the above definition
of translates f, for functions f by T,(p) := T(p_,) (contrary to the definition in [33, (I, 5;
2), p. 55]).

Let AC L, (J,X) or A C D'(J, X). We use the following assumptions for A:

Real-linear: sF +tG € Aif F,G € Aand s, t € R.

Positive-invariant: translate F, € Aif F € A and a4 € [0, 00).
Invariant: F, € Aif F € Aforall 2 € R.
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Uniformly closed : (¢,) C A and ¢, — ¢ uniformly on J implies ¢ € A.
We say that A C L} (J,X) or C D'(J,X) satisfies (4) (respectively (A)) if for any

loc
f €L} (J,X) for which all differences 4, f € A for 0 < s € R one has f — M,f € A for
all 5 > 0, with M, of (1.2); A satisfies (A1) if 4; f € Afors > 0implies only f — M1f € A.
In (4) the f is in D'(J, X), M, is replaced by M.
Mean classes have been introduced and found useful in [4, pp. 120, 1221, [6], [7], [8],
they will be needed here too: If A C L (J,X) or D'(J, X),

h
(12)  MA={fell :Mf(-):=(1/h) Jf( b)ds € A, all b > 0},
0

MA=ANLL, MA = MMLA).
(13) MA:={T €D,X): M,T € A, all b >0},
with (M, T)(p) := T(M_,p) for p € D(J, X), ¢ := 0 on R\ J.

]\~/[b|D’(J,X) extends My|L;, , one has M,/ = f * 55 with 5, := 1 on (— 5,0), 0 else in
R,f €L} (R X).
A further extension of a given class A of functions or distributions, to “A-

distributions”, has been introduced and discussed in [8], for J = R:
(1.4) DR, X):={TeDR,X): Txpe Aforal p € DR,K)}.

For A = AP and X = C this gives the ap distributions B;p of Schwartz [33, p. 206].
For any A, if T € D,(R,X), then T" € D/, since T" x ¢ =T x (p”). By [8,
Theorem 2.10], if A is linear and T € T'(R, X), then

(1.5). T« D(R,K) € D/4(R, X) implies T € D/;.

For the definition and properties, especially associativity, of the convolution with X-
valued distributions see [8, §2].

Prorosimion 1.1: () If A C D'(J, X) s linear positive-invariant, f € A and distribu-
tional derivative ) € L}“(“‘LX) for some n € N, then f € C* Y, X) and f™ € M"A.

@) If A C L} (J,X) satisfies (4;) and r - A C Aforrealr > 0, then MA C A+ Aj .

loc

Here for open J (needed here only)

A i={ge L}, (J,X): to g exists f € A, g = distribution derivative of /}.
Proor: (i), 7 = 1: Then f = P(#') + cand AMy(f') = 4, f € Aby [23, Theorem 3.8.6,
p. 881.
(i) For open J : Let $ € MA, C L} . Then ¢ = (¢ — My¢) + M, with M;¢ € A. By
the assumption, (Pg), —Pp=~IMpe A for all 0<heR. Hence by (4),



(P$ — M P$) € A. Now for y € L}OC(J,X), h >0,
(1.6) M,Py — PMyy = ¢, = (MyPy)(ag) on J

(proof by differentiation), so y := P(¢ — M1¢) — ¢; € A; by [23, Theorem 3.8.6, p. 88],
¢ — M ¢ = distribution derivative of y. This means y' = ¢ — M1¢ € Aj,..
For closed J see [8, Lemma 2.2 (c), (2.5)]. O

2. - VECTOR-VALUED ALMOST PERIODIC DISTRIBUTIONS

For the classical ap and Stepanoff ap functions one has by [4, (3.8)] (even strictly and
forany J, X, 1 < p < o0)

2.1) AP(J,X) c S?AP(J,X) € MAP(J, X).

Since AP(R,X) obviously satisfies AP(R, X) * D(R, K) C AP(R, X), and since it also
satisfies (4) by [7, Example 3.2], all the results of [8, §2] can be applied to A = AP; so for
example Corollaries 2.13/2.14 and (2.19) of [8] yield, forany X and 1 < p < o0, J = R,

(2.2) Dyp = | JM'AP(R, X) = | M"SPAP = D, 5,
n=0 n=0

Dip ML, = | J M"AP.
n=0

So if, for fixed T € D'(R, X), T * ¢ is Stepanoff S? -ap for all p € D(R, K), then T * ¢ is
already Bohr-ap; this seems to be new even for the scalar case X = C.

Almost periodic distributions can also be characterized by translation or compactness
properties, that is Bohr’s, Bochner’s and von Neumann’s definition all give D/, p:

TueoreM 2.1: For T € D) (R, X) and &1(l) := T; for | € R, the following statements
are equivalent:

(@) T € D)yp(R, X);

(b) T € Ds, 4p(R, X) for some p € [1,00) [or equivalently for all p € [1,00) J;

(c) For any V' = neighborbood of 0 in D} (R, X), the set T(T, V) of V-periods of T is
relatively dense in R;

(d) To each sequence (ay)mex C R there exists a subsequence (an).,ex and
S e D (R, X) with T, — S in D} (R, X) [or in (D) (R, X) J;

(e) = (d), with “subsequence (a,,)) ex” replaced by “subnet (a,))ier”;

) = (o), with “sequence” replaced by “net”;

(@) {T;: [ € R} is totally bounded [= relatively compact] in D} ..(R, X);

(h) d1 € AP(R, D}.(R, X)) [or € AP(R, (D1)' (R, X))J;

(1) there exist f,g € AP(R, X) and m € Ng such that T = f + ¢ on D(R, K);

(1) there exists a sequence (f,,) C AP(R, X) [or equivalently a net (T;);er C Dyp(R, X) ]
with f, [respectively T;] — T in D;p(R, X).
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Here 7(T,V) := {r € R: T, — T € V'}; the topology of D/;p(R, X) and D . (R, X)
is given by the seminorms ||T||;; := sup {||T(¢)| : ¢ € U}, with U C D(R,K), U
bounded in Dj: (R, K) (see [8, §1]).

Proor: This follows mostly from Proposition 2.9 and Theorem 2.11 of [8] and the
properties of X-valued ap functions. T; — S in (Dp1)'(R, X) is equivalent with @7, — &g
in (Dp1)' (R, X) uniformly on R, and also equivalent with T; — S in C,(R, (D1)'(R, X)),
that is uniformly only on Dy:-bounded U C D(R, K).

(D11)' (R, X) is complete and therefore topologically complete, and satisfies von
Neumann’s countability axiom (Ag) (there exist countably many neighbourhoods V,
with N2, V,, = {0} ), since D(R, K) and then Dy (R, K) are separable. So, D} .. (R, X) is
complete and satisfies (Ag). The equivalence of (d)-(g) holds for suitable totally bounded
uniform spaces with (Ag). For more details see [5, p. 41-45]. O

For a discussion of the relations between the D', for A = AP, AAP, EAP, W? AP and
BP?AP see [8, before Example 3.7], not even AAP C D), MAP ¢ B?AP, there are
Weyl-ap functions f with [/ 1z N D)p = 0, with [/ 1> = Besicovitch equivalence class.
See also Corollary 5.6.

3. - ERGODIC CLASSES AND DISTRIBUTIONS

In this section we study the classes of functions with uniform mean or non-uniform
mean given respectively by (3.1), (3.4). We obtain here new properties of theses classes.
We recall (see [8], [37, p. 203], [7, § 1])

(3.1) EW,X):={feL} (J,X): tof exists m € X with My f —

uniformly on J if T — oo};

(Bohr-) mean 7z(f ) := this unique 7z. Contrary to [3], [4] or [37] however the f need not
be in C,;, or C,(J, X).

EoI,X) :={f€&J,X): m(f) =0},
&, X) —{fGLZOC X):|f|€€o},cé'0.
TE and T & are given by (1.1), TE, = &,,.

The elements of 7€ are also called almost periodic in the sense of Ry//-Nardzewski
(see [25, p. 2311, [22, p. 348]).

The above €-spacesand the &, := ENC,p,, TE,, = T(E,) = (TE) N C,, considered
earlier (for example [3], [4]) and their mean extensions M”E are fortunately all linearly

ordered by
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Tueorem 3.1: For any J, X, the following inclusions hold and are strict

(3.2) TEp CEp=E,C MEyCECME,C

CMECME, -CMECMTEE, C -,
C D;,(R,X) = DR, X) for J = R.

(3.2) holds also, if there everywhere E is replaced respectively by &, TEy or TE.
Furthermore,  C,(R,X) NDpe(R,X) =TE,(R,X) and C,(R,X)NDpe (R, X) =
= TER,X) N Cop(R, X); bt €, ¢ UPMTE = UM TE,p, 50 €y ¢ Do if I = R

Proor: Case & If ¢e MELW,X), ¢=w+¢ with wye&,J,X) and
&€ (Ep);,.I, X) by Propositions 1.1 and 3.2. This means that ¢ € £(J, X) and proves
pelJ,X).

If ¢ € £, X), Mo € E(J, X) for each h > 0 since MrM), = MMr. Now
(3.3) £, X) c MCy(J, X),

since Mr¢ and M1, ;¢ are bounded for suitable T, also for open J # R.

This implies that M. M;¢ € £,,(J,X) for all 7, h >0 or £ C M?E,,. (3.3) and
C,NMC, C C, of [7, Proposition 2.9] gives £,, = £, := ENC,.

If feCu,(J,R) is defined by f=1 on L, and f=0 on L,y, where
I, =[10" +1,10""" — 1] then y,,f € £,,(J, R) for all w # 0, but f & &£, not even € Av
of (3.4). This gives 7&,,(J, X) # £,,(J, X).

If f(z) =sins?, f' € EW,R); Proposition 1.1 (i) gives /) e M" L&, R). If
f e M"E,,(J, R), then

/Jn e -})1 Mb” .. ~M;71f(”> = A;]n cee Ablf c gub(nﬂ, R) C Cug,(ﬂl R);

then [20, p. 281] yields inductively f € C,,(J, R) C C,(J, R), a contradiction. This means
that the inclusions M”E,;,(J,X) € M"LE(J, X) are strict for all z € N,

We omit the examples for M* 1 E(J, X) # M"E,,(J, X).

M"E,, C D by [8, Corollary 2.5] and Proposition 3.2, D = = D} then by [8,
Theorem 2.10] and &, C € C Dy, of (3.2) (see also (3.7) below).

Case &y can be proved similarly.

For the TE&, T &y-cases we need first 7€ C MTE, TEy C MTEy:

If ¢ TEWU,X) (respectively TEo(J, X)), Mpp € Cp(J,X) by (3.3). This implies
YoMpp € Cp(J,X) for all y,. Therefore (y,My¢) € &, X). Since y, Myp =
= (y,Mp@) — y,,(4,9) /b, one gets 7, My¢ € E(J, X) (respectively Ey(J, X)). This gives
(r,Mp@) € E(J, X)(respectively Eo(J, X)) for all @ #0 and hence M;¢ € TEWJ,X)
(respectively 7 &q(J, X)).

(3.2) for TE (respectively 7E€y(J, X)) follows then as for &, especially D = D¢
(respectively D/TEM, = D'Tgo).

C,NDyg=TE, etc. follows with C,ND)y C A of [8, Proposition 4.8] and
C,NTECE, =€, CCp.
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Similarly &,, C U2 M"TE C Dy would give &,, C TE,, contradicting the
above. O
In some situations, for example for Besicovitch ap functions (see [34, p. 93]) and
especially Zhang’s pseudo ap functions, a non-uniform mean is needed. Therefore we
introduce for any X (for J # R see [7, §1], then no local #-uniform convergence is needed)

(34) AvR,X):={f €L, (R,X): tof exist 7 € X and § > 0 so that

T
(1/27) Jf(t + s)ds — m as T — oo, uniformly in ¢ € [0,5]}.
-
For f € Av(R, X), mean m(f) := this unique m;
(3.5) the limit exists then uniformly in # € [ — 4, £] for any £ > 0.

For the case J = R, even uniform existence of the limit in (3.4) alone does not imply
invariance of the mean: For #(¢) = ¢, one has m(f,) = a. See also (3.13).
We set

Avg(R, X) := {f € Av(R, X) : m(f) = 0},

Av,(R,X) = {f € L (R, X): || € Avo(R, R)} = {f € B'AP : || f ||» = O}

Also, for Av,, if the limit in (3.4) exists only for t=0 (Zhang’s definition), it
automatically exists locally uniformly in ¢, so

PAP = AP ® Av, N C, C GPAP = AP & Av, C T Av.
TAv(R, X) and T Av(R, X) are again given by (1.1), TAv, = Av,,.

The elements of T Av(R, X) are also called almost periodic functions in the sense of
Hartman (see [25, p. 231], [22, p. 348]).

ProrosiTion 3.2: Forany J and X, U € {€,4, €, &, €., Av, Avy, Av,}, A= UorTU,
all these A (if defined) are linear, positive-invariant, uniformly closed, with A C MA and
(A), for J =R they are affine-invariant with Ax DR, K) C A; the m|Av is linear and
positive-invariant, for J = R affine-invariant, with m(My,f) = m(f) if f € Av, h > 0.

Here “affine-invariant” means f,, € Aif f € A, 0# 7€ R, a € R, with f, (1) =
= f(rt + a); similarly for 7|Av.

Proor: This follows mostly from the definitions, with (3.5); A C MAand A*D C A
follow from Lemma 4.1 if J = IR. (4) has been shown in [7, Proposition 3.1, Proposition
3.8 and Proposition 3.10] except for 7 Av and T Avy.

For these, since TA = N{y,A : ® € R}, it is enough to show (4) for y,Av and y,,Avy.

Case y,Av, J = R, with g := y__: As in the proof of (4) for £ in Proposition 3.8 in [7],

T

with separable U := {(1/2T) [ g(s)f(t +s)ds:t€ R, T > 0},
=T
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I ={a, : n € N} := countable Q-vector space dense in the closed linear hull of U, ¢
fixed > 0, define

T
A, ={ve L (R, X):||(1/2T) J 2t + 5)ds — a,|| <efor |t <1, T > n},
T

A= 4,

Then as in [7] with Lemma 3.6 there, if all 4,f € y, Av, one gets a d > 0 with
f—Myf € A%*if 0 < h < §,and then f — M, f € A% for all h > 0, yielding (4) for y,,Av.

Case y,Avg : Only A{ , is used with ¢; = 0.

(4) for linear positive-invariant A implies A C MA. O

The Av and E-spaces are however not lattices, with the exception of Av,, &,.
(3.3), (3.2), Proposition 3.2 and [8, Corollary 2.14] yield

(3.6) £C MC, CUPM'L® =D,

so all the assumptions needed in [8, §2] are fulfilled for the various £-spaces and therefore
ap-spaces, the results in [8] can be applied here, so for example with [8, Corollary 2.14]

(3.7) Dy = UPM'A, D NLL = U2 M A,
A=E, &, &, TE, TE, AP, AAP, EAP,,, EAP, PAP. ()

For Av, instead of (3.3), one only has, with (3.5) and w1 () := 1 + |¢|,
(3.8) Av(R, X) € M(o(wy)),

owr) :={f € C(R,X) : f(t)Jw1(t) — 0 as |¢| — oo} :
f € Av(R, X) implies
T+a+t
1(1/@2T)) J F&) ds—m| <eif 0<t <0, |a| <6, T>Too,
~T=a+t
since (T +a)/T = 1 + o(1) for large T; ¢t = a gives
T42a
11/2T) J Fls)ds|| < 2e, or ||Ma, f(T)|| < 2/a)ew(T),
T
IMyof (D] < (1/2)(|May f(D)| + (Mo fl2a(D)]| < (2/@)ewy (T) for large T,

etc., similarly for negative T.

(*) J = R; for PAP with [9, example 5.5].
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Now o(w1) C Ow;) N C(R, X) =: U; O(w;) has (4) by [7, Example 3.13], C(R, X)
by [7, Proposition 1.3], implying (4) for U ; so Av € MU C S'(R, X) by Proposition
1.1Gi). Since T e D'(R,X), o €D, Txp € D'(R,X) implies T € S'(R,X) by I8,
Theorem 2.15], one gets at least

(3.9) Av C D)y, C tempered distributions S'(R, X).

An analogue of (3.2) is also no longer true, one only has (proof as for Theorem 3.1)
(3.10) Av,, C M(Av,y,) C Av, Av,y := Av N Cy.
Av C M?(Auv,p) is no longer true, since even Av, ¢ D)., = D, = U,‘jozo./’\\//l”Cu;,,

D UFM”C,, by [8, Corollary 2.14, Theorem 3.1], which implies £ # Auv:

f=n—|t—n*l on [#* —nn*+nl, else 0, n€ N is well defined, uniformly
continuous on R , [8, Proposition 4.8].

One has also Ay, NC,, ¢ &, s0 BPAP ¢ D, 1 < p < <.

So for example [8, Theorem 2.11 and Corollary 2.14] do not apply to Av, we
can only show for A= Av, Avy, Av,, TAv, TAv, with [8, Corollary 2.14] and
Proposition 3.2,

(3.11) GM”AC O/’WAcD'A.
n=0 n=0

The &, ¢ Diy¢ of Theorem 3.1, which implies 7€ strictly C €, can be generalized to
(see the end of the proof of Theorem 3.1)

(3.12) Ew € Drays so T Av strictly C Av.

Let us finally remark that with (3.8), Proposition 1.1(ii) and (4) for o(w;) (see
Example 3.13 of [7, p. 1015]) one can show, for any X

(3.13) Av(R, X) = {f € M(o(wy)) : to f exists ap € R with

T
lim (1/21) J Fu(s)ds exists, € X}
-T

4. - THE MEAN FOR UNIFORM AND NON-UNIFORM ERGODIC DISTRIBUTION CLASSES

In this section we prove the existence of a generalized Bohr mean for D¢ (R, X) and
D', (R, X) extending the mean for (R, X) respectively Av(R, X).

Lemma 4.1: For A = Av, Avy, Av,, E, Eo, E, of §3, with J = R and any X, one has
AxLX(R,K) C A (TA +« LX(R,K) C TA with

(4.1) m(f * @) = m(f)qu(t)dt, feA ¢eLXR,K).

R
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Here L°(J, K) contains all measurable ¢ : J — K which are bounded a.e. and vanish
outside some compact interval C J.

T
Proor: By (3.5), one has (1/2T) [ f(¢+5)ds — m(f)as T — oo locally uniformly in

cs 2

°r
¢t € R. Replacing ¢ by x — ¢, multiplying by ¢(¢) with ¢ € L>°, ¢ = 0 outside [ — &, £],
T
and integrating over R, with Fubini one gets (1/2T) [ (f*@)(x+ s)ds —
— m(f) [ ¢(¢)dt, locally uniformly in x, ie. f x ¢ € Av and (4.1)._
R

If f € E(R, X), the convergence is uniform in # respectively x € R, sof * ¢ € £. (4.1)
gives then A x LY C A for A = Auwy, Ey; for Av,, £, it follows with |/ * ¢| < |f | *|¢].
Then (T A) % L C T Asince forw € R, f € L} (R, X), ¢ € LT

loc

(4.2) Yolf ¥ @) = (0, /) * (7,9) O

Especially one has
4.3) A C DR, X) for A= Av, Avy, Avy, E, Eo, €4y TAv, -+, TE,.

We are now in a position to extend the mean : Av(R,X) — X of (3.4) to
distributions:

DeriNrmion 4.2: For T € D) (R, X), m(T) := m(T x ¢) with ¢ € D(R,K) with
[owdr=1
R

Tueorem 4.3: The mean m : Dy, (R, X) — X is well defined, D'y, and m are linear,
affine-invariant, with

(4.4) (T % 0) = ma(T) J o(x)dx, T € Dy, (R, X), ¢ € DR, K),
R

extending the m|Av(R, X) of (3.4), “continuous” with respect to (w1)-convergence. This m
is uniquely determined by m|Av(R, X) and (4.4).

Here “continuous” means #7(T,) — 0 if T, — 0 (w;), which in turn means
T,(p) — 0 uniformly in ¢ € U, whenever U C D(R, K) w;-bounded, that is

sup |lp w1, < o0, with w;(#) := 1+ |¢].
peU

Proor: Uniqueness : (4.4) for [ p(x)dx = 1, since T * ¢ € Av.

R
Existence: Since T x¢ € Av, the m(T) of Definition 4.2 makes sense; it is
independent of such ¢ since 72|Av is linear and , with p € D(R, R) with [ p(x)dx = 1,
R

by (4.1) and associativity [8, (2.2)] one has m(Tx¢)=m(T*p)*p) =
=m((Txp)xp)=m(Txp) [p)dt =0 if [ ¢(x)dx=0. Linearity and invariance
R R
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follow from those for convolution and 7z|Av, (4.4) then from Definition 4.2 respectively
the above if [ ¢(¢) dt = 0. Definition 4.2 and (4.1) give 72|Av = that of (3.4).

R
Continuity: With £, = T, * ¢ this can be reduced to 72(f,) — 0 if £, — 0 (1), since
with U also U xw is wi-bounded. m(f,) — 0 follows with U :={pr*p,,: T > 1,
meN}, ¢p:=1/2T on [-T,T], else 0, 0<p, €D, [p,(x)dx=1 supp
R

p,, C [ —1/m,1/m]. Since we do not need this here, we omit the details. O

Remark 4.4: The 72|E(R, X) is even (Dy1) -continuous, i.e. 7(T,) — 0 if T,(p) — 0
uniformly in ¢ € U for any Dy;-bounded U C Dy, meaning sup,, oy | lp" (x)| dx < o0
for each ; € Ny: [5, Proposition 8.4]. R

CoroLiary 4.5: If T € Dy, (R, X) and n € N, then T™ € Dy, and m(T") = 0.

Proor: T s ¢ = T % (p"), Definition 4.2 and (4.4). O

5. - FOURIER ANALYSIS FOR ERGODIC DISTRIBUTIONS

In this section X will be a complex Banach space, K = C (if K = R, everything works
with sin ¢, cos ot instead of &*).

To get Fourier coefficients and a formal Fourier series for elements of a class A, two
properties are sufficient: A is closed with respect to multiplication by characters, and
there is a linear invariant and continuous mean on A; that is A C Av of §4:

Provrosttion 5.1: (1) If A C D'(R, X) satisfies (I') that is A =T A, so does D'4(R, X).
@) If A C L (J, X) (respectively D'(J, X)) is linear, positive-invariant, satisfies (I') and
(4) (respectively (A)), then M” A (respectively M" A ) satisfies (I'), n € \\.

Proor: (i) If T € D4(R,X) and y,(2) = &, y, T € D(R,X) and (y,T) * p(x) =
=, D@_,) = T(y,p_,) = T(y_,), where ¢(¢) = p( — 1), w :=y_,0 € D(R, C), so
(T xp =1y, - (Txy), e Afor p € D(R, C).

(ii) follows by induction : With Proposition 1.1 (ii) one has M"A c U+ Uj,,
U:= M"'A  satisfying (4) by [8, Lemma 2.3]; if f = #+ ¢/ with u,0 € U, v/ € L}DC,
then 7, f = pu — Yo+ (y,0) € U+ U}, if U satisfies (I'), since also (y,») € L} .
U;,, € MU by Proposition 1.1 (1), U c MU with (4).

Similarly for M” A. O

Proposition 3.8 of [4] is the special case 7 = 1, A C C,,(R, X).

Exampies 5.2: A = AP, SPAP, WP AP, BPAP, AAP, EAP,., EAP, T, ,, E,, Av, and
Zhang’s PAP all satisfy even AP(J,C)- AC A TE, TEy, TAv, TAvy satisfy (I') by
definition.
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This is well known respectively follows from the definitions (also for EAP).
With the mean 72 of Theorem 4.3 one can now define Fourier coefficients etc.:

DeriNiTIoN 5.3: For S € Dl (R, X) we define (y,,(t) = ¢'™)
(5.1) w(8) =m(y_,5), w € R (Fourier coefficients of S).

(5.2) a8(8) :={w € R : ¢,(5) # 0} (Bohr — spectrum of S).

and the formal Fourier series

Z co(8) V-

wEUB(S)

By Proposition 5.1, y_,S € D/, (R, X), so everything is well defined.

If f € BPAP(R, X) C TAv(R, X), one gets the usual Fourier coefficients, series and
spectrum, with AP C SPAP C W?AP, even C TE(R, X) for 1 < p < oo ([27, Theorem
5.6.21), WPAP C BPAP.

D'y 4, contains by (4.4) exactly the § € D4, with Fourier series 0.

We say that U C D, (R,X) has countable spectra, if for each S € U the Bohr
spectrum op(S) is at most countable.

Set

(5.3) Av (R, X) := {f € Au(R,X) : f|R, € Av(R,, X))},

T
where Av(R,X) :={f € L, (Ry,X) : limr_o(1/T) [ f dt exists} [7, p.1007].
One has 0

(5.4) TER,X) C T(Av; (R, X)) C TAv(R, X),

if f € T(Av (R, X)), then f(— ) € T(Av. (R, X)).

Note that if f(0)=0, feCu(Ry,X), v,f €EBR,X) for all ®#0 and
& Av(R,,X) (see the example after (3.3)), then F defined by F =/ on R, and
F(t) = —f(— 1), t <0 does not belong to Av, (R, X) but F € TAv(R, X).

This implies that the inclusion 7 (Av, (R, X)) C TAv(R, X) is strict.

Prorosition 5.4: If S € Dy (R, X), ¢ € DIR,K) and n €N, then S € Dy,
Sxp e TAv(R, X) and, with ¢ = Fourier transform of ¢,
(5.5) co(S") = ()" (S), (S * 9) = coS)plw), w € R.

So D/\(R, X) has countable spectra if A has, A C D4, (R, X). The classes T Av4 (R, X) of
(5.3) and so TE(R, X) have countable spectra.

Proor: By Proposition 5.1 and Corollary 4.5, y_,S and $" € D, with
0 =m(y_,S)") = miwy_,S+7y_,S); this and induction gives the first part of (5.5).
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The second part follows with (4.1) and
(5.6) VoS *0) = ()_,S) * (y_,0), p €.
Since ¢ is entire, (5.5) gives the countability 0£ o) if S € Dy.
If g € T(Av(R4, X)), then lim 1, (1/T) [ f(£)e™ dt = 0 except for a countable set

0
of @’s by Théoréme 1 of Kahane [24] (see also Urbanik [34]), the proof there works also
for X-valued g instead of complex-valued ones. With the line after (5.4) Kahane’s result
gives countable spectra for 7Av, (R, X) and so for TE(R, X), by (5.4). O

ReMARK 5.5: Proposition 5.4 holds also if T Av is replaced everywhere by TE, with
@ € Dp1 ([5, Proposition 8.71).

COROLLARY 5.6: (1) If A is linear uniformly closed C WP AP & (T Avy N D)) and with
AxDC A 1<p<oo,thenS €Dy has countable spectrum o5(S) = {w, : n € N} and
there is g € N with ¢, (S) = Olmax(1, |w,|?)).

(i) Conversely, for given 0 ={w,:n€ N} CR and ¢, € X with |w,| > en® if
n>1/e with positive & 6 and c, = On?) for some g €N, there is a (unigque)
S € D)p(R, X) with Fourier series Xc,y,, .

So if T € Dy, (R, X) has spectrum and Fourier coefficients as in (i),

T € Dyp @ Dy,

Proor: (i) Since WPAP C TE C Dy (see after Definition 5.3 and (3.6)), by [8,
Theorem 2.11] one has S = f + ¢ with f,g€ A, g€ N, f,g € WPAP @ TAwvy have
countable spectra and bounded Fourier coefficients, (5.5) gives (i).

(i) By the assumptions, g:=3, ., (i®,) ¢, € AP(R,X) for large g, so
¢+ g9 € D, has Fourier series > ), by 0.5), with ¢ = ¢, if @, =0, else ¢ = 0.0

Exampres 5.7: All of the above can be applied to A = AP, AAP, SPAP, WP AP, BPAP,
EAP,., EAP, PAP, GPAP and the corresponding D', with D)yp = Dsysp C Dyypap C
C Dyoyp C Dy, C S, since all these A are C T(Avy) of Proposition 5.4 and so have
countable spectra; except PAP, GPAP and BP?AP they are even C TE (see [27, Theorem
5.6.2] for WPAP C TE, (17, Theorem 3.11, [3, Theorem 2.4.71, [37, Theorem 1.3.12, p.
36] for EAP; BPAP ¢ & since BPAP ¢ Dj.. by the remarks after (3.10); for (G)PAP see
after (3.5).

Definition 5.3 is thus also meaningful for all mean classes M"A, ;\V/I”A, A as in
Examples 5.7, since A C TAv implies M"A C M"A C M"TAv C Dy, by (3.11).
We need the following restriction of 7 Av:

(6.7) Av, (R, X) := {f € Av(R, X) : to f exists £ € Ny with (*)},

T
(%) sup{||1/(2T(1—|— %)) Jf(x+t)dt|| dx| > AT > k} < 0.

-T
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Prorosition 5.8: For S € D’TAU*(R, X) one has 6(S) C supp E(see (5.14)).

Proor: Diy,, (R, X) CS'(R,X) by (3.9), so § is defined. If ¢ supp S, there is
¢ € D(R,C) with p(w) # 0 and ¢ - §=0.To p exists y € S(R, K) C D1 with ¢ = .
Since $ W=y S also for § € S'(R, X), w € S(R,C) one gets Sy = 0.

Since in general the w ¢ D, we cannot use (5.5) for ¢, (S).

We first treat the case S = f € Av, and w = 0; by the above there is € § with
F*w=0and y(0) = 1, we have to show »(f) = 0.

By 3.8) f € MA, A= O(w;) NC(R, X); now this A satisfies (4) by [7, Proposition
1.3 and Example 3.13], so with Proposition 1.1(i) one has f =« + ¢/, u,v € A, or
IPF@A)|| < e - (1 + ) for t € R. With p(#) := w( — ) then for x € R

0=/ 5)0) = (o) = ~PF) =+ | (B)s = w5 .
R
With integration by parts one gets /..o Jg F(x — s)w(s)ds = 0, locally uniformly in
x € R. So for fixed T > 0 and ¢ > 0 there isic;T with
T

(5.8) I J (1/27) J fx—s)duy(s)ds| < edf ¢ >cr.

—c -T
Now (*) and (3.5) give ¢; and T> € R, with
T
(5.9) |(12T) J Fle+8dt <e(l+ |x|)k foralxe R, T>T, > 1.
-7
Choose now ¢, € D with ¢, — win S ([33, Théoréme 111, p. 273]). With (5.9) there is 7,
such for # > n,, uniformlyinc € Ry and T > T
c T
(5.10) || J (1/2T) J Flx = 5) ), ) — w(s) ]| < .
2 r
Therefore (5.8) and Fubini gives, for n > ., T > 15, ¢ > ¢. T
T ¢
(5.11) (1/2T) J Jf(x — ), (s)ds dx|| < 2e,

T —c

¢ — oo yields ||(1/2T) f (f *x@,)(x) dx|| <2¢ n>n, T>T,. Since f*¢, € Av by

Proposition 3.2, T — oo vyields |m(f x¢,)| <2 n>n, then Lemma 4.1
m(£)p,(0) — 0; since ¢,(0) — ¥(0) = 1, one gets 72(f) = 0 as desired.
Case general w, y_, f € Av., w(w) =1, f xw = 0:
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With (5.6) the case @ =0 can be applied to g=1y_,f, ¥ =7_,V, yielding
co(f) = m(g) = 0. R

Soif f € TAv,, op(f) C supp f, defined since f € S’ by (3.9).

Assume now § € Dy, , @ & supp S and y as in the beginning. For ¢ € D one has
f=8SxpeTAv, or y_,fe€Av, with fxy=CExp)xy=E*xy)xp=0 by
associativity ([33, Théoréme XI, p. 247/248] for X = C, for general X as in [8, §2]).
The case general w above yields therefore ¢, (S * ¢) = 0. Choosing ¢ with p(w) = 1, (5.5)

~

gives ¢,(S) = 0. This proves ap(S) C supp S. O

Proposition 5.8 can be applied to D'y for all the A of Examples 5.7:

Except PAP and B?AP they are C T, and for f € £ the condition (*) holds even
without (1 + |x|)*; the same holds for bounded f € Ay, especially PAP;
f € BPAP(R, X) C B'AP implies |f| € B'AP(R,C) and thus (|f|) < oo, this alone
gives (*) with &= 1.

For the A as in Examples 5.7, in the case A = AP or A = S?AP one has:
S € D'y is uniquely defined by its Fourier series:

If §1,5 € Dp(R,X) =Dg,p(R, X)  with ¢,(51) =¢($2) for weR, with
S =581 — 5, and Proposition 5.8 one gets ¢, (S * ¢) = 0 for all w and ¢ € D(R, K); since
S* ¢ e AP(R,X), this implies $* ¢ =0 by [1, p. 25, VI]. Since this holds for all
¢ € D(R, K), one gets §; = 55.

If A=WPAP or B’AP one gets only ||S1xp—S%¢[,=0, p €D , using
(S *p) € AR, K), c, (S % ) = 9(c,,(S * )) for y € dual X* and the scalar uniqueness
theorem of [14, p. 46/47] .

This determination of § by its Fourier series for the case D/;p (and a fortiori for Dy, 4p)
is nothing new however: By Theorem 2.1, (a) < (b), every S € D/;p can be considered as
an almost periodic function @5 € AP(R,Y) with Y = locally convex topologically
complete vector space (D;1), so by the general Bochner-von Neumann theory [13],
there exist even summation methods for the Fourier series of @, converging uniformly on
R to @s. Using the uniqueness of a linear, invariant, normalized and continuous (with
respect to uniform convergence) map: AP(R, X) — X, one can show

(5.12) mN(Ds) = m(S), (constant distribution) for § € D)jp(R, X).

where 72y denotes the Bochner-von Neumann mean [13, pp. 28-29] on AP(R,Y). With
this one gets

co(Ds) = mN(y_, Ps) = Y, N (D, 5) = Yy,cn(S).

Soif Y, snwcw(Ps)y,, — Ps uniformly on R for some summation method (s,, ,) (see [4,
Theorem 3.10]), = 0 gives

(5.13) ny,,w cw(S) y, — S as n — oo in (D), S € D p(R,X),

where (s,,4,) depends only on ap(S).
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This holds especially for f € M”AP or § € M”AP, but here a stronger convergence
holds with Proposition 1.1:
For f € M”AP(J, X), any J,

Z Snw Cw(f) Yo _>f

in the locally convex topology defined on M”L*(J,X) by the seminorms ||g||, :=
= ||My, - - - My gl o, b = (b1,....;h,), by > 0. Here also the ergodic mean on &(J, X) can
be extended uniquely and continuously to |J 2, M"E(, X) by [6, §2]. This generalizes
Theorem 3.10 of [4]. .

For § € M"AP(J, X) similar results hold, with M, in the definition of ||g]|.

With Proposition 5.8, (5.13) and %,, = 27_,, one gets

(5.14) If $ € D);p(R,X), then closure ap(5) = supp:S‘\.

This is in general false alreadyAfor AAP or WPAP: If ¢ € Co(R,C)NLYR, C), ¢ # 0,
then closure ap(p) = 0 # supp .

Furthermore with [8, Theorem 2.10] one can show
(5.15) ' =Dyp ® Dy,

for A = AAP, EAP,. and EAP, where AAP, = Cy, EAPy = null functions in EAP (see
[29, p. 18], [30, Wo(R, X), p. 424]), similarly for (EAP,.)o. Therefore to § € D/, there is
exactly one U € D'y}, with ¢,(5) = ¢,(U), namely the U in § = U + V of (5.15).

Let us finally remark that the ergodic mean 7z can also be extended to

M 400, X) for T £ R,
0

with corresponding consequences; this can be done as in [6, § 2].
Question: Has 7TAv(R, X) countable spectra?

(By the example after (5.4), TAv(R, C) N C,,(R, C) is not a subset of Av, (R, C) of
(5.3); another such example would be Kahane’s unbounded 3 7° sin (107"#) ([24, p. 105,
Remarque 1]); see also (3.13) and the question of Hartman in [22, (1) and (2)]).

REFERENCES

[11 L. AwmErio - G. Prousk, Almost-Periodic Functions and Functional Equations, Van Nostrand,
1971.

[2]1 W. Arenpr - C.J.K. Barry - M. Hieser - F. NEUBRANDER, Vector-valued Laplace Transforms and
Cauchy problems, Monographs in Math., Vol. 96, Basel, Boston, Berlin: Birkhiuser, 2001.

[31 B. Basir, Some problems concerning different types of vector valued almost periodic functions,
Dissertationes Math., 338 (1995), 26 pages.



— 52—

[4] B. Basit - H. GunzLer, Asymptotic behavior of solutions of systems of neutral and convolution
equations, ]. Differential Equations, 149 (1998), 115-142.

[5]1 B. Basit - H. GonzLer, Generalized vector valued almost periodic and ergodic distributions,
Analysis Paper 113, (September 2002, 65 pp), Monash University.

[6] B. Basit - H. GunzLer, Generalized almost periodic and ergodic solutions of linear differential
equations on the half line in Banach spaces, J. Math. Anal. Appl. 282 (2003), 673-697.

[71 B. Basir - H. Gunzier, Generalized Esclangon-Landau results and applications to linear
difference-differential systems in Banach spaces, ]J. Difference Equations and Applications,
Vol. 10, No. 11 (2004), 1005-1023.

[8] B. Basir - H. GuNzLer, Generalized vector valued almost periodic and ergodic distributions, J.
Math. Anal. Appl. 314 (2006), 363-381.

[9] B. Basit - H. GUNzLER, A difference property for perturbations of vector valued Levitan almost
periodic functions and analogues, Russ. J. of Math. Phys., 12 (4) (2005), 424-438.

[10] B. Basit - C. ZHANG, New almost periodic type functions and solutions of differential equations,
Can. J. Math. 48 (1996), 1138-1153.

[111]. F. BerGLUND - H. D. JUNGHENN - P. MILNES, Analysis on Semigroups, John Wiley, 1989.

[12]1 A. S. Besicovirer, Almost Periodic Functions, Dover Publ., 1954.

[13] S. BocHNER - J. VONNEUMANN, Alnzost periodic functions on groups, II, Trans. Amer. Math. Soc.
37 (1935), 21-50.

[14] H. Bowr - E. Foiner, On some types of functional spaces, Acta. Math. 76 (1944), 31-155.

[15]1 K. DeLeeuw - 1. GLICKSBERG, Applications of almost periodic compactifications, 105 (1961),
63-97.

[16] N. Dunrorp - J. T. Scawartz, Linear Operators, Part I, Interscience, New York, 1963.

[171 W. F. EBerLEIN, Abstract ergodic theorems and weak almost periodic functions, Trans. Amer.
Math. Soc. 67 (1949), 217-240.

[18] A. M. Fink, Almost Periodic Differential Equations, Lecture Notes in Math., 377, Springer-
Verlag 1974.

[191 S. GoLpBerG - P. IvwiN, Weakly almost periodic vector-valued functions, Dissertationes Math.
157 (1979), 42 pages.

[20] H. GONzLER, Integration of almost periodic functions, Math. Zeitschr. 102 (1967), 253-287.

[21] H. GonzLer, Integration, Bibliographisches Institut, Wissenschaftsverlag, 1985.

[22] S. Hart™aN, Verallgemeinerte harmonische Analysis, Ann. Pol. Math. XVI (1965), 341-352.

[23]1 E. Hitte - R. S. Puwuies, Functional Analysis and Semigroups, Amer. Math. Soc. Colloquim
Publications, Providence, 1957.

[24] J.-P. KaHANE, Sur les coefficients de Fourier-Bobr, Studia Math. T. 21 (1961), 103-106.

[25] J.-P. KaHANE, Sur les fonctions présque-périodiques généralisées dont le spectre est vide, Studia
Math. 21 (1962), 231-236.

[26] B. M. Levitan - V. V. Zuwov, Almost Periodic Functions and Differential Equations, Cam-
bridge University Press, 1982.

[27]1 B. M. Leviran, Almost Periodic Functions (Russian) Gos. Izd., Moscow, 1953.

[28]1 P. Mungs, On vector-valued weakly almost periodic functions, J. London Math. Soc. (2) 22
(1980), 467-472.

[29] W. M. Rugss - W. H. Sumumers, Integration of asymptotically almost periodic functions and weatk
almost periodicity, Dissertationes Math. 279 (1989), 35 pages.

[30] W. M. Ruess - W. H. Summers, Ergodic theorems for semigroups of operators, Proc. Amer. Math.
Soc. 114 (1992), 423-432.

[311 W. M. Rugss - V. Q. PuonG, Asymptotically almost periodic solutions of evolution equations in
Banach spaces, J. Differential Equations 122 (1995), 282-301.

[32] L. Scuwarrz, Distributions i valeures vectorielles, Annales de 'Institut Fourier 7 (1957), 1-139

[33] L. Scuwarrz, Théorie des Distributions, Hermann, Paris, 1966.



— 53 —

[34] K. UrBANIK, Fourier analysis in Marcinkiewicz spaces, Studia Math. T. 21 (1961), 93-102.

(351 K. Yosipa, Functional Analysis, Springer Verlag, 1976

[36] C. ZuaNG, Integration of vector-valued pseudo-almost periodic functions, Proc. Amer. Math.
Soc. 121 (1994), 167-174

(371 C. Zuanc, Almost Periodic Type Functions and Ergodicity, Science Press/Kluwer Acad. Publ.,
2003



Direttore responsabile: Prof. A. Baiiio - Autorizz. Trib. di Roma n. 7269 dell’8-12-1959
«Monograf» - Via Collamarini, 5 - Bologna



