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1. - INTRODUCTION

Many problems arising in Condensed Matter, Nonlinear Optics, Quantum
Mechanics, etc. can be modeled by nonlinear elliptic equations inf R”, like

ALV — p
(1) { u+ Vi(x)u = K(x)u?,

ue WH(R”), u >0,
where 4 denotes the Laplace operator and p > 1. Above, the condition z € W1?(R”) is
required to obtain a solution with physical interest. In the sequel we will always consider
the case in which the space dimension # is greater or equal than 3 and that the exponent p
is subcritical, namely that p satisfies

1<p< .
P n—2

If # = 1,2 this restriction would be unnecessary and any p > 1 could be allowed.

Equation (1) is the Euler-Lagrange equation of the functional defined (formally) on
W12(R") by setting

+1
R” R” R”

16) =5 [ 19t 5 | Veneds — - [ Keolap*as.

In order to find critical points of I(z), the main difficulty is the lack of compactness which
can bypassed assuming suitable conditions on V' and/or K. For example, taking K = 1, in
[15] it has been shown, among other things, that I has a (Mountain-Pass) critical point
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provided V >0 and V(x) - +00 as |x| = +00. On the other hand, using the
Concentration-Compactness method of P.L. Lions, existence of solutions of (1) has been
proved under the assumption that (V=1 and) K >0, lim K(x) =K, >0 and

IR,C,0>0 be=oo
(Ko) K(x) > Ky — Cexp (— dx), for |x| > R.
See [9, 10].

In Section 2 below, we will survey some recent results, dealing with the existence of
solutions of (1), which do not make use of the Concentration-Compactness, see Theorems 1
and 3. In particular, the latter deals with the new case that V and K decay to zero at infinity.

Another interesting class of nonlinear equations on R” is the following one
(2) —EMu+V()u =K, uwe WHR"), u>0,

arising in Quantum Mechanics (take ¢ = 5, the Planck constant). It is natural to consider
(2) like a singular perturbation problem and to look for solutions of (2) when ¢ is
sufficiently small. This problem, as well as the study of the behavior of solutions when
tends to zero (semiclassical limits) is particularly important to explain the relationship
between Quantum and Classical Mechanics.

There is a broad literature dealing with (2). Roughly, a typical result is that
semiclassical states #. exist provided
@) 0<C <Viw) <Gy
() 0<Kx) <G
(¢i) the auxiliary potential

Q) = [V [K()1 2V, g=E"2_C

has a stable stationary point xo.

Stable critical points of Q include maxima, minima and, more in general, points xo
such that the local degree of () at x; is different from zero.

Furthermore, one shows that the semiclassical state #. concentrates at xo, namely it
decays to zero away from xj in an uniform way, see e.g. [13, 16]. See also [1] and, for a
more general result, [7] and references therein.

Recently, some new results dealing with the existence and concentration of semiclassical
states has been obtained, see [6, 8]. The common feature of these results and the ones
dealing with (1) outlined above (in particular those stated in Theorem 3), is that the
potential V' can decay to zero at infinity. These results will be discussed in Section 3.

2. - EXISTENCE OF BOUND STATES OF (1)

The first result we discuss is taken from [3] and deals with the case in which V = 1 and
K(x) = Ky + ek(x),



so that (1) becomes

—Au + u = Kootl + ck(x)u?,
®)

ue WR2R"), u>0,

THEOREM 1: Assume that k satisfies one of the following two conditions:
(k1) thereis v € [1,2] such that kb € L*(R”") N L' (R”) with s = 27)-
2*—(p+1)

(ky) ke L®(R") and lim klx) = 0.

|x[—o0

Then for all |e| small, problem (3) has a solution.

With respect to the results cited above, the new feature of Theorem 1 is that no
assumption like (Kp) is required. The proof relies on some abstract critical point results,
perturbative in nature, that we are going to outline.

Let E be a Hilbert space and suppose that we are looking for the critical points of a
functional I. € C?>(E, R) of the form

L (x) = Ip(a) + eGlu),

where the unperturbed functional I; satisfies the following assumptions:

(a) there exists a finite dimensional C?> manifold Z such that every z € Z is a critical point
of Iy. Such a Z is called critical manifold.

(b) forall z € Z, I/(z) is an index 0 Fredholm map.

() T.Z=Kerlll()], VzeZ(")

A critical manifold Z is called #on-degenerate if (b) — (c) hold.

Roughly , if the critical manifold Z is unbounded, there is a lack of compactness which
can be recovered under suitable assumptions on the perturbation G. This idea can be
carried out when Z is non-degenerate. Actually, by means of a finite dimensional
reduction, one can prove various results on the existence of critical points of I. in cases
in which the compactness Palais-Smale (PS, in short) condition fails. Referring to [4] for a
broad exposition, here we limit ourselves to state the following resul.

Tueorem 2: [4, Thm. 2.17] Let 1y, G € C*(E, R) and suppose that 1y has a non-de-
generate critical manifold Z. Moreover, let us assume that G has on Z a constrained stable
critical point 7. Then, for |e| sufficiently small, I. has a critical point u. such that u. — 7% as
e —0.

In order to apply Theorem 2 to (3), we take E = W12(R”"),

1 2 L5, 1 P+l
Io(u) = 3 J |V dx+2 J udx Koop——&—l J | dx,
R R R”

() T,Z denotes the tangent space to Z at z.



and
1
Gl =~ J Bl .
R”
It is known that Iy has a critical manifold Z. Precisely, if U denotes the unique positive
radial function satisfying —4U + K, ;U = U?, then Z = {z:(x) = Ulx - &) : £ € R"}. It
is also known that such a Z is non-degenerate. One can prove that lllm G(z:) =0 .

Moreover, by some Fourier analysis one shows that G is not 1dent1cally zero on Z,
provided (&) holds. Thus G has a strict maximum or minimum Z € Z and the existence of
solutions to (3) follows from Theorem 2. When £ satisfies (&) the proof requires a slightly
different abstract theorem, see [4, Thm. 2.12].

Our next existence result deals with (1) in the case that V and K decay to zero at
infinity. Precisely, we will assume that V,K : R” — R are smooth and satisfy

(Vy) Ja,A >0, and a € [0,2[ such that < Vix) <
1+|x|

(K1) 35,8 > 0, such that 0 < K(x) < b —.

1+ |x]|

It is convenient to introduce the following weighted Sobolev space

Ey = {u € D'2(R") J (V4P + V2] di < o0},
J

endowed with scalar product and norm given, respectively, by

(ulp)y = J [Vulx) - Vo) + V&) ux)o)ldx,  |ully = (ulu)y
R

Let us also Consider the weighted Lebesgue space L% (R”) of measurable # : R"—R such
that [ K(x)|u(x)|?dx < +oc. It is known, see e.g. [14], that if (V) and (K;) hold then Ey

e
is compactly embedded into L™ (R") provided
n+2 4B
n+2 n—2 aln-2)

(4) O'<p<m, g =

fo<p<a

1 otherwise.

It is worth pointing out that to get the embedding of Ey into L%, it suffices to assume
n+2 . . .

that 0 <a <2 aswellas 6 <p < p— In particular, we can consider the functional
”—

I € C*(Ey, R) defined by setting
1

P JK(X ()P .

R”

() = Hullv



N

Moreover, when (4) holds, using this compactness result stated above, a straight
application of the Mountain-Pass Theorem yields a critical point # € Ey of
I € C*(Ey, R), which is a positive solution of —Ax + Vu = Ku?. It remains to show that
7 belongs to L?(IR”). This is accomplished by proving that, if 0 < a < 2 then there exists
C > 0 such that VR > 1 one has

/ [|Vﬁ|2 + V(x)ﬁz}dx < CCXP{—CR%},
Ix|>R

and this readily implies that z € L?(R”). In conclusion we can state:

Tueorem 3: [2, Thm. 11 Suppose that (V1) and (K1) hold and let p satisfy (4). Then (1)

has a solution 7 € C*(R”) such that ‘Ilim u(x) = 0. Moreover, u is a ground state, in the
X|—00

sense that Iy (@) = inf{Iy(u);u # 0, I{,(«) = 0}.

Remark 4: () Of course, the same arguments show that (2) has a solution «. for every
e>0.

(b) If 1 < p < 0, or if K is bounded away from zero and V ~ |x| * with 0 < a < 2,
there are no ground states of (1), see [2, Rem. 14 and Prop. 15]. []

We conclude this section by pointing out that the solutions #. of (2) found in Theorem
3, see also Remark 4-(z), concentrate as € — 0. First, let us remark that the potential Q
introduced before, has a global minimum when (V7), (K;) and (4) hold.

Tueorem 5: [2, Thm. 31 Under the same assumptions made in Theorem 3, the solution
u. of (2) concentrates at the global minimum of Q.

The proof relies on two facts: first of all, one shows the following estimate on the norm
of the ground states

3y>0 ¢ eullg, <ve,
where E.y = {u € D'*(R"): [ {52|Vu(x)|2 + V(x)a? (x)] dx < oo}. Moreover, the fol-

R"
lowing uniform pointwise estimates hold: 3C, d, R > 0, such that

l(x)] < C‘g‘dexp{— g (\xfz;“ - Rzz;“> }; for |x| > 2R.

3. - EXISTENCE OF SEMICLASSICAL STATES

The existence of solutions of (2) for ¢ < 1, can be proved under assumptions much
weaker than those made for (1). Roughly, the presence of a small parameter ¢ allows us to
use perturbation methods to bypass the problem concerning the lack of compactness. As
a byproduct, this approach will provide solutions that concentrate. This procedure is
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illustrated below discussing some recent results of [6], where the equation (2) is
considered, under the following assumption on V and K:

(V] Ja,A > 0, such that 5 < Vix) <A,
1+ |x|

(V2) JA; >0 : |V'(x)| <A, VxeR"

(K3) Jk>0: 0<Kx) <k, |[Kx)|<k, VxeR"

Let us point out that, with respect to (V1), the new feature of (V]) is that the latter the
exponent ¢ = 2 is allowed.

2
s 3 and suppose that V and K are smooth and

TreoREM 6: [6, Thm. 1] Ler 1 < p <

P
satisfy (V), (V) and (K3). Moreover, let xo be an isolated stable stationary point of Q. Then
for € < 1, equation (2) has a solution which concentrates at x.

Remark 7: (4) The new feature of the preceding Theorem is that we neither need to
assume the growth restriction (4), nor to impose that K decays to zero at infinity.
Moreover, a = 2 is allowed. On the other hand, the solutions found above exist for
small and might not be ground states. Let us also point out that, in general, these solutions
do not concentrate at the global minima of Q, like the ground states found in Theorem 3.
Actually Q might possess no global minimum (see (5)).

b) T0<f<a<2and p <o, then Qx) — 0 as |x| — oo and it has a global
maximum. The same happens if f = 0. In both the cases, Theorem 6 applies while
Theorem 3 does not. [ |

Let us outline the proof of Theorem 6. Performing the change of variable x+— ex,
equation (2) becomes

(5) —Au+ Vi(ex)u = Kex)i, uwe WHR"), u>0,

and this makes clear that the problem is perturbative in nature. To take advantage of this
fact, it is convenient to use an approach closely related to the abstract results such as
Theorem 2 above.

More precisely, let us consider the space H,,

H.={uc D2 (R”) : J V(ex)w? (x)dx < oo},

R"
endowed with the norm
(©) a2 = J (V4P + Ve () e,
R"
and let us suppose for the moment that the functional
(7) L(u) = % lae])? = J K(ex)|uf ™ dx, u € H,,

R”
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is well defined. However, the critical points of I. such that

(8) J K(ex)|afdx < +o0,
R”

give rise to solutions of (5).
Consider the autonomous equation

9) —Mu+ V(edu = Kb, ue WH2R"Y), u>0,

obtained from (5) by “freezing” the potentials V and K at x = e&. The positive solutions
of (9) are given by

Ol—

K(£&)

where U > 0 is radial and satisfies —AU + U = U?. We expect to find solutions
concentrating at a stable stationary point xo of the auxiliary potential Q defined in the
introduction. To simplify the notation we take xy = 0. Then we will look for critical
points of I. in the form # = z. ¢ + w, with £ ~ 0. More precisely, let us set

Ze ={z.¢): LeR, [ef] < 1},

and let try to solve the equation I’ (z. s + w) = 0, with z. s € Z.. Let P = P, ¢ denote the
orthogonal projection onto (TZSY:Z)L (orthogonality is meant with respect to the scalar
product in (6)) and consider the auxiliary equation

(10) PI'(z.¢ +w) = 0.
It is possible to show that for ¢ is small enough, PI”(z. ¢) is uniformly invertible for every

£ e R”, with || < 1. This allows us to re-write (10) in the more convenient form
S.(w) = w, where

o) = oUG— ), o= [V(sf)]ﬁ, J = [Viea,

S.w) = w — [PI"(z.)] " (PL(z¢ + ).

Fixed points of the map S. are found in a subset I'. of H. of functions satisfying
appropriate estimates and suitable decays. To carry out this argument in a more precise
way, some preliminaries are in order.
From (V7)) it follows that, for any 7z > 0 there exist R > 0 such that
m
x
provided ¢ is sufficiently small. To use this estimate, it is convenient to consider the

problem

(11) ") — (n — 1)”'£’)+mﬁzo,

which has two linearly independent solutions given by

—n— 17— 2+ m —n+V (n—. 2+ "
(12) ¢1(1’) _ 7’2 \/<2 212 +4 , ¢2(7’) _ 72 \/(2 212 +4 .
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Given any positive 5 : (R, +00) —R, let v = w,, be the radial solution

—du+-2 u=h(lx), |x| >R,

||
(Lx) ulx) =1 x| =
ulx) — 0 |x| — o0,
It is possible to show that, if
+oo
(13) / "“1h(r)g,(r) dr < 400,
R

then there exists y > 0, depending upon R (and /), such that
(14) (%)) < yrépy (), v |x| > R.

Next, let W, denote the set of the functions w € H. such that

w(x + &) < {yR VEdillx, i 14 2 R,

(15)
VE, if x| <R,

and set
IFo={wekE:||w|.<ce, weW.N(T_)", e <1}

The key lemma is the following one:

Lemma 8: There exist R > m and ¢ > 0, such that S. maps I'- into itself and is a con-
traction, provided € is sufficiently small.

The proof of this Lemma cannot be reported here in details. To have a flavor of the
arguments, let us give an idea how one shows that w := 5. (w) satisfies the first inequality
in (15). From the definition of S. it follows that the function w satisfies

—dw + Vex + e&w — pK(e€ + ex) zp Yoo+ Ow = b*(|x]), |x] >R,
wx)=1 |x| =
w(x) — 0 |x| — oo,
for a suitable /* depending on w, such that 0 < b*(r) < \/_ ¢2Ap for » > R, provided
R > 1. Taking  sufficiently large, one has that 451 r) verifies (13) and hence any
solution y of (Lg), with » = e,’o?/\p (r), satisfies (14). Since
Viex + &) — pKlex + )2y (x) > |Z|Za 7
a straight comparison argument implies that |w(x + &)| < /ew(|x|) < yrv/Ed, (|x]), as
required.
From Lemma 8 we deduce that S. has a fixed point in I'". and thus equation (10) has a
unique solution w = w, ¢ € I'., provided e < 1. At this point, in order to find a solution

(x| > R),



of I'(z. ¢ + w) = 0 it remains to solve the equation (I — P)I(z. ¢+ w) = 0. One shows
(see [4, Chapter 2] for details) that a solution of this latter equation can be found
by looking for critical points of the reduced (finite dimensional) functional
D.(&) = L.(z. ¢ + w. ). The final step consists in proving that

P.(&) = GQEd) +ole), PO = CreQ(ed) +ole),

where Cy, C; are positive constants. Since xo = 0 is a maximum or minimum of Q, or,
more in general, a stable critical point of Q, we infer that @, possesses a critical point &, /e
of , with & ~ xo =0, which corresponds to a solution # of (5). Scaling back,

xfés
9

2:(x) := u.(x/e) is a solution of (2). Since 7. (x) ~ z. ¢ ( ) , it follows that z. belongs

to W12(R”) and concentrates at x; = 0.
Finally, we have to justify that we can deal with the functional I, given by (7). Actually,
we can choose ¢ > 0 and 9 > 0 such that for all # = 2. : + w, w € I'., there holds
Ip—1)>n  |u)| <cl+lex)? (e <.
This implies that

J Kiex)|ul)dx < J Kiex)(1 + |ex)* dx < 400,
R R
for all such «. In particular, the solution z. found above satisfies (8). Now we can define
F.(x,-) € C*(R) satisfying
1 .
= Mlias i Ju) < (14 |ex))?
Fe,u) =4 7P +
L+ lex) 2P i ] > 201 + [ex])

and such that

L(u) := % [l - J K(ex)F.(x, u)dx,
R”

is well defined and of class C? on H.. Clearly, L) = L(x) for all u = Ze e+ w, w~ith
w € I'., and hence all the preceding arguments can repeated with I. substituted by I..

Remark 9: If V(x) ~ |x| ™ as x| — oo, and 0 < a < 2, we could consider, instead of

!
#() + m @ = 0. In such a case, the func-

(11), the Bessel equation —z"(r) — (n — 1)
tions ¢, considered in (12) can be substituted by Bessel functions, giving rise to solutions

with a decay rate more than polinomial. [ |

Our last result deals with radial nonlinear Schrodinger equations like

(16) —EMu+V(x)u=d", we W3R, u>0.
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In [5] it has been shown that (16) has a radial solution concentrating at the sphere of
radius 7 > 0 provided e < 1, p > 1, V is smooth with 0 < C; < V(|x|]) < C, and 7 is a
strict maximum or minimum of the auxiliary weighted potential
M©) =71V, where T:Zil_l.
p—1 2
This result can be extended to cover the case in which V is smooth, radial and satisfies

(V3) and
(V3) 34,A,R >0, :

a
By modifying in an appropriate way the definition of I'. and carrying out arguments
similar to those used to prove Theorem 6, one can show

TraeoreM 10: [8] Let p > 1 and let 'V be smooth, radial and satisfy (V3) and (V).
Moreover, suppose that the auxiliary weighted potential M has a strict maxinum or mini-
mum of M at some r* > R. Then for € < 1, equation (16) has a radial solution con-
centrating at the sphere of radius r*.

Remark 11: () The following one is an example in which Theorem 10 applies. Let
V(r) > 0forallr >0, V(r) ~ % as r — +oo and let (V) hold. Using the definition of
M, namely M(r) = #"~1V*(r), one deduces that
(Z) M(0)=0and M(r) > 0 forall » > 0;

(1) M(@r) ~ #7179 a5 — 400,

Therefore,if at > (7 — 1) then M(r) — 0 as» — 400 and hence M has a maximum at
some 7* > 0.

(b) One should be able to prove that a radial solution concentrating at the sphere of
radius 7* exists, provided V(r) > 0, M'(#*) = 0 and V(#*) > 0. Another interesting result
to pursue would be to find a solution concentrating at a sphere of radius 7y > 0, where 7,
is such that V(79) = 0. Remark that such a 7y is a minimum of M.

(¢) The case in which V' can be zero at some X € R”, but V is bounded away from zero
at infinity, has been handled in [12]. Let us point out that in [12] V does not need to be
radial and solutions concentrating at ¥ are found. It is worth pointing out that the
solutions found in [12] are different in nature from those discussed above, because their
peaks tend to zero as € — 0.

(d) Tt is an open problem to extend [12] to the case in which V(x) ~ |x|™* as
|x| — oo, with 0 < a < 2. [ |
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