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ABSTRACT. — The nonlinear reaction-diffusion system of the type

¯t u4aD x u2 f (u)1g(x), x�V ,(1)

where V%%Rn , u4 (u 1 , R , u k ), a1a *D0 and the nonlinearity f is not assumed to be subor-
dinated to the Laplacian is considered. The existence of a finite dimensional global attractor for
the system (1) is proved under some natural regularity (but not growth) assumptions on the
nonlinear term f . In order to obtain this result a new scheme of estimating the fractal dimension
of invariant sets, which does not require the corresponding map to be differentiable is
presented.

Sull’attrattore per un sistema di reazione-diffusione nonlineare
con nonlinearità supercritica e sulla sua dimensione

SUNTO. — Si considera un sistema nonlineare di reazione-diffusione, del tipo

¯t u4aD x u2 f (u)1g(x), x�V ,(1)

dove V%%Rn , u4 (u 1 , R , u k ), a1a *D0 e dove non si suppone che la nonlinearità f sia su-
bordinata al laplaciano. Sotto certe naturali condizioni di regolarità (ma non di crescita) impo-
ste al termine nonlineare f , si dimostra, per il sistema (1), l’esistenza di un attrattore globale di
dimensione finita. Questo risultato è ottenuto impiegando un nuovo sistema di stime della di-
mensione frattale degli insiemi invarianti, il quale non richiede la differenziabilità della corri-
spondente applicazione.
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INTRODUCTION

This paper is devoted to study the longtime behavior of solutions of the following
reaction-diffusion system

.
/
´

¯t u2aD x u1 f (u) 4g , x�V

uNt404u0 , uN¯V40
(0.1)

It is assumed that V%%Rn is a bounded domain in Rn with a sufficiently smooth boun-
dary, u4 (u 1 , R , u k ) is an unknown vector function, a is a given matrix with a positi-
ve symmetric part

a1a *D0 ,(0.2)

the right-hand side g�L 2 (V) and f (u) 4 ( f1 (u 1 , R , u k ), R , fk (u 1 , R , u k ) ) is a
given nonlinear function, which satisfies the conditions

.
/
´

1. f�C 1 (Rk , Rk )

2 . f (u). uF2C

3. f 8 (u) F2K

(0.3)

Here and below we denote by u . v the inner product in Rk .
The longtime behavior of solutions of (0.1) has been intensively studied by many

authors (see [1], [4], [11] and references therein) but mainly under the additional
growth restrictions to the nonlinear function f like

Nf (u)NGC(11NuNq ) , qEqmax4
n12

n22
(0.4)

which guarantee that the nonlinear term f (u) is subordinated to the linear one 2D x u
in the corresponding Sobolev space.

The fact that the equation (0.1) under the assumptions like (0.3) and (0.4) with an
arbitrary q�R1 possesses a global attractor in L 2 (V) has been established in [1].
However, the restriction qEqmax has been essentially exploited in order to obtain the
quantitative or qualitative information about this attractor (particularly, in order to
prove that it has a finite Hausdorff and fractal dimension).

The main aim of the present paper is to develop the attractor theory for the
systems of the type (0.1) without any growth restrictions.

In Section 1 we prove that under the above assumptions the equation (0.1) posses-
ses a unique solution u(t) �D for every u0�D , where

D4 ]v�H 2 (V) : vN¯V40, f (v) �L 2 (V)((0.5)
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and consequently this equation generated a nonlinear semigroup

St : DKD , St u04u(t)(0.6)

In Section 2 we show that (0.6) can be extended in a unique way to the Lipschitz con-
tinuous semigroup (which we also denote by St for simplicity) acting in L 2 (V) and
prove that the semigroup thus obtained possesses a compact attractor A %L 2 .

Section 3 is devoted to study some regularity problems for the solutions u(t) 4

4St u0 belonging to the attractor A which will be used in the next Section.
Note that in contrast to the case when f (u) is subordinated to 2D x u (e.g. when

(0.4) is satisfied) in our case we construct only the Lipschitz continuous semigroup St

corresponding to the problem (0.1) and we do not have enough smoothness of sol-
utions u(t) to obtain the differentiability with respect to the initial value u0 . Conse-
quently the classical methods of estimating the Hausdorff and fractal dimension of the
attractor based on k-contraction maps and Liapunov exponents (see [11], [2], [5])
will not work.

That is why a new method of estimating the fractal dimension of the invariant sets
which does not require the differentiability is presented in Section 4. Using this
method we prove that under some additional regularity assumptions (but not the gro-
wth restrictions!) on the nonlinear term f (u) the attractor A , constructed in Section 2,
has the finite fractal dimension in L 2 (V).

As an example of the equation (0.1) for which all our assumptions are fulfilled we
consider the generalized complex Ginzburg-Landau equation in V%Rn

¯t u4 (11 ia) D x u1Ru2 (11 ib) uNuN2s1g(x), uN¯V40(0.7)

where a , b , R�R , u4u11 iu2 , g�L 2 (V) and sD0. It is not difficult to verify that
the quasimonotonicity assumption ( f 8 (u) F2K) is fulfilled if

NbNE
k2s11

s
(0.8)

Thus, we have proved that if (0.8) holds then the attractor A of the Ginzburg-Landau
equation has the finite fractal dimension for every n�N . To the best of our knowled-
ge this result was known only if nE21 (2/s) (see [10], [7] for a more detailed study
of this equation).

Our approach gives some new results even in the case of scalar Chafee-Infante
equation in V%%Rn

¯t u2D x u1uNuN2s2Ru4g(x), uN¯V40(0.9)

where sD0 and the right-hand side g4g(x) belongs only to the space L 2 (V) (and
does not belong to L p (V) if pD2). Then the standard methods work only under the
restriction nE212/s (which follows from (0.4)) but we obtain the finite dimensio-
nality of the attractor A of the equation (0.9) for an arbitrary n .
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1. - EXISTENCE OF SOLUTIONS

In this Section we deduce a number of a priori estimates for the problem (0.1) and
prove that for every u0�D this problem has a unique solution. It is convenient for us
to consider a little more general problem of the type (0.1) with the nonautonomous ri-
ght-hand side g4g(t):

.
/
´

¯t u2aD x u1 f (u) 4g(t), x�V

uNt404u0 , uN¯V40
(1.1)

It is assumed now that g�H 1 ([0 , T], L 2 (V) ) for every TF0. (Here and below we
denote by H l the Sobolev space of functions whose derivatives up to the order l inclu-
sive belong to L 2 .)

The main result of this Section is the following Theorem.

THEOREM 1.1: Let the above assumptions be valid. Then for every u0�D the pro-
blem (1.1) has a unique solution u�Cw ( [0 , T], D) and the following estimate
holds:

(1.2) Vu(t)VD
2 GC1 (Vu(0)VD

2 1Vg(0)V

2
L 2 ) e 2(K2e) t1

1C2�
0

t

e 2(K2e)(t2 s) (Vg(s)V

2
L 2 1Vg 8 (s)V

2
L 2 ) ds

Here K is the same as in (0.3), eD0 is small enough,

VvVD
2

fVvVH 2
2 1Vf (v)V

2
L 2(1.3)

and u�Cw ( [0 , T], D) means by definition that u�C( [0 , T], H 2
w ) and

f (u) �C( [0 , T], L 2
w ) (as usual the symbol «w» denotes the weak topology).

We give below only a formal proof of the estimate (1.2) which can be justified for
instance using the Galerkin approximations method. To this end we need the follo-
wing Lemmata.

LEMMA 1.1: Let u�Cw ( [0 , T], D) be a solution of the equation (1.1). Then the fol-
lowing estimate holds

Vu(t)VH 1
2 GC1 Vu(0)VH 1

2 e 2(K2e) t1C2�
0

t

e 2(K2e)(t2 s)
Vg(s)V

2
L 2 ds(1.4)

where K is the same as in (0.3) and eD0 is small enough.
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PROOF: Indeed, multiplying the equation (1.1) by 2D x u and integrating over V
we obtain after the standard integration by parts that

(1.5) ¯t V˜x u(t)V

2
L 2 1 ((a1a *) D x u(t), D x u(t) )1

12( f 8 (u(t) ) ˜x u(t), ˜x u(t) )12(g(t), D x u(t) )40

Using the facts that a1a *D0, f 8 (u) F2K and using Friedrichs and Holder inequa-
lity we deduce from (1.5) that

¯t V˜x u(t)V

2
L 2 12eV˜x u(t)V

2
L 2 22KV˜x u(t)V

2
L 2 GCe Vg(t)V

2
L 2(1.6)

where eD0 is a sufficiently small positive number. Applying the Gronewal inequality
to the estimate (1.6) we obtain the assertion of the lemma.

LEMMA 1.2: Let u�Cw ( [0 , T], D) be a solution of the problem (1.1). Then the fol-
lowing estimate is valid:

V¯t u(t)VL 2
2 GC1 (Vu(0)VD

2 1Vg(0)VL 2
2 ) e 2(K2e) t1C2�

0

t

e 2(K2e)(t2 s)
Vg 8 (s)V

2
L 2 ds(1.7)

where K is the same as in (0.3) and eD0 is small enough.

PROOF: Differentiating the equation (1.1) by t and denoting u(t) 4¯t u(t) we will
derive

.
/
´

¯t u(t)2aD x u(t)1 f 8 (u(t) ) u(t) 4g 8 (t)

uNt404aD x u(0)2 f(u(0))1g(0), uN¯V40
(1.8)

Multiplying this equation by u(t), integrating over x�V and arguing as in the proof of
previous Lemma we deduce that

¯t Vu(t)VL 2
2 12eVu(t)VL 2

2 22KVu(t)VL 2
2 GCe Vg 8 (t)VL 2

2(1.9)

Applying the Gronewal inequality to the estimate (1.9) we obtain the assertion of the
lemma

LEMMA 1.3: Let u�Cw ( [0 , T], D) be a solution of the problem (1.1). Then the fol-
lowing estimate is valid:

(1.10) Vu(t)VH 2
2 GC1 (Vu(0)VD

2 1Vg(0)V

2
L 2 ) e 2(K2e) t1

1C2�
0

t

e 2(K2e)(t2 s) (Vg(s)V

2
L 2 1Vg 8 (s)V

2
L 2 ) ds

where eD0 is small enough.
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PROOF: Let us rewrite the equation (1.1) in the form of elliptic boundary
problem

aD x u(t)2 f(u(t) )4¯t u(t)2g(t) fhu (t), u(t)N¯V40(1.11)

Multiplying (1.11) by D x u(t) and integrating over x�V we obtain arguing as in the
proof of Lemma 1.1 that

VD x u(t)V

2
L 2 GC1 KV˜x u(t)V

2
L 2 1C2 (V¯t u(t)VL 2

2 1Vg(t)VL 2
2 )(1.12)

According to (L 2 , H 2 )-regularity of solutions of the Laplace equation (see [12])

Vu(t)VH 2
2 GCVD x u(t)VL 2

2(1.13)

Inserting the inequalities (1.4) and (1.7) into the right-hand side of (1.12) and using
(1.13) we obtain (1.10) after simple calculations. Lemma 1.3 is proved.

Now we are in position to complete the proof of the estimate (1.2). Indeed, accor-
ding to (1.3) we should estimate the H 2-norm of u(t) and the L 2-norm of f(u(t) ) . The
H 2-norm is already estimated in Lemma 1.3, so it remains to estimate only Vf(u(t) )VL 2 .
But it follows immediately from the equation (1.1) that

V f(u(t) )VL 2
2 GCVu(t)VH 2

2 1CV¯t u(t)V

2
L 2 1CVg(t)V

2
L 2(1.14)

Inserting the inequalities (1.7) and (1.10) into the right-hand side of (1.14) we obtain
the estimate of the L 2-norm of f(u(t) ) . The estimate (1.2) is proved.

The existence of a solution u�Cw ( [0 , T], D) for the problem (1.1) can be derived
in a standard way using the a priori estimate (1.2) and the Galerkin approximations
method (see for example [1], [8]). So it remains to prove the uniqueness.

LEMMA 1.4: Let u1 , u2�Cw ( [0 , T], D) be two solutions of the equation (1.1) with
the initial values u1 (0) and u2 (0) respectively. Then

Vu1 (T)2u2 (T)V

2
L 2 1 �

T

T11

Vu1 (t)2u2 (t)VH 1
2 dtGVu1 (0)2u2 (0)VL 2

2 e 2(K2e)T(1.15)

for some positive eD0. Particularly the problem (1.1) has the unique solution for every
u0�D .

PROOF: Let w(t) 4u1 (t)2u2 (t). Then the function w satisfies the equation

.
/
´

¯t w(t)2aD x w(t) 4 f(u2 (t) )2 f(u1 (t) )fhu1 , u2
(t)

wNt404u1 (0)2u2 (0)
(1.16)

Note, that hu1 , u2
�Cw ( [0 , T], L 2 ). Moreover, since f 8 (v) F2K then

( f (j 1 )2 f (j 2 ) ) . (j 12j 2 ) F2KNj 12j 2 N2(1.17)
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for every j 1 , j 2�Rk . Thus,

(hu1 , u2
(t), w(t) )GKVw(t)V

2
L 2(1.18)

Multiplying now the equation (1.16) by w(t), integrating over x�V and using the esti-
mate (1.18) we deduce that

¯t Vw(t)VL 2
2 12eVw(t)VH 1

2 22KVw(t)VL 2
2 G0(1.19)

Applying the Gronewal inequality to (1.19) we obtain the estimate (1.15). Lemma 1.4
is proved. Theorem 1.1 is proved.

REMARK 1.1: Note, that the dissipativity assumption f (u). uF2C has not been
used in the proof of Theorem 1.1, consequently this theorem remains valid without
this assumption. However the dissipativity assumption will be essentially used in the
next Section in order to prove the existence of the absorbing set for the semigroup,
generated by the equation (0.1).

2. - THE ATTRACTOR

In this Section we describe the longtime behavior of solutions of the autonomous
equation (0.1) in terms of the attractor for the corresponding semigroup. Recall that,
according to Theorem 1.1, the problem (0.1) generates a Lipschitz continuous semi-
group ]St , tF0( in D:

St : DKD , St u04u(t)(2.1)

Moreover, (1.2) implies that

Vu(t)VD
2 GC(Vu(0)VD

2 1VgV

2
L 2 11) e 2(K2e) t(2.2)

for a sufficiently small positive e . But the right-hand side of (2.2) tends to 1Q when
tKQ if K2eD0 (the case K2eE0 is not considered because in this case it is easy
to prove that the attractor will consist of a unique exponentially attracting equilibria
point). Hence, the estimate (2.2) does not guarantee us that St will be bounded in D
when tKQ . In fact under our assumptions we can prove that it will be bounded in
L 2 or H 1 only and not in D . To avoid this difficulty we extend by continuity the semi-
group St , which is initially defined for u0�D only to S×t : L 2KL 2 . Indeed, D dense in
L 2 and according to (1.15) St is uniformly continuous on D in L 2-metric for every fi-
xed t . Consequently it can be extended in a unique way to the semigroup S×t on L 2 by
expression:

S×t u04L 22 lim
nKQ

St u n
0 , u0

n�D , u04L 22 lim
nKQ

u n
0(2.3)
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Moreover, the estimate (1.15) implies that

VS×t u0
12S×t u0

2
VL 2

2 1 �
T

T11

VS×t u0
12S×t u0

2
VH 1

2 dtGe 2(K2e)T
Vu0

12u0
2
VL 2(2.4)

for every u0
1 , u0

2�L 2 and since un (t) 4St u n
0 �C( [0 , T], L 2 ) if u0

n�D then u(t) 4 S×t u0

also belongs to C( [0 , T], L 2 ) for every u0�L 2 .
Thus, we can naturally interpret the function u(t) 4 S×t u0 as a unique solution of

the problem (0.1) for u0�L 2 and study the longtime behavior of the semigroup
S×t : L 2KL 2 . The following Theorem is of fundamental significance for these
purposes.

THEOREM 2.1: Let u0�L 2 and u(t) 4 S×t u0. Then u�C( [0 , T], L 2 ) for every TF0
and

Vu(T)VL 2
2 1 �

T

T11

Vu(t)VH 1
2 dtGC1 Vu(0)VL 2

2 e 2et1C2 (11VgV

2
L 2 )(2.5)

for a sufficiently small positive eD0. Moreover, for every tD0 u(t) �H 1,
u�C( [t , T], H 1

w ), and the following estimate is valid

Vu(T)VH 1
2 1 �

T

T11

Vu(t)V

2
H 2 dtGC

t11

t
(Vu(0)VL 2

2 e 2et111VgV

2
L 2 )(2.6)

PROOF: According to (2.3) it is sufficient to deduce the estimates (2.5) and (2.6)
only for u0�D . Let us prove firstly the estimate (2.5).

Multiplying the equation (0.1) by u(t) and integrating over x�V we obtain
that

¯t Vu(t)VL 2
2 12((a1a *) ˜x u(t), ˜x u(t) )422(f(u(t) ) , u(t) )12(g(t), u(t) )(2.7)

Using the fact that a1a *D0, the dissipativity assumption (0.3) on f (u), Holder and
Friedrichs inequalities we derive that

¯t Vu(t)VL 2
2 1eVu(t)VL 2

2 1eVu(t)VH 1
2 GC(11VgV

2
L 2 )(2.8)

Applying the Gronewal inequality to (2.8) we obtain the estimate (2.5).
Let us prove now the estimate (2.6). We give below only a formal deriving of it

which can be justified by the Galerkin approximations method.
Multiplying the equation (0.1) by tD x u(t) integrating over x�V we obtain after

integration by parts that

(2.9) ¯t (tV˜x u(t)VL 2
2 )2Vu(t)VH 1

2 1 t((a1a *) D x u(t), D x u(t) )4

42 2 t( f 8 (u) ˜x u(t), ˜x u(t) )22 t(g , D x u(t) )
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Using now the quasimonotonicity assumption (0.3) on f (u) and the fact that a1

1a *D0 we obtain as in the proof of previous estimate that

(2.10) ¯t (tVu(t)VH 1
2 )1e(tVu(t)VH 1

2 )1e(tVu(t)VH 2
2 )GC((t11)Vu(t)VH 1

2 1 tVgV

2
L 2 )

for a sufficiently small positive e . Applying the Gronewal inequality to (2.10) and
using the estimate (2.5) for the integral of Vu(t)VH 1

2 we obtain after simple calculations
the estimate (2.6).

Thus, it remains to prove the continuity of u(t) with respect to t . Indeed, the fact
u�C( [0 , T], L 2 ) follows from (2.3) and from the continuity of solutions un for (0.1)
with un (0) �D proved in Theorem 1.1 (un�C( [0 , T], L 2 )).

The weak continuity in H 1 for tD0 follows from the fact that
u�C( [0 , T], L 2 )OL Q ( [t , T], H 1 ) (see [9] for instance). Theorem 2.1 is pro-
ved.

Now we are in a position to construct a compact attractor for the semigroup S×t in
L 2 . Let us remind that a set A %L 2 is called the attractor for S×t : L 2KL 2 if

1) The set A is compact in L 2 .

2) The set A is strictly invariant with respect to S×t , i.e.

S×t A 4 A for tF0(2.11)

3) A is an attracting set for S×t in L 2 . The latter means that for every neighbo-
rhood O(A) of the set A in L 2 and for every bounded subset B%L 2 there exists T4

4T(B , O) such that

S×t B% O(A) for every tFT(2.12)

(See [1], [4], [11] for details).

THEOREM 2.2: Let the assumptions (0.2) and (0.3) be valid and let g�L 2 . Then the
semigroup S×t , defined by (2.3), possesses a compact attractor A %%L 2 (A %H 1 ) which has
the following structure

A 4P 0 K(2.13)

where by K we denote the set of all complete bounded trajectories of the semi-
group S×t :

(2.14) K 4 ]u× �Cb (R , L 2 ) : S×h u(t) 4u(t1h) for t�R , hF0, Vu(t)VL 2 GCu(

and P 0 ufu(0).

PROOF: According to the abstract attractor’s existence theorem (e.g. see [1]) it is
sufficient to verify that

1) The operators S×t : L 2KL 2 are continuous for every fixed tF0.

2) The semigroup S×t possesses a compact attracting set K in L 2 .
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The continuity is an immediate corollary of (2.4). So it remains only to verify the
existence of the attracting set.

The estimate (2.6) implies that the H 1-ball

Kf ]v�H 1 (V) : VvVH 1 GR(

will be the attracting (and even the absorbing) set for the semigroup S×t in L 2 if R is lar-
ge enough. Since H 1%%L 2 then K is compact in L 2 and consequently the semigroup S×t

possesses the attractor A %K%H 1 . Theorem 2.2 is proved.

3. - THE REGULARITY OF SOLUTIONS

Let us remind that in Section 1 we have proved that the problem (0.1) has the uni-
que solution u(t) 4St u0 for every u0�D . Then in Section 2 we have extended by con-
tinuity the semigroup St from D to S×t : L 2KL 2 and proved that the semigroup thus
obtained possesses the attractor A in L 2 . This Section studies the following three pro-
blems which are naturally arise after proving the above results:

1) In what sense the «solution» u(t) 4 S×t u0 satisfies the equation (0.1) if u0 only
from L 2 (but not from D).

2) Whether the attractor A belongs to the space D .

3) Under what assumptions on f the semigroup S×t possesses the smoothing pro-
perty in the following form:

S×t : L 2KD for every tD0(3.1)

Note also that these problems occurs to be closely connected with the problem of the
finite dimension of the attractor A which will be considered in the next Sec-
tion.

We start here with the most simple case where the nonlinear term f satisfies the fol-
lowing growth restriction:

Nf (u)NGC(11NuNp ) where pGpmaxf11
4

n24
(3.2)

if nD4 and p is arbitrary if n44 (for nG3 we need not any growth restriction!). In
this case one can easily verify (using Sobolev embedding theorem) that f (v) �L 2 if
v�H 2 . Thus,

D4H 2 (V)O ]vN¯V40((3.3)

and therefore the nonlinearity f (u) is subordinated by the linear term D x u .

THEOREM 3.1: Let the assumption (3.2) holds. Then the semigroup S×t possesses the
smoothing property in the form of (3.1) and consequently for every u0�L 2 u(t) 4 S×t u0
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satisfies (0.1) in the sense of distributions. Moreover,

Vu(1)VD
2 GQ(Vu0 VL 2

2 1VgVL 2
2 )(3.4)

for a certain monotonic function Q depending on f and therefore

A %D(3.5)

PROOF: Indeed, according to (2.6) u�L 2 ( [s , T], H 2 ) for every sD0 hence due to
Fubini theorem u(t) �H 2 for almost all t�R1 . Then, according to (3.3), u(t) �D for
almost all t�R1 . But Theorem 1.1 implies that S×t : DKD , therefore u(t) �D for
every tD0. Let us prove now the estimate (3.4).

Indeed, according to (2.6),

�
1/2

1

Vu(t)VH 2
2 dtGC(Vu(0)VL 2

2 111VgVL 2
2 )

The latter means that there exists a point t0� [1/2 , 1], such that

Vu(t0 )VH 2
2 G2C(Vu(0)VL 2

2 111VgVL 2
2 )(3.6)

and hence, according to (3.2) and the embedding theorem

Vu(t0 )VD
2

fVu(t0 )V

2
H 2 1Vf(u(t0 ) )VL 2

2 GQ(Vu(t0 )VH 2
2 )(3.7)

for a certain monotonic function Q . The estimate (3.4) follows now from the inequali-
ty (2.2) with u04u(t0 ) applied in the point t412 t0 and from the estimates (3.6) and
(3.7).

Thus it remains to prove the embedding (3.5). But this fact is an immediate corol-
lary of the estimates (2.5) and (3.4). Theorem 3.1 is proved.

REMARK 3.1: Let nG3. Then Theorem 3.1 and the embedding theorem imply that
under the assumptions of Section 2

S×t : L 2 (V) KC(V) for tD0 and A %C(V)(3.8)

Assume now that nF4, (3.2) holds with pEp0 and the right-hand side g�L r (V) for
a some rDn/2 . Then using the L q-regularity theory for the heat equations (see [6])
one can derive that the assertions (3.8) remains valid in this case as well. Moreover the
space C in (3.8) can be replaced by H 2, r%%C .

Note also that the growth condition (3.2) is essentially less restrictive then
(0.4).

REMARK 3.2: If a is a scalar matrix and g�L r with rDn/2 then due to
the maximum principle one can construct the compact attractor for (0.1) in
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H 2, r%%C without any growth restrictions (and even without the monotonicity
assumption f 8F2K!) (see [3] and [13] for instance).

Let us consider now the case when the nonlinearity f is not subordinated by the li-
near part D x u .

THEOREM 3.2: Let the assumptions of Theorem 2.2 holds and let u(t) 4 S×t u0 with
u0�L 2. Then for every c�C 1 (Rk , Rk ) with the compact support in Rk the function
c(u(t) ) belongs to the space H 1 ([s , T], L 2 (V) ) for sD0, satisfies the equation

¯t c(u) 4c 8 (u) aD x u2c 8 (u) f (u)1c 8 (u) g(3.9)

in the sense of distributions and the following estimate is valid for TF1:

�
T

T11

V¯t c(u(t) )VL 2
2 1Vc(u(t) )VL 2

2 dtGCc (Vu0 VL 2
2 e 2et1VgVL 2

2 11)(3.10)

for a certain Cc depending on c and eD0.
Moreover, the function f(u(t) ) . u(t) belongs to L 1 ([0 , T], L 1 (V) ) and satisfies

the estimate

�
T

T11

V f(u(t) ) . u(t)VL 1 dtGCVu0 VL 2
2 e 2eT1C(11VgVL 2

2 )(3.11)

which is valid for every TF0.

PROOF: Indeed, let u(t) 4L 22 lim
nKQ

un (t) where un be the solutions of (0.1) with

the initial condition un (0) �D . Then multiplying the equation (0.1) (with u replaced
by un ) by the matrix c 8 (un ) we obtain that the functions c(un ) satisfy the
equation

¯t c(un ) 4c 8 (un ) aD x un2c 8 (un ) f (un )1c 8 (un ) g(3.12)

Recall, that the function c 8 (v), and therefore the function c 8 (v) f (v) have the finite
support in Rk . It means that

c 8 (un ) Kc(u) and c 8 (un ) f (un ) Kc(u) f (u)(3.13)

in the space C( [0 , T], L 2 ) when nKQ . Moreover, according to the estimate
(2.6)

aD x un � aD x u(3.14)

weakly in L 2 ( [s , T], L 2 ) for every sD0. The assertions (3.13) and (3.14) imply
that

c 8 (un ) aD x un � c(u) aD x u(3.15)
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weakly in L 1 ( [s , T], L 1 ). Thus, we can pass to the limit nKQ in the sense of distri-
butions in the equations (3.12) and obtain that (3.9) is valid. The assertion
c(u) �H 1 ( [s , T], L 2 ) now is an immediate corollary of Theorem 2.1 and the equality
(3.9). Let us prove the estimate (3.10). Note, that

Nc(v)N1Nc 8 (v)N1Nc 8 (v) f (v)NGC(c)

for every v�Rk since these functions are continuos and have a finite support. Then,
according to (3.9),

(3.16) �
T

T11

V¯t c(u(t) )VL 2
2 1Vc(u(t) )VL 2

2 dtGVgVL 2
2 1C �

T

T11

Vc 8 (u(t) )VL 2
2 1

1Vc 8 (u(t) )VL 2
2 1Vc 8 (u(t) ) f(u(t) )VL 2

2 1VD x u(t)VL 2
2 dtG

GC1 (c)(VgVL 2
2 1VuVL 2 ( [T , T11], H 2 )

2 11)

Inserting the estimate (2.6) into the estimate (3.16) and using the fact that TF1 we
obtain (3.10).

Thus, it remains to prove the estimate (3.11). To this end we consider again the se-
quence un (t) the same as before, multiply the equation (0.1) (with u replaced by un) by
un (t) and integrate over (t , x) � [T , T11]3V . We will have after the evident tran-
sformations that

(3.17) �
T

T11

( f(un(t)),un(t)) dt41/2(Vun(T)VL 2
2 2Vun(T11)VL 2

2 )2

2 �
T

T11

(a˜x un (t), ˜x un (t) ) dt1 �
T

T11

(g , un (t) ) dt

Inserting the estimate (2.5) into the right-hand side of (3.17) and using the fact that
f (u). uF2C we obtain

�
T

T11

V f(un (t) ) . un (t)VL 1 dtGCVun (0)VL 2
2 e 2eT1C(11VgVL 2

2 )(3.18)

Our aim now is to pass to the limit nKQ in the estimate (3.18). Note, that we cannot
do it directly because we do not know whether the limit function f (u). u belongs to
L 1 . To avoid this difficulty we introduce a cut-off function f(z) : RK [0 , 1] in such
a way that f(z) 41 if NzNE1, f(z) 40 if NzND2, zc 8 (z) G0 and consider the fun-
ctions f L (v) 4f(NvN2 /L 2 ), v�Rk .
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The estimate (3.18) implies that

(3.19) �
T

T11

VfL (un (t) ) f(un (t) ) . un (t)VL 1 dtGVf (un ). un VL 1 ( [T , T11]3V)G

GCVun (0)VL 2
2 e 2eT1C(11VgVL 2

2 )

Since fL (v) f (v). v has the finite support we can easily pass to the limit nKQ in
(3.19) and obtain that

�
[T , T11]3V

FL (t , x) dt dxGCVu(0)VL 2
2 e 2eT1C(11VgVL 2

2 )(3.20)

Where FL (t , x) 4fL (u(t , x) )Nf(u(t , x) ) . u(t , x)N . Note that the sequence FL (t , x)
L�N is non decreasing with respect to L and nonnegative for every fixed (t , x). Con-
sequently, passing to the limit LKQ in (3.20) we obtain the assertion FQ4

4 f (u). u�L 1 and the estimate (3.11). Theorem 3.2 is proved.

COROLLARY 3.1: Let the assumptions of Theorem 2.2 hold and let the function f (u)
satisfy the inequality

Nf (v)NGC(Nf (v). vN111NvN2 ) for every v�Rk(3.21)

Then 1) f (u) �L 1 ( [0 , T], L 1 ), 2) ¯t u�L 1 ( [s , T], L 1 ) for every sD0 and u(t) 4 S×t u0

satisfies (0.1) in the sense of distributions.

PROOF: Indeed, the first assertion is an immediate corollary of (3.21) and (3.11). To
prove the second one it is sufficient to consider (3.9) with c(u) 4cL (u) 4ufL (u)
where fL is the same as in the proof of Theorem 3.2 and pass to the limit LKQ in the
distribution sense.

Now we are going to study the smoothing properties of solutions for (0.1). We
start our consideration with the case where the main part of the nonlinearity f has a
gradient structure.

THEOREM 3.3: Let the assumptions of Theorem 2.2 be valid and let the function f
have the structure

f (v) 4 f1 (v)1 f2 (v)(3.22)

where the function f1 also satisfies (0.3) and f1 (v) 4˜v F(v), and the function f2 be su-
bordinated to f1 in the following sense

Nf2 (v)N2GC(F(v)111NvN2 )(3.23)
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Then the semigroup S×t , defined by (2.3), maps L 2 to D for every tD0. Moreo-
ver,

Vu(t)VD
2 GC

11 t 2

t 2
(Vu(0)VL 2

2 e 2et111VgV

2
L 2 )(3.24)

and therefore A %D .

The proof of this theorem is based on a number of lemmata.

LEMMA 3.1: Under the assumptions of Theorem 3.3 the following estimate is
valid:

(3.25) 2C(11 ln(NvN11))GF(v) GC(Nf (v). vN111NvN2 ) for every v�Rk

and consequently

�
T

T11

V f2 (u(t) )VL 2
2 1VF(u(t) )VL 1 dtGCVu(0)VL 2

2 e 2et1C(11VgVL 2
2 )(3.26)

PROOF: Indeed, the estimate (3.26) is an immediate corollary of (3.25), (3.23) and
(3.11). Thus, it remains to prove (3.25).

Since f1 (v). vF2C and f1 is continuous then

F(v)2F(0) 4�
0

1

f1 (sv). v ds4 �
0

1/(NvN11)

f1 (sv). v ds1

1 �
1/(NvN11)

1

f1 (sv). v dsG2C1 ( f )
NvN

NvN11
2 �

1/(NvN11)

1
C

s
dsG2C1 ( f )2C ln (NvN11)

The left-hand side of (3.25) is proved. Let us prove the right-hand side of it. To this
end we introduce a function

F(v) 4F(v)2 f1 (v). v(3.27)

Then, using the monotonicity assumption ( f18 (v) F2K) we obtain that

F(v)2F(0) 4�
0

1

˜v F(sv). v ds42�
0

1

f18 (sv) v . v dsGKNvN2(3.28)
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Consequently, according to (3.23)

F(v) G f1 (v). v1KNvN24 f (v). v2 f2 (v). v1KNvN2G

G f (v). v1mNf2 (v)N21Cm NvN2G1/2F(v)1 f (v). v1C(NvN211)

The right-hand inequality of (3.25) is proved. Lemma 3.1 is proved.

LEMMA 3.2: Let the assumptions of Theorem 3.3 hold. Then for TD0

�
T

T11

V¯t u(t)V

2
L 2 dtGC

T11

T
(Vu(0)VL 2

2 e 2et111VgVL 2
2 )(3.29)

PROOF: Let us multiply the equation (0.1) by t¯t u(t) and integrate over
t� [0 , 2]:

(3.30) �
0

2

tV¯t u(t)V

2
L 2 dt4�

0

2

(aD x u(t), t¯t u(t) ) dt22F(u(2))1

1�
0

2

F(u(t) ) dt2�
0

2

t( f2 (u(t) ) , ¯t u(t) ) dt1�
0

2

t(g , ¯t u) dt

Applying the Holder inequality together with (2.5) and (3.26) to the right-hand side of
(3.30) we deduce that

�
0

2

tV¯t u(t)V

2
L 2 dtGCu �

0

2

tVD x u(t)V

2
L 2 dt111VgV

2
L 2 1Vu0 VL 2

2 v
Arguing as in the proof of estimate (2.6) one can easily derive that

�
0

2

tVD x u(t)V

2
L 2 dtGC(Vu0 V

2
L 2 111VgV

2
L 2 )(3.31)

and therefore

�
0

2

tV¯t u(t)V

2
L 2 dtGC1 (11VgV

2
L 2 1Vu0 VL 2

2 )(3.32)

Note that the estimate (3.32) implies (3.29). Indeed, for TG1 we derive from (3.32)
that

T �
T

T11

V¯t u(t)V

2
L 2 dtGC1 (11VgV

2
L 2 1Vu0 VL 2

2 )
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And if TF1 then according to (3.32) and (2.5)

�
T

T11

V¯t u(t)V

2
L 2 dtGC(Vu(T21)VL 2

2 111VgV

2
L 2 ) GC1 (Vu(0)VL 2

2 e 2et111VgVL 2
2 )

Lemma 3.2 is proved.

LEMMA 3.3: Let the assumptions of Theorem 3.3 hold. Then for tD0

V¯t u(t)V

2
L 2 GC

11 t 2

t 2
(Vu(0)VL 2

2 e 2et111VgVL 2
2 )(3.33)

PROOF: Let us differentiate the equation (0.1) with respect to t and denote u(t) 4

4¯t u(t). We will obtain the equation

¯t u(t) 4aD x u(t)2 f 8 (u(t) ) u(t)(3.34)

Multiplying the equation (3.34) by t 2 ¯t u and using the monotonicity assumption on f
we derive that

(3.35) ¯t (t 2
Vu(t)V

2
L 2 )22 tVu(t)V

2
L 2 G2t 2 ((a1a *) ˜x ¯t u , ˜x ¯t u)12Kt 2

Vu(t)V

2
L 2

and therefore

¯t (t 2
Vu(t)V

2
L 2 )1e(t 2

Vu(t)V

2
L 2 )GCt(t11)V¯t u(t)V

2
L 2(3.36)

Applying the Gronewal inequality to the estimate (3.36) and using the estimate (3.32)
for ¯t u(t) in the right-hand side of (3.36) we obtain the assertion of the lemma.

Now we are in a position to complete the proof of the Theorem. Indeed, the esti-
mate (3.33) inserted in (1.12) gives us that

Vu(t)V

2
H 2 GC

11 t 2

t 2
(Vu(0)VL 2

2 e 2et111VgVL 2
2 )

Inserting this estimate to (1.14) we derive the analogous estimate for the norm of
f(u(t) ) . Theorem 3.3 is proved.

REMARK 3.3: The model example of the nonlinearity f (u) for which the assum-
ptions of previous Theorem hold is the following:

f1 (u) 4 (a1 u1 Nu1 Np1 , R , ak uk Nuk Npk ) , f2 (u) 4Lu(3.37)

where aiD0, piD0 and L is and arbitrary linear operator (L� L(Rk , Rk )).
In conclusion of this Section we consider another type of smoothing property

which is well adopted to study the complex Ginzburg-Landau equations.
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THEOREM 3.4: Let the nonlinear function f can be represented in the following
form

f (v) 4 f1 (v)1 f2 (v)(3.38)

where f18 (v) F0 and the function f2 (v) �C 1 (Rk , Rk ) has the finite support in Rk. Then
the attractor A of the corresponding equation (0.1) belongs to D . Moreover, this attrac-
tor is bounded in D .

VAVDGC(3.39)

PROOF: Let us represent the solution u(t) of the equation (0.1) as a sum of two
functions

u(t) 4v(t)1w(t)(3.40)

where v(t) satisfies the equation

¯t v4aD x v2 f1 (v)2 f2 (u(t) )1g , vN¯V40 , vNt4040(3.41)

and w(t) is a solution of the following equation

¯t w4aD x w2 f1 (v1w)1 f1 (v) , vNt404uNt40(3.42)

Since f 81 F0 then evidently ( f1 (v1w)2 f1 (v) ) . wF0 and consequently the solution
w(t) of the equation (3.42) satisfies the estimate

Vw(t)VL 2
2 GCe 2et

Vu(0)VL 2
2(3.43)

which holds now only for u0�D .
Let us study the equation (3.41). Since S×t : L 2KH 1 then without loss of generality

we may assume that u0�H 1 (instead of starting with u0�L 2 ). Note that f2 has the
compact support, therefore, arguing as in the proof of Theorem 3.2, we deduce that
f2 (u(t) )�H 1 ( [0 , T], L 2 ) and satisfies the estimate

�
T

T11

V¯t f2 (u(t) )VL 2
2 1V f2 (u(t) )VL 2

2 dtGCf2 (Vu0 VH 1
2 e 2et1VgVL 2

2 11)

Theorem 1.1 applied to the equation (3.41) (in which 2f2 (u(t) )1g is interpreted as
the nonautonomous right-hand side) implies now that

Vv(t)VD
2 GC1 Vu(0)VH 1

2 e 2et1C2 (11VgVL 2
2 )(3.44)

Moreover, let v1 (t) and v2 (t) be two solutions of (3.41) which correspond to the sol-
utions u1 (t) and u2 (t) of the initial problem (0.1). Then,

Vv1 (t)2v2 (t)VL 2
2 GCe 2Kt

Vu1 (0)2u2 (0)VL 2
2(3.45)
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Indeed, since f2 has the finite support then f28 is bounded and hence (2.4) implies
that

V f2 (u2 (t) )2 f1 (u1 (t) )VL 2
2 GCVu1 (t)2u2 (t)VL 2

2 GC1 Vu1 (0)2u2 (0)V

2 e 2Kt(3.46)

Let vA 4v12v2 . Then, evidently,

¯t v
A 4aD x vA 2( f1 (v1 )2 f1 (v2 ) )2 ( f2 (u1 )2 f2 (u2 ) )(3.47)

Multiplying the equation (3.47) by vA and integrating over x�V we obtain after the
evident transformations (which use (3.46) and the fact that ( f1 (v1 )2 f1 (v2 ) ) . vA F0)
that (3.45) is valid.

Note that the functions v(t) and w(t) are defined now only if u0�D . But due to
the estimates (2.4) and (3.45) we can define by continuity (as in (2.2)) the decomposi-
tion (3.40) for every u0�L 2 (and particularly for u0�H 1). Moreover the estimates
(3.43) and (3.44) remain valid for u0�H 1 as well.

Thus, we have decomposed the operator S×t : H 1KH 1 into a sum of two operators
S×t

1 u04v(t) and S×t
2 u04w(t) one of them is smoothing (S×t

1 : H 1KD) and another is
exponentially contracting in L 2-norm. Consequently, the attractor A belongs to D
and

VAVD
2 GC2 (11VgV

2
L 2 )(3.48)

where C2 is the same as in (3.44). Theorem 3.4 is proved.

REMARK 3.4: Let us consider the complex Ginzburg-Landau equation in the form
of (0.7). It is not difficult to verify that the nonlinearity f (u) 4 (11 ib) uNuN2s2Ru ,
(written in a standard real form u4 (Re u , Im u)) is quasimonotonic if and only if bG

G (k2s11/s). Moreover, if the inequality is strict then

˜u ((11 ib) uNuN2s )FeNuN2s

for a some positive eD0 and therefore f 8 (u) F0 if NuN is large enough. Thus, this no-
nlinearity possesses the decomposition (3.38) and consequently under the assumption
(0.8) the attractor AG2L of complex Ginzburg-Landau equation (0.7) satisfies the
condition

AG2L%D4H 2 (V)O ]uN¯V40(OL 4s12 (V)(3.49)

Not that (3.49) holds for every n�N , a�R , sD0 and b satisfying (0.8).

4. - THE DIMENSION OF THE ATTRACTOR

In this Section we prove that under some additional assumptions on the nonlinear
term f (u) the attractor A of the equation (0.1) has a finite fractal dimension. Note that
the usual way of estimating the fractal dimension of invariant sets involving the Liapu-
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nov exponents and k-contraction maps (see for instance [11]) requires the semigroup
to be quasidifferentiable with respect to the initial data on the attractor. But in our ca-
se where f (u) is not subordinated by the linear part D x u (in the sense of (3.3) we were
able to prove only that A %D (under the assumptions of previous Section) which is not
sufficient to obtain the differentiability. To avoid this difficulty we present below a
new scheme of estimating the dimension of invariant sets which works without the dif-
ferentiability assumptions.

First of all we remind here the definition and the simplest properties of the fractal
dimension (see [11] for further details).

DEFINITION 4.1: Let X be a metric space and let M be a precompact set in X . Then,
according to Hausdorff criteria the set M can be covered by a finite number of e-balls
in X for every eD0. Denote by Ne (M , X) the minimal number of e-balls in X which
cover M . Then the Kolmogorov’s entropy of the set M in X is defined to be the follo-
wing number

He (M , X) f log2 Ne (M , X)(4.1)

and the fractal (entropy, box-counting) dimension of M can be defined in the follo-
wing way

dF (M) 4dF (M , X) 4 lim sup
eK0

He (M , X)

log2 (1/e)
(4.2)

The following properties of the fractal dimension can be easily deduced from it’s
definition

PROPOSITION 4.1: 1) Let M be a compact k dimensional Lipschitz manifold in X.
Then dF (M , X) 4k.

2) Let X and Y be metric spaces M%X and L : XKY. Assume that the map L is
globally Lipschitz continuous on M. Then

dF (L(M), Y)GdF (M , X)(4.3)

Particularly, the fractal dimension preserves under Lipschitz continuous homeomorphi-
sms.

The following Theorem is of fundamental significance in our study the dimension
of attractors.

THEOREM 4.1: Let H1 and H be Banach spaces, H1 be compactly embedded in H and
let K%%H. Assume that there exists a map L : KKK , such that L(K) 4K and the follo-
wing ’smoothing’ property is valid

VL(k1 )2L(k2 )VH1
GCVk12k2 VH(4.4)
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for every k1 , k2�K. Then the fractal dimension of K in H is finite and can be estimated
in the following way:

dF (K , H) G H1/4C (B(1 , 0 , H1 ), H)(4.5)

where C is the same as in (4.4) and B(1, 0, H1) means the unitary ball in the space H1 .

PROOF: Let ]B(e , ki , H)(i41
Ne , ki�K , be some e-covering of the set K (here and be-

low we denote by B(e , k , V) the e-ball in the space V , centered in k). Then, according
to (4.4), the system ]B(Ce , L(ki ), H1 )( of Ce-balls in H1 covers the set L(K) and con-
sequently (since L(K) 4K) the same system covers the set K . Cover now every H1-ball
with radius Ce by a finite number of e/4-balls in H . By definition, the minimal number
of such balls equals to

(4.6) Ne/4 (B(Ce , L(ki ), H1 ) , H)4Ne/4 (B(Ce , 0 , H1 ), H)4

4N1/4C (B(1 , 0 , H1 ), H)f8

Note, that the centers of e/4-covering thus obtained not necessarily belongs to K but
we evidently can construct the e/2-covering with centers in K and with the same num-
ber of balls.

Thus, having the initial e-covering of K in H with the number of balls Ne we have
constructed the e/2-covering with the number of balls Ne/248Ne . Consequently, the
e-entropy of the set K possesses the following estimate

He/2 (K , H) G He (K , H)1 log2 8(4.7)

In fact the assertion of the theorem is a corollary of this recurrent estimate. Indeed,
since K%%H then there exists e 0 such that K%B(e 0 , k0 , H) and consequently

He0
(K , H) 40

Iterating the estimate (4.7) n-times we obtain that

He0 /2n (K , H) Gn log2 8(4.8)

Fix now an arbitrary eD0 and choose n4n(e) in such a way that

e 0

2n
GeG

e 0

2n21
(4.8)

Then

He (K) G He0 /2n (K) Gn log2 8G log2u 2e 0

e
v log2 8

Theorem 4.1 is proved.
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Now we are in a position to formulate the main result of this Section.

THEOREM 4.2: Let the assumptions of Theorem 2.2 hold and let A be the attractor of
the equation (0.1). Assume that for a sufficiently small dD0 the following regularity
assumption is valid

V f 8 (au01 (12a) u1 )VL 22d (V)GC(4.9)

uniformly with respect to u0 , u1� A and a� [0 , 1]. Then the fractal dimension of the
attractor A is finite.

dF (A , L 2 (V) )EQ(4.10)

We are going to apply Theorem 4.1. In order to do so we need some estimates on a
difference v(t) 4u1 (t)2u2 (t) between two solutions u1 and u2 belonging to the
attractor.

LEMMA 4.1: Let the assumptions of the theorem hold and let eD0 and dD0 sati-
sfies the condition

0 Ek(e , d) f

4e1d2ed

12 (e1d)
G

4

n22

Then the following estimate is valid:

V¯t vVL 11e ( [1 , 2], L 11e (V) )1VvVL 2 ( [1 , 2], H 1 (V) )GCVv(0)VL 2(4.11)

PROOF: Recall, that the function v(t) satisfies the equation

¯t v(t) 4aD x v2 l(t) v , vN¯V40(4.12)

with l(t) 4�
0

1

f 8 (su1 (t)1 (12 s) u2 (t) ) ds . Since u1 (t), u2 (t) � A then the assumption

(4.9) implies that

Vl(t)VL 22d GC1(4.13)

Let us estimate the L 11e-norm of the function hv (t) 4 l(t) v(t) using Holder ine-
quality, the estimate (4.13), and Sobolev embedding theorem H 1%L p if pG21

1(4/(n22)):

Vhv (t)VL 11e GVl(t)VL 22d Vv(t)VL 21k(e , d) GC2 Vv(t)VH 1(4.14)

It follows from the estimates (2.4) and (4.14) that

Vhv VL 11e ( [0 , 2], L 11e )GC3 Vv(0)VL 2(4.15)

Let us rewrite (4.12) as the linear nonhomogeneous parabolic problem in V

¯t v4aD x v2hv (t)(4.16)
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Then according to the L 11e-regularity theorem for the linear parabolic equation
(4.16) and using the smoothing property for the corresponding homogeneous pro-
blem (see for instance [6]) we derive that

(4.17) V¯t vVL 11e ( [1 , 2], L 11e )1VD x vVL 11e ( [1 , 2], L 11e )G

GC(Vv(0)VL 11e 1Vhv VL 11e ( [0 , 2], L 11e ) )GC4 Vv(0)VL 2

The estimate (4.17) together with (2.4) completes the proof of Lemma 4.1.

LEMMA 4.2: Let the assumptions of previous Lemma hold. Then

Vv(1)V

2
L 2 GC�

0

1

Vv(t)VL 2
2 dt(4.18)

PROOF: Indeed, multiplying the equation (4.12) by tv(t) and integrating over x�V
we obtain using the fact that l(t) F2K

¯t (tVv(t)V

2
L 2 )22K(tVv(t)VL 2

2 )GVv(t)V

2
L 2(4.19)

Applying the Gronewal inequality to the estimate (4.19) we obtain the assertion of the
lemma.

Thus, combining the results of lemmata 4.1 and 4.2 we derive that

V¯t vVL 11e ( [2 , 3], L 11e (V) )1VvVL 2 ( [2 , 3], H 1 (V) )GCVvVL 2 ( [0 , 1], L 2 )(4.20)

Now we are in the position to complete the proof of the theorem. To this end we in-
troduce a space

W 4 ]u�L 2 ( [0 , 1], H 1 ) : ¯t u�L 11e ( [0 , 1], L 11e )((4.21)

It is known (see [8]) that the space W is compactly embedded in
L 2 ( [0 , 1], L 2 ).

Let us consider the restriction KN[0 , 1] of the kernel K , defined by (2.14) and the
map

L : KN[0 , 1]K KN[0 , 1] , (Lu)(t) 4 S×2 u(t)(4.22)

Since the attractor is strictly invariant with respect to St then

L(KN[0 , 1] ) 4 KN[0 , 1]

and due to (4.20)

VL(u1 )2L(u2 )VW GCVu12u2 VL 2 ( [0 , 1], L 2 )
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Consequently, according to Theorem 4.1,

dF (KN[0 , 1] , L 2 ([0 , 1], L 2 (V) ))EQ(4.23)

The finite dimensionality of A in L 2 (V) is an immediate corollary of (4.23), (4.18) and
the second assertion of Proposition 4.1. Theorem 4.2 is proved.

Thus, we have proved that the attractor is finite dimensional under the regularity
assumption (4.9). But it is still not clear how to verify this condition in applications.
The following corollary gives an answer on this question.

COROLLARY 4.1: Let the attractor A be bounded in D ( for instance let the assum-
ptions of Theorem 3.3 or 3.4 be valid). Let us assume also that there exists a convex
function C : RkKR1 such that

K2 C(v)2C2GVf 8 (v)VL(Rk , Rk )GK1 C(v)1C1 , (v�Rk(4.24)

where KiD0. Moreover, it is assumed that the derivative f 8 satisfies the estimate

V f 8 (v)VL(Rk , Rk )GC(Nf (v)N11b11)(4.25)

for a sufficiently small bD0 and every v�Rk. Then the assumption (4.9) is satisfied
and consequently the attractor A has the finite fractal dimension.

Indeed, since the function C is convex then

(4.26) V f 8 (av12 (12a) v2 )VL(Rk , Rk )GK1 aC(v1 )1K1 (12a) C(v2 )1C2G

G
K1

K2

(aV f 8 (v1 )VL(Rk , Rk )1 (12a)V f 8 (v2 )VL(Rk , Rk )1C)

for every v1 , v2�Rk and a� [0 , 1]. Thus, (4.9) is fulfilled if

V f 8 (u0 )VL 22d (V)GC for every u0� A(4.27)

In order to verify the assumption (4.27) we use the estimate (4.25). Indeed, according
to (4.27) and due to the fact that A is bounded in D

V f 8 (u0 )VL 22d
22d GC(V f (v)VL 2

2 11)GC(Vu0 VD
2 11) GC1

for d422 (2/(11b) ) . Corollary 4.1 is proved.

REMARK 4.1: Since the solutions of the equation y 84y 11b blow up in finite time
then (4.25) is not a growth restriction but only a some kind of regularity
assumption.

EXAMPLE 4.1: Let us consider the Chaffee-Infante equation (0.9) in V%%Rn . Then
all assumptions of Corollary 4.1 are evidently satisfied and therefore the attractor A of
this equation has a finite dimension for an arbitrary n�N .
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EXAMPLE 4.2: All assumptions of Corollary 4.1 are fulfilled also for the complex
Ginzburg-Landau equation (0.7) under the assumption (0.8). Consequently the corre-
sponding attractor has the finite fractal dimension.

EXAMPLE 4.3: Assume now that the nonlinear function f (u) has the form f (u) 4

4 f1 (u)1 f2 (u) and (3.37) is satisfied. Then the assumptions of Corollary 4.1 are also sa-
tisfied and consequently for every a�L(Rk , Rk) such that a1a *D0 and for an arbit-
rary n�N the system (0.1) with such nonlinearity has a finite dimensional attractor.

REMARK 4.2: Recall, that in this Section we have primarily considered the case
where the nonlinearity is not subordinated by the linear term D x u . In the case where
this subordination assumption is fulfilled (for instance if the assumptions of Remark
3.1 is valid) the differentiability of S×t with respect to the initial data u0 can be verified
directly and therefore the finite dimensionality of the attractor can be obtained by
standard methods without any additional restrictions on f .
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