Rendiconti
Accademia Nazionale delle Scienze detta dei XL
Memorie di Matematica e Applicazioni 118° (2000), Vol. XXIV, fasc. 1, pagg. 81-110

EDOARDO VESENTINI (*)

Linear Isometries of Vector-Valued Functions (**)

Summary. - Let M be a compact Hausdorff space and let $C(M)$ be the Banach space of all complex-valued continuous functions on M. The classical Banach-Stone theorem, which associates to any surjectice linear isometry $A: C(M) \rightarrow C(M)$ a homeomorphism of M, was generalized by W. Holsztyński to the case in which the linear isometry A is not necessarily surjective. Holsztyński's result - which was further extended by M. Cambern to Banach spaces of continuous vector-valued functions on M - associates to A a subset $K(A)$ of M and a continuous surjective map $\psi: K(A) \rightarrow M$. In this paper, a maximal ψ-invariant subset of M is constructed in terms of the iterates of A. Actually, the construction of the invariant subset is carried out replacing the discrete subgroup of the iterates of A by a strongly continous semigroup of linear isometries.

Isometrie lineari di funzioni a valori vettoriali

Sunto. - Sia M uno spazio compatto di Hausdorff, e sia $C(M)$ lo spazio di Banach delle funzioni continue a valori complessi su M. Il classico teorema di Banach-Stone, che associa ad ogni isometria lineare $A: C(M) \rightarrow C(M)$ un omeomorfismo di M, è stato generalizzato da W. Holsztyński al caso in cui l'isometria lineare A non è necessariamente surgettiva. Il risultato di Holsztyński - esteso da M. Cambern a spazi di Banach di funzioni a valori vettoriali, continue su M - associa a A un sottoinsieme $K(A)$ di M ed una applicazione continua ψ di $K(A)$ su M. In questo lavoro, si costruisce un sottoinsieme ψ-invariante massimale di M definito mediante le iterate di A. Di fatto, il sottoinsieme invariante viene costruito sostituendo al semigruppo discreto delle iterate di A un sottogruppo fortemente continuo di isometrie lineari.

In one of the final chapters of [2], S. Banach made the important observation that two compact metric spaces M and N are homeomorphic if, and only if, the uniform spaces of all continuous, real-valued functions on M and N are isometric. As a byproduct of his proof, if A is such an isometry, there are a homeomorphism ψ of N onto M

[^0]and a continuous function α, with modulus one at all points of N, such that
\[

$$
\begin{equation*}
(A f)(y)=\alpha(y)(f(\psi(y))) \tag{1}
\end{equation*}
$$

\]

at all $y \in N$ and for any real-valued, continuous function f on M. This ground-breaking result was the starting point of a research field which is quite alive today. In [13] M. Stone extended Banach's theorem to continuous, complex-valued functions on compact (not necessarily metric) Hausdorff spaces and set the stage, within the framework of Boolean algebras, of what would later be called the Banach-Stone problem (see [3] also for exhaustive historical references until 1979), involving continuous vec-tor-valued functions.

In [9], W. Holsztyński considered the case in which the linear isometry A is not surjective $\left({ }^{1}\right)$, and proved that (1) still holds, but gives only a partial description of A in the sense that ψ is then a continuous map of a closed subset $K(A)$ of N onto M and $y \in K(A)$. As was shown in [15], the case $K(A)=N$ can be characterized in terms of the behaviour of A on the extreme points of the closed unit ball of the space of all continuous, complex-valued functions on M.

In [4] M. Cambern proved that Holsztyński's result extends mutatis mutandis to Banach spaces of continuous vector-valued functions from M to a complex Banach space \mathcal{E} and from N to a strictly convex complex Banach space \mathscr{F}.

In the case in which $M=N$ the question arises, for both Holsztyński's and Cambern's theorems, whether there exists a subset $K(A) \subset M$ that is invariant under the action of A and on which the action of A is therefore completely described by (1) or by a generalization thereof. In this paper, a maximal invariant set will be constructed in terms of the iterates of A. However, instead of considering these iterates, a more general situation will be investigated, replacing A by a strongly continuous semigroup of linear isometries.

After a first section devoted to the set of all extreme points of the closed unit ball of the Banach space of all continuous maps from M to \mathcal{E}, and of the closed unit ball of the dual space, n. 2 investigates the set $K(A) \subset N$, establishing a necessary and sufficient condition for $K(A)$ to coincide with N, and a sufficient condition for $K(A)$ to be closed, retrieving, as a consequence, a result of M . Cambern whereby $K(A)$ is closed when δ has finite dimension.

In n. 3, A is replaced - under the hypotheses $M=N$ and $\mathcal{E}=\mathscr{F}$ — by a semigroup T of linear isometries, which, in particular, may coincide with the family of all iterates of A. Under rather weak hypotheses on T (that are fulfilled when δ has finite dimension), a maximal <invariant» set $K_{\infty}(T) \subset M$ will be shown to exist, on which the action of T is determined by a semiflow ϕ acting on $K_{\infty}(T)$ and by an operator-valued cocycle associated to ϕ. If $K_{\infty}(T)$ is closed and the semigroup T is assumed to be strongly continuous - as will be done in nn. 5 and 6 - the semiflow ϕ is continuous,
${ }^{(1)}$) According to the Mazur-Ulam theorem ([2], pp. 166-168) surjective isometries are linear over the reals. The case of non-linear isometries was briefly investigated in [15].
and the infinitesimal generator of the semigroup defined by T in $K_{\infty}(T)$ is a bounded perturbation of the infinitesimal generator of the semigroup determined by ϕ.

Finally, in n .7 the particular case of scalar-valued continuous functions will be considered, extending to semigroups of general linear isometries some results established in [17] under additional conditions.

1. Let \mathcal{E} be a complex Banach space with norm $\left\|\|_{\delta}\right.$. If M is a compact Hausdorff space, $C(M, 8)$ will stand for the complex Banach space of all continuous functions $f: M \rightarrow \mathcal{E}$, with the uniform norm $\|f\|_{C(M, 8)}=\sup \left\{\|f(x)\|_{\delta}: x \in M\right\}$. For any complex Banach space $\mathcal{E}, \mathcal{E}^{\prime}$ will stand for the strong dual of $\mathcal{\delta} ; B_{\varepsilon}, B_{\varepsilon^{\prime}}, \overline{B_{8}}, \overline{B_{8^{\prime}}}$ will indicate respectively the unit ball of \mathcal{E}, the unit ball of \mathcal{E}^{\prime} and their closures.

Proposition 1: Let $\mathfrak{G} \neq\{0\}$ be a closed linear subspace of $C(M, \mathcal{B})$. If $f \in \mathcal{G}$,

$$
\|f\|_{C(M, 8)}=\sup \left\{|\langle f, \Lambda\rangle|: \Lambda \text { extreme point of } \overline{B_{\mathfrak{a}^{\prime}}}\right\} .
$$

Proof: Obviously,

$$
\begin{equation*}
\|f\|_{C(M, 8)} \geqslant \sup \left\{|\langle f, \Lambda\rangle|: \Lambda \text { extreme point of } \overline{B_{\mathfrak{a}^{\prime}}}\right\} . \tag{2}
\end{equation*}
$$

Let now $\|f\|_{C(M, 8)}=1$.
Since M is compact, there is some $x_{0} \in M$ such that $1=\|f\|_{C(M, 8)}=\left\|f\left(x_{0}\right)\right\|_{\delta}$.
For any $\lambda \in \partial B_{\delta^{\prime}}$, with $\|\lambda\|_{\varepsilon^{\prime}}=1$, the continuous linear form on \mathfrak{A}

$$
\delta_{x_{0}} \otimes \lambda: f \mapsto\left\langle f\left(x_{0}\right), \lambda\right\rangle
$$

has norm one, showing that the closed set

$$
S:=\left\{\Lambda \in \overline{B_{\mathfrak{a}^{\prime}}}:\langle f, \Lambda\rangle=1\right\} \subset \mathfrak{G}^{\prime}
$$

is not empty. Since, for $\Lambda_{1}, \Lambda_{2} \in S$ and $0<t<1$,

$$
\left\langle f, t \Lambda_{1}+(1-t) \Lambda_{2}\right\rangle=t+1-t=1
$$

S is also convex, and therefore is compact for the weak-star topology of \mathfrak{A}^{\prime}. By the Kreiln-Milman theorem, S has one extreme point at least.

Let Λ_{0} be one of these extreme points, and let $\Lambda_{1}, \Lambda_{2} \in \overline{B_{a^{\prime}}}, 0<t<1$ be such that

$$
\Lambda_{0}=t \Lambda_{1}+(1-t) \Lambda_{2} .
$$

Since $\Lambda_{0} \in S$,

$$
\begin{equation*}
t\left\langle f, \Lambda_{1}\right\rangle+(1-t)\left\langle f, \Lambda_{2}\right\rangle=1 \tag{3}
\end{equation*}
$$

whence

$$
\begin{aligned}
1 & \leqslant t\left|\left\langle f, \Lambda_{1}\right\rangle\right|+(1-t)\left|\left\langle f, \Lambda_{2}\right\rangle\right| \\
& \leqslant t\|f\|_{\infty}\left\|\Lambda_{1}\right\|_{a^{\prime}}+(1-t)\|f\|_{\infty}\left\|\Lambda_{2}\right\|_{\mathfrak{Q}^{\prime}} \\
& \leqslant t+(1-t)=1
\end{aligned}
$$

and therefore

$$
\left|\left\langle f, \Lambda_{1}\right\rangle\right|=\left|\left\langle f, \Lambda_{2}\right\rangle\right|=1
$$

(3) yields then

$$
\left\langle f, \Lambda_{1}\right\rangle=\left\langle f, \Lambda_{2}\right\rangle=1
$$

i.e. $\Lambda_{1}, \Lambda_{2} \in S$.

Hence

$$
1=\|f\|_{C(M, g)}=\left\langle f, \Lambda_{0}\right\rangle
$$

and this fact, together with (2) completes the proof of the proposition $\left({ }^{2}\right)$
Lemma 1: Let the closed linear subspace \mathfrak{G} of $C(M, 8)$ be such that, for every $x \in M$ and every open neighbourhood U of x in M there is $g \in \mathcal{A} \backslash\{0\}$ with Supp $g \subset U$. If $f \in \mathcal{G}$ is a complex extreme point of $\overline{B_{\mathfrak{a}}}$, then $\|f(x)\|_{\delta}=1$ for all $x \in M$.

Proof: If $\left\|f\left(x_{0}\right)\right\|_{\delta}<1$ for some $x_{0} \in M$, there exist an open neighbourhood U of x_{0} and some $\varepsilon>0$ for which

$$
\|f(x)\|_{\delta}<1-\varepsilon \quad \forall x \in U
$$

Let $g \in \mathcal{G} \backslash\{0\}$ be such that $\operatorname{Supp} g \subset U$ and $\|g\|_{\mathcal{C}(M, 8)} \leqslant \varepsilon$. Given any $\zeta \in \Delta=$ $=\{\tau \in \mathbb{C}:|\tau|<1\}$,

$$
\begin{aligned}
\|f(x)+\zeta g(x)\|_{\delta} & \leqslant\|f(x)\|_{\delta}+|\xi|\|g(x)\|_{\delta} \\
& \leqslant\|f(x)\|_{\delta}+\|g(x)\|_{\delta} \\
& <1-\varepsilon+\varepsilon=1
\end{aligned}
$$

if $x \in U$, and

$$
\|f(x)+\zeta g(x)\|_{\delta}=\|f(x)\|_{\delta}
$$

if $x \in M \backslash U$. Thus,

$$
\|f+\xi g\|_{C(M, 8)} \leqslant 1
$$

$\left.{ }^{(2}\right)$ The proof follows the ideas in [7], pp. 145-146.
for all $\zeta \in \Delta$, contradicting the hypothesis whereby f is a complex extreme point of $\overline{B_{\mathfrak{q}}}$.

Lemma 1 and the following lemma characterize all extreme points of $\overline{B_{C(M, 8)}}$, where δ is strictly convex.

Lemma 2: Let $\&$ be strictly convex. If, and only if,

$$
\|f(x)\|_{\delta}=1 \quad \forall x \in M
$$

$f \in C(M, 8)$ is an extreme point of $\overline{B_{C(M, 8)}}$.
Proof: Let $g \in C(M, \mathcal{E})$ and let $t \in(0,1) \backslash\{0\}$ be such that

$$
\|f+\operatorname{tg}\|_{C(M, \delta)} \leqslant 1
$$

Then

$$
\|f(x)+\operatorname{tg}(x)\|_{\S} \leqslant 1 \quad \forall x \in M
$$

Since $f(x) \in \partial B_{\delta}$ is an extreme point of $\overline{B_{\delta}}$, then $g(x)=0$ for all $x \in M$.
Let

$$
\boldsymbol{\Theta}(\mathfrak{A})=\left\{g \in \overline{B_{\mathfrak{a}}}: g \text { extreme point of } \overline{B_{\mathfrak{a}}}\right\} .
$$

Lemma 1 and Lemma 2 yield
Theorem 1: If \mathcal{E} is strictly convex and $\mathfrak{G} \neq\{0\}$ is a closed linear subspace of $C(M, 8)$ such that, for every $x \in M$ and every open neigbbourbood of x in M there is $g \in \mathcal{G} \backslash\{0\}$ with Supp $g \subset U$, then

$$
\boldsymbol{\Theta}(\mathfrak{A})=\left\{g \in \mathcal{A}:\|g(x)\|_{\delta}=1 \quad \forall x \in M\right\} .
$$

In particular, if \mathcal{E} is strictly convex, then

$$
\begin{equation*}
\Theta(C(M, \delta))=\left\{f \in C(M, \delta):\|f(x)\|_{\delta}=1 \quad \forall x \in M\right\} . \tag{4}
\end{equation*}
$$

We will now describe $\left.\Theta(C(M, \delta))^{\prime}\right)$.
Let

$$
C:=\left\{\delta_{x} \otimes \lambda: x \in M, \lambda \in \overline{B_{8}^{\prime}}\right\} \subset \overline{B_{C(M, 8)^{\prime}}} .
$$

Lemma 3: The set C is weak-star closed in $C(M, \delta)^{\prime}$.
Proof: If Ω is contained in the weak-star closure of C, there is a generalized sequence $\left\{\delta_{x_{j}} \otimes \lambda_{j}\right\}$, with $x_{j} \in M$ and $\lambda_{j} \in \overline{B_{8}^{\prime}}$, converging to Ω, i.e., such that

$$
\begin{equation*}
\langle f, \Omega\rangle=\lim \left\langle f\left(x_{j}\right), \lambda_{j}\right\rangle \quad \forall f \in C(M, \delta) . \tag{5}
\end{equation*}
$$

Up to replacing this generalized sequence by a generalized subsequence, there is
no restriction in assuming that $\left\{x_{j}\right\}$ converges to a point $x_{0} \in M$, and that $\left\{\lambda_{j}\right\}$ converges to $\lambda_{0} \in \overline{B_{8^{\prime}}}$ for the weak-star topology. Hence, (5) yields

$$
\langle f, \Omega\rangle=\left\langle f\left(x_{0}\right), \lambda_{0}\right\rangle \quad \forall f \in C(M, \mathcal{E}) .
$$

Lemma 4: If $\Omega \in C(M, 8)^{\prime}$ is an extreme point of $\overline{B_{C(M, 8)}}$, there exist $x_{0} \in M$ and λ_{0} extreme point of $\overline{B_{8^{\prime}}}$ such that $\Omega=\delta_{x_{0}} \otimes \lambda_{0}$.

Proof: The closure $\overline{\operatorname{co}(C)}$ of the convex hull co (C) of C coincides with the closed convex hull $\overline{\mathrm{co}}(C)$, which is closed in $\overline{B_{8^{\prime}}}$.

If $\Omega \notin \overline{\mathrm{co}}(C)$, there exist, ([6], p. 417), $f \in C(M, \mathcal{E}), c \in R$ and $\varepsilon>0$ such that

$$
\mathfrak{R}\langle f, \Omega\rangle \geqslant c
$$

and

$$
\mathfrak{R}\langle f, \Lambda\rangle \leqslant c-\varepsilon \quad \forall \Lambda \in C,
$$

i.e.,

$$
\mathfrak{R}\langle f(x), \lambda\rangle \leqslant c-\varepsilon \quad \forall x \in M, \lambda \in \overline{B_{\delta^{\prime}}} .
$$

Since

$$
\|f(x)\|_{\delta}=\sup \left\{|\langle f(x), \lambda\rangle|: \lambda \in \overline{B_{\varepsilon^{\prime}}}\right\}
$$

then

$$
\|f(x)\|_{8} \leqslant c-\varepsilon \quad \forall x \in M
$$

and therefore

$$
\|f\|_{C(M, \delta)} \leqslant c-\varepsilon
$$

If $\|\Omega\| \leqslant 1$, then

$$
\begin{aligned}
c & \leqslant \Re\langle f, \Omega\rangle \leqslant|\langle f, \Omega\rangle| \\
& \leqslant\|f\|_{C(M, 8)}\|\Omega\| \leqslant\|f\|_{C(M, \delta)} \leqslant c-\varepsilon .
\end{aligned}
$$

This contradiction shows that

$$
\Omega \notin \overline{\mathrm{Co}}(C) \Rightarrow \Omega \notin \overline{B_{C(M, 8)^{\prime}}},
$$

i.e.,

$$
\overline{B_{C(M, 8)^{\prime}}} \subset \overline{\operatorname{co}}(C) \subset \overline{B_{C(M, 8)^{\prime}}}
$$

and therefore

$$
\overline{\mathrm{co}}(C)=\overline{B_{C(M, \delta)^{\prime}}} .
$$

Since the extreme points of $\overline{\mathrm{co}}(C)$ are contained in C (see, e.g., [6], pp. 440-441), there are $x_{0} \in M$ and $\lambda_{0} \in \overline{B_{8^{\prime}}}$ such that $\Omega=\delta_{x_{0}} \otimes \lambda_{0}$.

If λ_{0} is not an extreme point of $\overline{B_{8^{\prime}}}$, there are $\lambda_{1}, \lambda_{2} \in \overline{B_{8^{\prime}}}$ and $t \in(0,1)$ such that $\lambda_{0}=t \lambda_{1}+(1-t) \lambda_{2}$, and therefore

$$
\Omega=\delta_{x_{0}} \otimes \lambda_{0}=t \delta_{x_{0}} \otimes \lambda_{1}+(1-t) \delta_{x_{0}} \otimes \lambda_{2} .
$$

In conclusion, the following theorem holds
Theorem 2: A linear form $\Lambda \in C(M, 8)^{\prime}$ is an extreme point of $\overline{B_{C(M, 8)}}$ if, and only if, there exist $x \in M$ and an extreme point λ of $\overline{B_{8^{\prime}}}$ such that $\Lambda=\delta_{x} \otimes \lambda$.
2. Let M and N be compact Hausdorff spaces and let \mathcal{E} and \mathscr{F} be complex Banach spaces, with \mathfrak{F} strictly convex. In [4], M. Cambern has characterized all linear isometries of $C(M, \mathcal{B})$ into $C(N, \mathscr{F})$, proving the following theorem, which extends previous results established by W. Holsztyński in [9] for the case $\mathcal{E}=\mathscr{F}=\boldsymbol{C}$.

Theorem 3: Let $A \in \mathfrak{L}(C(M, \mathcal{E}), C(N, \mathscr{F}))$ be a linear isometry. If \mathscr{F} is strictly convex, there exist:
a set $K(A) \subset N$;
a continuous, surjective map $\psi: K(A) \rightarrow M$;
a map $N \ni y \mapsto C_{y} \in \mathscr{L}(\mathcal{E}, \mathfrak{F})$, which is continuous for the strong operator topology in $\mathfrak{L}(\mathcal{E}, \mathscr{F})$, such that

$$
\begin{equation*}
(A f)(y)=C_{y}(f \circ \psi(y)) \tag{6}
\end{equation*}
$$

for all $y \in K(A)$ and all $f \in C(M, 8)$.
The set $K(A)$ and the map ψ are described as follows.
For $x \in M, \xi \in \partial B(M, 8)$, let

$$
\begin{aligned}
F(\xi, x) & =\left\{f \in C(M, \delta): f(x)=\|f\|_{C(M, 8)} \xi\right\}, \\
K_{A}(\xi, x) & =\left\{y \in N:\|(A f)(y)\|_{\mathscr{F}}=\|f\|_{C(M, 8)} \quad \forall f \in F(\xi, x)\right\}, \\
K_{A}(x) & =\bigcup\{K(\xi, x): \xi \in \partial B(M, \varepsilon)\}, \\
K(A) & =\bigcup\left\{K_{A}(x): x \in M\right\} .
\end{aligned}
$$

In [4], Cambern shows that $K_{A}(\xi, x) \neq \emptyset$ for all $x \in M$, and

$$
x_{1} \neq x_{2} \Rightarrow K_{A}\left(x_{1}\right) \cap K_{A}\left(x_{2}\right)=\emptyset
$$

Hence, for every $y \in K(A)$ there is a unique $x \in M$ such that $y \in K_{A}(x)$. The map $\psi: K(A) \rightarrow M$ is defined by setting $x=\psi(y)$.

Any $\xi \in \mathcal{E}$ defines a function $\underline{\xi} \in C(M, \mathcal{E})$ as follows:

$$
\underline{\xi}(x)=\xi \quad \forall x \in M .
$$

For $y \in N$, the operator $C_{y} \in \mathscr{L}(\mathcal{\delta}, \mathfrak{F})$ is given by

$$
C_{y}(\xi)=A(\underline{\xi})
$$

Since, for any $y \in N$,

$$
\begin{aligned}
\left\|C_{y} \xi\right\|_{\mathscr{F}} & =\|(A \underline{\xi})(y)\|_{\mathscr{F}} \leqslant\|A\|\|\underline{\xi}\|_{C(M, \delta)} \\
& =\|\underline{\xi}\|_{C(M, \delta)}=\|\xi\|_{\delta},
\end{aligned}
$$

then

$$
\left\|C_{y}\right\| \leqslant 1 \quad \forall y \in N
$$

Being $\underline{\xi} \in F(\xi, x)$ for all $x \in M$, then

$$
\left\|C_{y} \xi\right\|_{\mathscr{F}}=\|\xi\|_{\S} \quad \forall \xi \in \mathcal{E}, \quad \forall y \in K(A)
$$

Since $y \mapsto C_{y} \xi$ is continuous for all $\xi \in \mathcal{E}$, that proves
Lemma 5: For any $y \in \overline{K(A)}, C_{y}$ is a linear isometry of \mathcal{E} into \mathfrak{F}.
In [4] M. Cambern shows that, if $y \in K_{A}(x)$, then

$$
(A f)(y)=C_{y}(f(x)) \quad \forall f \in C(M, \delta)
$$

By the construction of ψ, that yields (6).
Proposition 2: If the map $C: y \mapsto C_{y}$ of N into $\mathfrak{L}(\mathcal{E}, \mathfrak{F})$ is continuous for the uniform operator topology of $\mathfrak{L}(\mathcal{E}, \mathfrak{F})$, the set $K(A)$ is closed.

Proof: Let $y_{0} \in \overline{K(A)}$.
For any $f \in \overline{B_{C(M, 8)}}$ and for $n=1,2, \ldots$ there is some $y_{n} \in K(A)$ such that

$$
\left\|(A f)\left(y_{0}\right)-(A f)\left(y_{n}\right)\right\|_{\mathscr{F}}<\frac{1}{n}
$$

i.e.,

$$
\left\|(A f)\left(y_{0}\right)-C_{y_{n}}\left(f\left(\psi\left(y_{n}\right)\right)\right)\right\|_{\mathscr{F}}<\frac{1}{n}
$$

and moreover

$$
\left\|C_{y_{0}}-C_{y_{n}}\right\|<\frac{1}{n}
$$

Suppose that the set $\left\{\psi\left(y_{n}\right)\right\}$ is infinite. Because M is compact, the set $\left\{\psi\left(y_{n}\right)\right\}$ has at least one cluster point x_{0}. For any $\varepsilon>0$ there is an open neighbourhood U of x_{0} in M such that

$$
\left\|f(x)-f\left(x_{0}\right)\right\|_{\delta}<\varepsilon \quad \forall x \in U
$$

Let $n_{0}>0$ be so large that $\frac{1}{n_{0}}<\varepsilon$, and let $n>n_{0}$ be such that $x_{n} \in U$. Then

$$
\begin{aligned}
\left\|(A f)\left(y_{0}\right)-C_{y_{0}}\left(f\left(x_{0}\right)\right)\right\|_{\mathscr{F}} \leqslant & \left\|(A f)\left(y_{0}\right)-C_{y_{n}}\left(f\left(x_{n}\right)\right)\right\|_{\mathscr{F}}+ \\
& +\left\|\left(C_{y_{n}}-C_{y_{0}}\right)\left(f\left(x_{n}\right)\right)\right\|_{\mathscr{F}}+ \\
& +\left\|C_{y_{0}}\left(f\left(x_{n}\right)-f\left(x_{0}\right)\right)\right\|_{\mathscr{F}} \\
\leqslant & \left\|(A f)\left(y_{0}\right)-C_{y_{n}}\left(f\left(x_{n}\right)\right)\right\|_{\mathscr{F}}+ \\
& +\left\|C_{y_{n}}-C_{y_{0}}\right\|\left\|f\left(x_{n}\right)\right\|_{\delta}+ \\
& +\left\|C_{y_{0}}\right\|\left\|f\left(x_{n}\right)-f\left(x_{0}\right)\right\|_{\delta} \\
< & \frac{1}{n}+\frac{1}{n}+\varepsilon<3 \varepsilon .
\end{aligned}
$$

Since $\varepsilon>0$ is arbitrary, that shows that

$$
(A f)\left(y_{0}\right)=C_{y_{0}}\left(f\left(x_{0}\right)\right) .
$$

Obviously, the same conclusion holds when the set $\left\{\psi\left(y_{n}\right)\right\}$ is finite; in which case $x_{0} \in\left\{\psi\left(y_{n}\right)\right\}$ can be chosen such that $\psi\left(y_{n_{i}}\right)=x_{0}$ for $n_{1}<n_{2}<\ldots$.

Let now u_{0} be another cluster point of the set $\left\{\psi\left(y_{n}\right)\right\}$ when this latter set is infinite, or such that $\psi\left(y_{m_{j}}\right)=u_{0}$ for $m_{1}<m_{2}<\ldots$. By the same argument as before, one shows that

$$
(A f)\left(y_{0}\right)=C_{y_{0}}\left(f\left(u_{0}\right)\right)
$$

Hence,

$$
C_{y_{0}}\left(f\left(x_{0}\right)-f\left(u_{0}\right)\right)=0
$$

and therefore

$$
f\left(x_{0}\right)=f\left(u_{0}\right) \quad \forall f \in C(M, \varepsilon)
$$

because $C_{y_{0}}$ is injective. If $x_{0} \neq u_{0}$, given any two vectors ξ_{1} and ξ_{2} in δ, there is a function $f \in C(M, \mathcal{8})$ such that

$$
f\left(x_{0}\right)=\xi_{1}, \quad f\left(u_{0}\right)=\xi_{2} .
$$

Thus $x_{0}=u_{0}$, and $y_{0} \in \psi_{A}\left(x_{0}\right)$.

In view of the definition of C_{y}, the hypothesis of Proposition 2 can be rephrased by requiring that the restriction of A to the closed subspace of $C(M, \mathcal{\delta})$ consisting of all δ-valued constant functions on M be continuous for the uniform operator topology.

Corollary 1: [4] If $\operatorname{dim} \delta<\infty, K(A)$ is closed in N.
Lemma 6: Let \mathfrak{F} be strictly convex and 8 reflexive. If $y \in N$ and there is $\mu \in \partial B_{\mathscr{F}}$ such that

$$
A^{\prime}\left(\delta_{y} \otimes \mu\right)=\delta_{x} \otimes \lambda
$$

for some $x \in M$ and $\lambda \in \partial B_{8^{\prime}}$, then $y \in K(A)$.
Proof: Since δ is reflexive, there exists $\xi \in \delta$ such that $\langle\xi, \lambda\rangle=1$. If $f \in C(M, \delta)$ is such that $f(x)=\|f\|_{C(M, 8)} \xi$, then

$$
\begin{aligned}
\langle(A f)(y), \mu\rangle & =\left\langle A f, \delta_{y} \otimes \mu\right\rangle=\left\langle f, A^{\prime}\left(\delta_{y} \otimes \mu\right)\right\rangle \\
& =\left\langle f, \delta_{x} \otimes \lambda\right\rangle=\langle f(x), \lambda\rangle \\
& =\|f\|_{C(M, \delta)}\langle\xi, \lambda\rangle=\|f\|_{C(M, 8)} .
\end{aligned}
$$

Since

$$
\begin{aligned}
\|f\|_{C(M, 8)} & =\langle(A f)(y), \mu\rangle \leqslant\|(A f)(y)\|_{F}\|\mu\|_{\mathscr{F}} \\
& =\|(A f)(y)\|_{\mathscr{F}} \leqslant\|A f\|_{C(M, 8)}=\|f\|_{C(M, 8)},
\end{aligned}
$$

then

$$
\|(A f)(y)\|_{\mathscr{F}}=\|f\|_{C(M, s)},
$$

and therefore $f \in K(A)$.
On the other hand, if $y \in K(A)$, for any $\mu \in \partial B_{\mathscr{F}}$ and all $f \in C(M, \delta)$

$$
\begin{aligned}
\left\langle f, A^{\prime}\left(\delta_{y} \otimes \mu\right)\right\rangle & =\left\langle A f, \delta_{y} \otimes \mu\right\rangle \\
& =\langle(A f)(y), \mu\rangle=\left\langle C_{y}(f(\psi(y))), \mu\right\rangle \\
& =\left\langle f(\psi(y)), C_{y}^{\prime}(\mu)\right\rangle=\left\langle f, \delta_{\psi(y)} \otimes C_{y}^{\prime}(\mu)\right\rangle
\end{aligned}
$$

In conclusion, in view of Theorem 2, the following theorem holds
Theorem 4: If \mathfrak{F} is strictly convex, and \mathcal{E} is uniformly convex, then $K(A)=N$ if, and only if,

$$
A^{\prime}\left(\Theta\left(C(N, \mathscr{F})^{\prime}\right)\right) \subset \Theta\left(C(M, \delta)^{\prime}\right)
$$

3. Let M be, as before, a compact Hausdorff space, let δ be a strictly convex complex Banach space, and let $T: \boldsymbol{R}_{+} \rightarrow \mathfrak{L}(C(M, \delta))$ be a semigroup of linear isometries $T(t): C(M, \delta) \rightarrow C(M, \delta)$.

According to Theorem 3, for every $t \geqslant 0$ there exist:
a subset $K(T(t))$ of M;
a continuous surjective map $\phi_{t}: K(T(t)) \rightarrow M$;
a map $x \mapsto C_{t, x}$ of M into $\mathscr{L}(\mathcal{E})$, continuous for the strong operator topology in $\mathfrak{L}(\mathcal{E})$, such that

$$
\begin{equation*}
(T(t) f)(x)=C_{t, x}\left(f\left(\phi_{t}(x)\right)\right) \quad \forall f \in C(M, \mathcal{\delta}), \forall x \in K(T(t)) \tag{7}
\end{equation*}
$$

If $t=0$, then $K(I)=M, \phi_{0}=I$ and $C_{0, x}=I$ for all $x \in M$.
If $t \geqslant 0$, for all $x \in M\left\|C_{t, x}\right\| \leqslant 1$, and, if $x \in \overline{K(T(t))}, C_{t, x}$ is a linear isometry of 8 .
Lemma 7: Let $t, s \geqslant 0$ and $x \in M$. If $x \in K(T(t))$ and $\phi_{t}(x) \in K(T(s))$, then $x \in K(t+s)$. If $x \in K(T(t)) \cap K(T(t+s))$, then $\phi_{t}(x) \in K(T(s))$.

Proof: If $\phi_{t}(x) \in K(T(s))$, then $x \in K(T(t)) \cap \phi_{t}^{-1}(K(T(s)))$ and, for all $f \in C(M, 8)$,

$$
\begin{align*}
(T(t+s) f)(x) & =(T(t) \circ T(s) f)(x)=C_{t, x}\left((T(s) f)\left(\phi_{t}(x)\right)\right)= \tag{8}\\
& =C_{t, x} \circ C_{s, \phi_{t}(x)}\left(f\left(\phi_{s} \circ \phi_{t}(x)\right)\right) \\
& =C_{t, x} \circ C_{s, \phi_{t}(x)}(f(z))
\end{align*}
$$

where $z=\left(\phi_{s} \circ \phi_{t}\right)(x)$. If $f(z)=\|f\|_{C(M, \delta)} \xi$, with $\|\xi\|_{\delta}=1$, then

$$
\|T(t+s) f(x)\|_{\delta}=\|f(z)\|_{\delta}=\|f\|_{C(M, \delta)}=\|T(t+s) f\|_{C(M, \delta)} .
$$

Therefore $x \in K(T(t+s))$ and

$$
\begin{equation*}
T(t+s) f(x)=C_{t+s, x}\left(f\left(\phi_{t+s}(x)\right)\right) . \tag{9}
\end{equation*}
$$

Choosing $f=\underline{\xi}$, for any $\xi \in \mathcal{E}$, (8) and (9) yield

$$
\begin{aligned}
C_{t+s, x}(\xi) & =T(t+s) \underline{\xi}(x) \\
& =C_{t, x} \circ C_{s, \phi_{t}(x)}(\xi)
\end{aligned}
$$

whence

$$
\begin{equation*}
C_{t+s, x}=C_{t, x} \circ C_{s, \phi_{t}(x)} \quad \forall t, s \in \boldsymbol{R}_{+}, \tag{10}
\end{equation*}
$$

and therefore

$$
f\left(\phi_{t+s}(x)\right)=f\left(\phi_{s} \circ \phi_{t}(x)\right) \quad \forall f \in C(M, \mathcal{B}) .
$$

If $x \in K(T(t)) \cap K(T(t+s))$, then

$$
\begin{aligned}
C_{t+s, x}\left(f\left(\phi_{t+s}(x)\right)\right) & =(T(t+s) f)(x)=(T(t) \circ T(s) f)(x) \\
& =C_{t, x}\left((T(s) f)\left(\phi_{t}(x)\right)\right) .
\end{aligned}
$$

Letting $z=\phi_{t+s}(x)$, if $f(z)=\|f\|_{C(M, \delta)} \xi$, with $\|\xi\|_{\delta}=1$, then

$$
\begin{aligned}
\left\|(T(s) f)\left(\phi_{t}(x)\right)\right\|_{\delta} & =\left\|C_{t+s, x}\left(f\left(\phi_{t+s}(x)\right)\right)\right\|_{\delta}=\|(T(t+s) f)(x)\|_{\delta} \\
& =\|f(z)\|_{\delta}=\|f\|_{C(M, \delta)}=\|T(t+s) f\|_{C(M, \delta)},
\end{aligned}
$$

and therefore $\phi_{t}(x) \in K(T(s))$.
Corollary 2: If $t, s \geqslant 0$,

$$
K(T(t)) \cap K(T(t+s)))=\phi_{t}^{-1}(K(T(s))),
$$

and $\phi_{t+s}=\phi_{s} \circ \phi_{t}$ on $\phi_{t}^{-1}(K(T(s)))$.
In general, the family $\{K(T(t)): t>0\}$ is not increasing, as the following lemma shows.

Lemma 8: If

$$
\begin{equation*}
K(T(t)) \subset K(T(t+s)) \tag{11}
\end{equation*}
$$

for some $t \geqslant 0$ and some $s>0$, then $K(T(r))=M$ for all $r \geqslant 0$.
Proof: If (11) holds for some $t \geqslant 0$ and some $s>0$, then

$$
K(T(t))=K(T(t)) \cap K(T(t+s))=\phi_{t}^{-1}(K(T(s))),
$$

and therefore

$$
M=\phi_{t}(K(T(t)))=K(T(s)) .
$$

Hence, if $0<l<s$ and $r=s-l$, then

$$
\begin{aligned}
K(T(r)) & =K(T(r)) \cap K(T(s))=K(T(r)) \cap K(T(r+l)) \\
& =\phi_{r}^{-1}(K(T(l))),
\end{aligned}
$$

and therefore

$$
M=\phi_{r}(K(T(r)))=K(T(l)),
$$

showing that, if $K(T(s))=M$ for some $s>0$, then $K(T(r))=M$ for all $r \in[0, s]$.
Let

$$
s_{0}=\sup \{s \geqslant 0: K(T(s))=M\}
$$

If $0<s_{0}<\infty$, there are t, s, with $0<t<s_{0}$ and $0<s<s_{0}$, such that $t+s>s_{0}$.

Then $K(T(t))=M=K(T(s))$, and therefore

$$
\begin{aligned}
K(T(t+s)) & =K(T(t)) \cap K(T(t+s))=\phi_{t}^{-1}(K(T(s))) \\
& =\phi_{t}^{-1}(M)=K(T(t))=M
\end{aligned}
$$

This contradiction shows that either $s_{0}=0$ or $s_{0}=+\infty$, and completes the proof of the lemma.

If (11) holds for some $t \geqslant 0$ and some $s>0$, (7) holds for all $t \geqslant 0, f \in C(M)$, $x \in M$.

Let $n>1$ and let $t_{j}>0$ for $j=1,2, \ldots, n$. Then

$$
\begin{align*}
K\left(T\left(t_{1}\right)\right) \cap & K\left(T\left(t_{1}+t_{2}\right)\right) \cap \ldots \cap K\left(T\left(t_{1}+t_{2}+\ldots+t_{n}\right)\right)= \tag{12}\\
& \left(K\left(T\left(t_{1}\right)\right) \cap K\left(T\left(t_{1}+t_{2}\right)\right)\right) \cap\left(K\left(T\left(t_{1}\right)\right) \cap K\left(T\left(t_{1}+t_{2}+t_{3}\right)\right)\right) \cap \ldots \cap \\
& \left.\left(K\left(T\left(t_{1}\right)\right)\right) \cap K\left(T\left(t_{1}+t_{2}+\ldots+t_{n}\right)\right)\right)=\phi_{t_{1}}^{-1}\left(K\left(T\left(t_{2}\right)\right)\right) \cap \\
& \phi_{t_{1}}^{-1}\left(K\left(T\left(t_{2}+t_{3}\right)\right)\right) \cap \ldots \cap \phi_{t_{1}}^{-1}\left(K\left(T\left(t_{2}+\ldots+t_{n}\right)\right)\right)= \\
& \phi_{t_{1}}^{-1}\left(K\left(T\left(t_{2}\right)\right) \cap K\left(T\left(t_{2}+t_{3}\right)\right) \cap \ldots \cap K\left(T\left(t_{2}+\ldots+t_{n}\right)\right)\right)= \\
& \phi_{t_{1}}^{-1} \circ \phi_{t_{2}}^{-1}\left(K\left(T\left(t_{3}\right)\right) \cap \ldots \cap K\left(T\left(t_{3}+\ldots+t_{n}\right)\right)\right)=\ldots= \\
& \phi_{t_{1}}^{-1} \circ \phi_{t_{2}}^{-1} \circ \ldots \circ \phi_{t_{n-1}}^{-1}\left(K\left(T\left(t_{n}\right)\right)\right) \neq \emptyset .
\end{align*}
$$

Lemma 9: The set

$$
\bigcap\{\overline{K(T(t))}: t \geqslant 0\}
$$

is compact and non-empty.
Proof: By the chain of equalities above, the family $\{\overline{K(T(t))}: t \geqslant 0\}$ of closed subsets of the compact space M has the finite intersection property.

Corollary 3: If $K(T(t))$ is closed for all $t \in \boldsymbol{R}_{+}$, the set

$$
\begin{equation*}
K_{\infty}(T)=\bigcap\{K(T(t)): t \geqslant 0\} \tag{13}
\end{equation*}
$$

is compact and non-empty.
The fact that the set $K_{\infty}(T)$ is non-empty follows from weaker conditions.
Theorem 5: If there is some $s>0$ such that $K(T(t))$ is closed whenever $0 \leqslant t \leqslant s$, the set $K_{\infty}(T)$ defined by (13) is non-empty.

Proof: Consider the set (12), where $t_{p}>0$ for $p=1,2, \ldots, n$. Letting $t_{p}=q_{p} s+$ $+r_{p}$, with $q_{p} \in Z_{+}$and $0 \leqslant r_{p}<s$ for $p=1,2, \ldots, n$, the set (12) contains the set

$$
G\left(t_{1}, \ldots, t_{n}\right):=K\left(T\left(t_{1}\right)\right) \bigcap_{p=2}^{n}\left(\bigcap_{j=0}^{q_{p}} K\left(T\left(t_{1}+\ldots+t_{p-1}+j s\right)\right) \cap K\left(T\left(t_{1}+\ldots+t_{p}\right)\right)\right)
$$

which - as was noticed before - is not empty. Since

$$
\begin{aligned}
& K\left(T\left(t_{1}+\ldots+t_{p-1}+(j-1) s\right)\right) \cap K\left(T\left(t_{1}+\ldots+t_{p-1}+j s\right)\right)= \\
& \phi_{t_{1}+\ldots+t_{p-1+(j-1) s}}{ }^{-1}(K(T(s)))
\end{aligned}
$$

and

$$
\begin{aligned}
& K\left(T (t _ { 1 } + \ldots + t _ { p - 1 } + q _ { p } s) \cap K \left(T\left(t_{1}+\ldots+t_{p}\right)=\right.\right. \\
& \quad K\left(T (t _ { 1 } + \ldots + t _ { p - 1 } + q _ { p } s) \cap K \left(T\left(t_{1}+\ldots+t_{p-1}+q_{p} s+r_{p}\right)=\right.\right. \\
& \quad \phi_{t_{1}+\ldots+t_{p-1}+q_{p} s} s^{-1}\left(K\left(T\left(r_{p}\right)\right)\right),
\end{aligned}
$$

the set $G\left(t_{1}, \ldots, t_{n}\right)$ is closed. By the finite intersection property, the intersection of all sets $G\left(t_{1}, \ldots, t_{n}\right)$ is not empty. Hence $K_{\infty}(T)$ is not empty.

As a consequence of Proposition 2, the following lemma holds.

Lemma 10: If there is some $t_{0}>0$ such that the map $x \mapsto C_{t, x}$ of M into $\mathfrak{L}(\mathcal{E})$ is continuous for the uniform operator topology whenever $t \in\left[0, t_{0}\right]$, then $K_{\infty}(T) \neq \emptyset$. If the bypothesis holds for all $t>0, K_{\infty}(T)$ is also closed.

Corollary 1 yields

Corollary 4: If $\operatorname{dim}_{C} \delta<\infty, K_{\infty}(T)$ is closed and non-empty.

Let $K_{\infty}(T)$ be non-empty.
Since $K(T(s))=\phi_{s}^{-1}(M)$, for all $s \geqslant 0$

$$
\begin{aligned}
\phi_{t}^{-1}\left(K_{\infty}(T)\right) & =\phi_{t}^{-1}(\bigcap\{K(T(s)): s \geqslant 0\})=\bigcap\left\{\phi_{t}^{-1}(K(T(s))): s \geqslant 0\right\} \\
& =\bigcap\{K(T(t+s)): s \geqslant 0\}=\bigcap\{K(T(s)): s \geqslant t\} \supset \\
& \supset \bigcap\{K(T(s)): s \geqslant 0\})=K_{\infty}(T),
\end{aligned}
$$

and therefore

$$
\begin{equation*}
\phi_{t}\left(K_{\infty}(T)\right) \subset K_{\infty}(T) \quad \forall t \geqslant 0 . \tag{14}
\end{equation*}
$$

Remark: The set $K_{\infty}(T)$ - if non-empty - is the largest subset of M which is $\phi_{t^{-}}$ invariant for all $t \geqslant 0$. Let $x \in M$. Then $x \in \phi_{t}^{-1}\left(K_{\infty}(T)\right) \backslash K_{\infty}(T)$ for some $t>0$ if, and only if,

$$
x \in K(T(t)) \cap K(T(t+s)) \quad \forall s \geqslant 0,
$$

i.e.,

$$
x \in K(T(s)) \quad \forall s \geqslant t
$$

and moreover

$$
x \notin K(T(r)) \quad \text { for some } r \in(0, t) .
$$

Hence

$$
\begin{equation*}
\phi_{t}^{-1}\left(K_{\infty}(T)\right) \backslash K_{\infty}(T) \subset \bigcap\{K(T(s)): s \geqslant t\} \backslash K(T(r)) \tag{15}
\end{equation*}
$$

for some $r \in(0, t)$.
If

$$
\begin{equation*}
K(T(t)) \subset K_{\infty}(T) \tag{16}
\end{equation*}
$$

for some $t>0$, then $K(T(s)) \supset K(T(t))$ for all $s>0$, and Lemma 8 yields
Theorem 6: If, and only if, (16) holds for some $t>0$, then $K_{\infty}(T)=M$, and (7) holds for all $t \geqslant 0$.

Let $K_{\infty}(T)$ be closed and non-empty. In view of the ϕ_{t}-invariance of $K_{\infty}(T)$, one defines a semigroup $\widetilde{T}: \boldsymbol{R}_{+} \rightarrow \mathscr{L}\left(C\left(K_{\infty}(T), \mathcal{E}\right)\right.$) of linear contractions of $C\left(K_{\infty}(T), \mathcal{E}\right)$, by

$$
(\widetilde{T}(t) g)(x)=C_{t, x}\left(g\left(\phi_{t}(x)\right)\right)
$$

for all $t \geqslant 0, g \in C\left(K_{\infty}(T), \delta\right), x \in C\left(K_{\infty}(T)\right)$.
4. Let M, N, P be compact Hausdorff spaces, $\mathcal{E}, \mathscr{F}, \mathcal{G}$ be complex Banach spaces, with $\mathfrak{F}, \mathcal{G}$ strictly convex, and let

$$
A \in \mathfrak{L}(C(M, \mathcal{E}), C(N, \mathscr{F})), \quad B \in \mathscr{L}(C(N, \mathfrak{F}), C(P, \mathcal{G}))
$$

be linear isometries. Then $B \circ A$ is a linear isometry of $C(M, \mathcal{E})$ into $C(P, \mathcal{G})$.
Arguing as in the proof of Lemma 7, one shows that

$$
\begin{equation*}
K(B) \cap K(B \circ A)=\psi_{B}^{-1}(K(A)) \tag{17}
\end{equation*}
$$

and

$$
\psi_{B \circ A}=\psi_{B} \circ \psi_{A} \quad \text { on } \quad \psi_{B}^{-1}(K(A)) .
$$

If $M=P$ and $\mathcal{E}=\mathcal{G}$, and if $B \circ A$ is the identity on M, then $K(B \circ A)=P$, and (17) becomes

$$
\psi_{B}(K(B))=K(A),
$$

whence $K(A)=N$. That implies M. Jerison's extension, [10], of the classical BanachStone theorem to vector-valued, continuous functions.

Let now $M=N$ and $\delta=\mathscr{F}$. By similar arguments to those developed in n. 3, one can handle the discrete case, in which the semigroup T is replaced by the iterates $\left\{A^{n}: n \in \mathbf{N}\right\}$ of an isometry $A \in \mathscr{L}(C(M, \mathcal{\delta}))$, and the Banach space \mathcal{E} is strictly convex. Assuming in Theorem $3 N=M, \mathcal{E}=\mathcal{F}$, and replacing A by $A^{n}, K(A)$ by $K\left(A^{n}\right), C_{y}$ by $C_{A^{n}, y}, \psi$ by $\psi_{A^{n}}$, one shows, as in n .3 , that

$$
K\left(A^{p}\right) \cap K\left(A^{p+q}\right)=\psi_{A^{p}}^{-1}\left(K\left(A^{q}\right)\right) .
$$

Let $n_{1}, n_{2}, \ldots, n_{p}$ be positive integers. As in n .3 one proves that

$$
\begin{equation*}
K\left(A^{n_{1}}\right) \cap K\left(A^{n_{1}+n_{2}}\right) \ldots \cap K\left(A^{n_{1}+\ldots+n_{p}}\right)=\psi_{A^{n_{1}}}^{-1} \circ \ldots \circ \psi_{A^{n_{p}-1}}^{-1}\left(K\left(A^{n_{p}}\right)\right) \neq \emptyset, \tag{18}
\end{equation*}
$$

and this shows that

$$
\bigcap\left\{\overline{K\left(A^{n}\right)}: n \in \mathbf{Z}_{+}\right\} \neq \emptyset
$$

Since the left-hand side of (18) contains the set

$$
\bigcap_{m=1}^{n_{1}+\ldots+n_{p}} K\left(A^{m}\right)=\psi_{A}^{-1} \circ \psi_{A^{2}}^{-1} \circ \ldots \circ \psi_{A^{n_{1}}+\ldots+n_{p-1}}^{-1}(K(A))
$$

which is (non-empty and) closed when $K(A)$ is closed, the following proposition holds.

Proposition 3: If $K(A)$ is closed, the set

$$
K_{\infty}(A):=\bigcap\left\{K\left(A^{n}\right): n \in \boldsymbol{Z}_{+}\right\}
$$

is non-empty.

Similar arguments as those developed in the proof of Lemma 8 lead to

Lemma 11: If

$$
K\left(A^{p}\right) \subset K\left(A^{p+q}\right)
$$

for two positive integers p and q, then $K(A)=M$.
Arguing as in Theorem 6 one proves
Theorem 7: If, and only if,

$$
K\left(A^{p}\right) \subset K_{\infty}(A)
$$

for some $p \geqslant 0$, then $K(A)=M$.
If $\widetilde{A} \in \mathscr{L}\left(C\left(K_{\infty}(A), \delta\right)\right)$ is defined by

$$
(\widetilde{A} g)(x)=C_{A, x}\left(g\left(\psi_{A}(x)\right)\right)
$$

for all $x \in K_{\infty}(A)$ and all $g \in C\left(K_{\infty}(A), 8\right)$, then \tilde{A} is a contraction of $C\left(K_{\infty}(A), 8\right)$.

If $A \underline{\xi}=\zeta \underline{\xi}$ for some $\zeta \in C$ and $\xi \in \mathcal{E} \backslash\{0\}$, then $|\zeta|=1$ and $\widetilde{A} \underline{\xi}=\zeta \underline{\xi}$, i.e.,

$$
C_{A, x}(\xi)=\zeta \xi \quad \forall x \in K_{\infty}(A)
$$

and viceversa. That proves
Lemma 12: Let $K_{\infty}(A) \neq \emptyset$. If, and only if, ζ is an eigenvalue of $C_{A, x}$ with an eigenvector $\xi \in \mathcal{E} \backslash\{0\}$ for all $x \in K_{\infty}(A)$, then $|\zeta|=1$ and ζ is an eigenvalue of \widetilde{A} with an eigenvector $\underline{\xi}$.

Let now

$$
\begin{equation*}
(A f)(y)=\xi f(y) \quad \forall f \in C(M, \delta) \tag{19}
\end{equation*}
$$

and for some $y \in M$ and $\zeta \in C$. Then $|\zeta| \leqslant 1$. If $f \in F(\xi, y)$ for some $\xi \in \delta$ with $\|\xi\|_{\delta}=1$, then

$$
\|(A f)(y)\|_{\delta}=|\zeta|\|f\|_{C(M, \delta)}=|\zeta|\|A f\|_{C(M, \delta)}
$$

Thus

$$
\zeta \in \partial \Delta \Rightarrow y \in K(A)
$$

and therefore

$$
C_{A, y}\left(f\left(\psi_{A}(y)\right)\right)=(A f)(y)=\zeta f(y) \quad \forall f \in C(M, \mathcal{B}) .
$$

Because $C_{A, y}$ is an isometry, that implies that

$$
\| f\left(\psi_{A}(y)\left\|_{\delta}=\right\| f(y) \|_{\delta}\right.
$$

for all $f \in C(M, \delta)$, and therefore $\psi_{A}(y)=y$, proving thereby
Proposition 4: If $y \in M$ and $\zeta \in \partial \Delta$ satisfy (19), then $y \in K(A), \psi_{A}(y)=y$ and $C_{A, y}=\zeta I$.

We shall conclude this section with a result on the compression spectrum of A in the case in which $M=N, \mathcal{E}=\mathscr{F}=C$ and A is a linear isometry of $C(M)$ onto $C(N)$. Now $K(A)=M$, and A is expressed by (1) for all $y \in M$ and all $f \in C(M)$, with $\alpha \in \Theta(C(M))$ and ψ a homeomorphism of M onto itself.

The compression spectrum of A is, by definition, the point spectrum $p \sigma\left(A^{\prime}\right)$ of the dual operator A^{\prime} of A. If $\zeta \in p \sigma\left(A^{\prime}\right)$, there is some $\lambda \in C(M)^{\prime} \backslash\{0\}$ such that

$$
\begin{equation*}
\langle A f, \lambda\rangle=\zeta\langle f, \lambda\rangle \quad \forall f \in C(M) \tag{20}
\end{equation*}
$$

i.e.,

$$
\int \alpha(x) f(\psi(x)) d \lambda(x)=\zeta \int f(x) d \lambda(x)
$$

for all $f \in C(M)$, where λ has been identified with its representative Borel measure.

This implies, first of all, that $\zeta \neq 0$.
Let $x_{0} \in \operatorname{Supp} \lambda$ be such that $\psi\left(x_{0}\right) \notin \operatorname{Supp} \lambda$. Le U be an open neighbourhood of x_{0} in M, disjoint from Supp λ, and let $V=\psi^{-1}(U)$.

For any $f \in C(M)$ such that $\operatorname{Supp} f \subset U$,

$$
\int f(x) d \lambda(x)=0
$$

and therefore

$$
\begin{equation*}
\int \alpha(x) f(\psi(x)) d \lambda(x)=0 \tag{21}
\end{equation*}
$$

If $g \in C(M)$ is such that $\operatorname{Supp} g \subset V$, then, setting $f=g \circ \psi^{-1}, \operatorname{Supp} f \subset U$, and (21) yields

$$
\int \alpha(x) g(x) d \lambda(x)=0
$$

showing that $x_{0} \notin \operatorname{Supp} \lambda$: which is a contradiction.
Hence, $\psi(\operatorname{Supp} \lambda) \subset \operatorname{Supp} \lambda$, and therefore $\psi(\operatorname{Supp} \lambda)=\operatorname{Supp} \lambda$ because ψ is a homeomorphism. That proves

Theorem 8: If $A \in \mathfrak{L}(C(M))$ is a bijective isometry and if $\zeta \in p \sigma\left(A^{\prime}\right)$, then
$\zeta \neq 0$. Furthermore, the support of any $\lambda \in C(M)^{\prime} \backslash\{0\}$ satisfying (20), is ψ-invariant.

As a consequence, if $\operatorname{Supp} \lambda=\left\{x_{0}\right\}$, then x_{0} is fixed by ψ. In that case, $\zeta=f\left(x_{0}\right)$.
5. - Applying some of the results of n .4 to $T(t)$, for any $t>0$, we see that, if $K(T(t))$ is closed, the set

$$
K_{\infty}(T(t)):=\bigcap\{K(T(n t)): n \in \mathbf{N}\}
$$

is non-empty and $\widetilde{T(t)}$ is a contraction of $C\left(K_{\infty}(T(t)), \delta\right)$.
Lemma 13: If $(T(\tau) f)(x)=\zeta f(x)$ for some $\tau>0, x \in M$ and $\zeta \in \partial \Delta$, and for all $f \in C(M, \delta)$, then $x \in K(T(\tau)), \phi_{\tau}(x)=x$ and $C_{\tau, x}=\zeta I$.

Corollary 5: Let $K(T(\tau))$ be closed. If $x \in K_{\infty}(T)$ and $\tau>0$ are such that

$$
(\tilde{T}(\tau) g)(x)=g(x) \quad \forall g \in C\left(K_{\infty}(T), \mathcal{E}\right)
$$

and if, for every $t \in(0, \tau)$ there is some $k \in C\left(K_{\infty}(T), 8\right)$ for which

$$
(\tilde{T}(t) k)(x) \neq k(x),
$$

then $C_{\tau, x}=I$ and the semiflow ϕ is periodic with period τ at the point x.
So far, no hypothesis on the topological structure of the semigroups T and \widetilde{T} has been introduced.

Throughout this and the following sections, $K_{\infty}(T)$ will be assumed to be closed and non-empty.

For any $t \geqslant 0$ and any $x \in K_{\infty}(T)$,

$$
(T(t) f)(x)=C_{t, x}\left(f\left(\phi_{t}(x)\right)\right)=\left(\tilde{T} f_{\mid K_{\infty}(T)}\right)(x)
$$

for all $f \in C\left(K_{\infty}(T), 8\right)$.
Let the semigroup \widetilde{T} be strongly continuous.
Since, for any $\xi \in \delta$,

$$
C_{t, x}(\xi)=(\widetilde{T}(t) \underline{\xi})(x)
$$

the map $(t, x) \mapsto C_{t, x}$ of $\boldsymbol{R}_{+} \times K_{\infty}(T)$ into $\mathscr{L}(\mathcal{E})$ is continuous for the strong operator topology in $\mathscr{L}(\mathscr{E})$.

We will show now that $\phi: t \mapsto \phi_{t}$ is a continuous semiflow in $K_{\infty}(T)$, i.e., $(t, x) \mapsto \phi_{t}(x)$ is a continuous map of $\boldsymbol{R}_{+} \times K_{\infty}(T)$ into $K_{\infty}(T)$.

If that is not the case, there exist $t_{0} \geqslant 0, x_{0} \in K_{\infty}(T)$ and an open neighbourhood U
of $\phi_{t_{0}}\left(x_{0}\right)$ such that, for every $\delta>0$ and for every open neighbourhood V of x_{0} there are $t \in \boldsymbol{R}_{+} \cap\left(t_{0}-\delta, t_{0}+\delta\right)$ and $x \in V$ for which $\phi_{t}(x) \notin U$. In view of the compactness of $K_{\infty}(T)$, there are generalized sequences $\left\{t_{j}\right\}$ in \boldsymbol{R}_{+}and $\left\{x_{j}\right\}$ in $K_{\infty}(T)$ converging to t_{0} and to x_{0}, such that $\phi_{t_{j}}\left(x_{j}\right) \notin U$ and that $\left\{\phi_{t_{j}}\left(x_{j}\right)\right\}$ converges to some

$$
\begin{equation*}
y_{0} \in K_{\infty}(T) \backslash U . \tag{22}
\end{equation*}
$$

Hence, for any $f \in C\left(K_{\infty}(T), \delta\right)$,

$$
C_{t_{0}, x_{0}}\left(f\left(\phi_{t_{0}}\left(x_{0}\right)\right)=C_{t_{0}, x_{0}}\left(f\left(y_{0}\right)\right) .\right.
$$

The injectivity of $C_{t_{0}, x_{0}}$ implies then that $f\left(\phi_{t_{0}}\left(x_{0}\right)\right)=f\left(y_{0}\right)$ for all $f \in C\left(K_{\infty}(T), \delta\right)$, and therefore $\phi_{t_{0}}\left(x_{0}\right)=y_{0}$, contradicting (22) and proving thereby that the semiflow ϕ is continuous.

If $L: \boldsymbol{R}_{+} \rightarrow \mathfrak{L}\left(C\left(K_{\infty}(T), \mathcal{E}\right)\right)$ is the semigroup defined by the continuous semiflow $t \mapsto \phi_{t}$ on $K_{\infty}(T)$; i.e.

$$
\begin{equation*}
L(t) g=g \circ \phi_{t} \tag{23}
\end{equation*}
$$

for all $t \geqslant 0$ and all $g \in C\left(K_{\infty}(T), \delta\right)$, then

$$
\begin{equation*}
(\widetilde{T}(t) g)(x)=C_{t, x}((L(t) g)(x)) \quad \forall t \geqslant 0, g \in C\left(K_{\infty}(T), \delta\right), x \in K_{\infty}(T) \tag{24}
\end{equation*}
$$

The map $\tilde{T}(t)$ is a linear isometry if, and only if, ϕ_{t} is surjective. It is easily seen, [18], that the set of all $t>0$ for which $\widetilde{T}(t)$ is an isometry is either \boldsymbol{R}_{+}^{*} or the empty set.

If the semigroup T is strongly continuous, Corollary 5 may yield more information on the global behaviour of ϕ_{t} and $C_{t, x}$. As an example, assume now that M is the unit circle: $M=\partial \Delta$. According to Proposition 3 of [19], if the continuous semiflow ϕ has a periodic point with period $\tau>0$, then ϕ is periodic with period τ. Hence, the following theorem holds.

Theorem 9: Let the semigroup T be strongly continuous. If M is the unit circle and x and τ satisfy the bypotheses of Corollary 5, then ϕ is the restriction to \boldsymbol{R}_{+}of a continuous periodic flow, and T is the restriction to \boldsymbol{R}_{+}of a strongly continuous periodic group $\boldsymbol{R} \times C(\partial \Delta, \delta) \rightarrow C(\partial \Delta, \delta)$ of surjective linear isometries of $C(\partial \Delta, \delta)$.

For any $t \in \boldsymbol{R}$ and $g \in C(\partial \Delta, \delta), x \in \partial \Delta, T(t) g$ is expressed by

$$
(T(t) g)(x)=C_{t, x}\left(g\left(\phi_{t}(x)\right)\right),
$$

where, $C_{t, x}$ is invertible in $\mathscr{L}(C(M, \delta))$ for all $t \in \boldsymbol{R}$, and, if $t \leqslant 0, C_{t, x}$ is expressed by

$$
C_{t, x}=C_{-t, \phi_{t}(x)}{ }^{-1} .
$$

Going back to the general case of $C(M, \mathcal{E})$, since $K_{\infty}(T)$ is closed and non-empty, the contraction semigroup \widetilde{T} acting on the Banach space $C\left(K_{\infty}(T), \delta\right)$ is strongly con-
tinuous, its infinitesimal generator $\widetilde{X}: \mathscr{D}(\widetilde{X}) \subset C\left(K_{\infty}(T), \delta\right) \rightarrow C\left(K_{\infty}(T), \delta\right)$ is m-dissipative.

If the semigroup T is strongly continuous - in which case its infinitesimal generator $X: \mathcal{O}(X) \subset C(M, \mathcal{\delta}) \rightarrow C(M, \mathcal{\delta})$ is conservative and m-dissipative, [16] - also \widetilde{T} is strongly continuous.

The space $\widetilde{\mathfrak{G}}$ consisting of the restrictions to $K_{\infty}(T)$ of the elements of $\mathcal{D}(X)$ is contained in $\mathscr{O}(\widetilde{X})$. Hence, if Y is the linear operator with domain $\mathscr{D}(Y)=\widetilde{\mathfrak{G}}$ defined on the restriction to $K_{\infty}(T)$ of any $f \in \mathscr{O}(X)$ by

$$
\left(Y f_{\mid K_{\infty}(T)}\right)(x)=(X f)(x) \quad \forall x \in K_{\infty}(T),
$$

then $Y \subset \widetilde{X}$.
Because $T(t) \mathscr{D}(X) \subset \mathscr{O}(X)$, then

$$
\widetilde{T}(t) \mathscr{O}(Y) \subset \mathscr{O}(Y) .
$$

Since $\mathcal{D}(X)$ is dense in $C(M, \delta)$, if the space $C\left(M, \delta_{\mid K_{\infty}(T)}\right.$ of the restrictions to $K_{\infty}(T)$ of all $f \in C(M, \mathcal{\delta})$ is dense in $C\left(K_{\infty}(T), \mathscr{\delta}\right)$, then $\widetilde{\mathfrak{A}}$ is dense in $C\left(K_{\infty}(T), \delta\right)$. Thus $\widetilde{\mathfrak{d}}=$ $=\mathscr{O}(Y)$ is a core of \widetilde{X}, and the following lemma holds.

Lemma 14: If $C\left(M, \mathcal{E}_{\mid K_{\infty}(T)}\right.$ is dense in $C\left(K_{\infty}(T), 8\right)$, the operator \widetilde{X} is the closure of Y.

If \widetilde{T} is strongly continuous, also the semigroup L is strongly continuous. Denoting by $D: \mathscr{d}(D) \subset C\left(K_{\infty}(T), \delta\right) \rightarrow C\left(K_{\infty}(T), \delta\right)$, the infinitesimal generator of L, then, for any $\xi \in \mathcal{E}, \underline{\xi} \in \mathcal{O}(D)$ and $D \underline{\xi}=0$.

The space $C\left(K_{\infty}(T), \mathcal{E}\right)$ is a module over the ring $C\left(K_{\infty}(T)\right)$ of all complex-valued continuous functions on $K_{\infty}(T)$. The infinitesimal generator D_{0} of the Markov lattice semigroup L_{0} defined in $C\left(K_{\infty}(T)\right)$ by the semiflow ϕ is a derivation $D_{0}: \mathcal{D}\left(D_{0}\right) \subset C\left(K_{\infty}(T)\right) \rightarrow C\left(K_{\infty}(T)\right)$. If $\varphi \in \mathcal{O}\left(D_{0}\right)$ and $f \in \mathscr{O}(D)$, then $\varphi f \in \mathcal{O}(D)$ and

$$
D(\varphi f)=D_{0} \varphi \cdot f+\varphi \cdot D f
$$

Hence, if $\xi \in \delta$,

$$
D(\varphi \underline{\xi})=D_{0} \varphi \cdot \underline{\xi} .
$$

Since all non-trivial derivations in $C\left(K_{\infty}(T)\right)$ are unbounded $\left.{ }^{3}\right)$, and since D is closed, the following lemma holds.

Lemma 15: If $\mathscr{O}(D)=C\left(K_{\infty}(T)\right.$, \& $)$, then $D=0$.
${ }^{(3)}$ See [12], or also [17] for a direct proof.

For all $t>0$ and all $g \in C\left(K_{\infty}(T), \delta\right)$,

$$
\begin{aligned}
\frac{1}{t}(\widetilde{T}(t) g-g)(x)= & \frac{1}{t}\left(C_{t, x}-I\right)((L(t) g)(x)) \\
& +\frac{1}{t}((L(t)-I) g)(x)
\end{aligned}
$$

Hence, if $g \in \mathscr{O}(\widetilde{X}) \cap \mathscr{O}(D)$, the limit

$$
\lim _{t \downarrow 0} \frac{1}{t}\left(C_{t, x}-I\right)((L(t) g)(x))=\lim _{t \downarrow 0} \frac{1}{t}\left(C_{t, x}-I\right)(g(x))
$$

exists for all $x \in K_{\infty}(T)$, and

$$
\begin{equation*}
(\widetilde{X} g)(x)=\lim _{t \downarrow 0} \frac{1}{t}\left(C_{t, x}-I\right)(g(x))+(D g)(x) . \tag{25}
\end{equation*}
$$

In particular, letting

$$
\mathcal{X}=\{\xi \in \mathcal{E}: \underline{\xi} \in \mathscr{O}(\tilde{X})\},
$$

then

$$
\begin{align*}
(\widetilde{X} \underline{\xi})(x) & =\lim _{t \downarrow 0} \frac{1}{t}(\widetilde{T}(t) \underline{\xi}-\underline{\xi})(x) \tag{26}\\
& =\lim _{t \downarrow 0} \frac{1}{t}\left(C_{t, x}-I\right)(\xi)
\end{align*}
$$

for all $\xi \in \mathcal{K}$ and all $x \in K_{\infty}(T)$.
Since \widetilde{X} is closed and also the image $\underline{\mathcal{K}}$ of \mathcal{X} in $C\left(K_{\infty}(T), \mathcal{E}\right)$ by the map $\xi \underline{\xi}$ is a closed subspace of $\mathscr{D}(\widetilde{X})$, the operator $\bar{X}_{\underline{\mathscr{K}}}$ is closed. As a consequence:

Lemma 16: If \tilde{T} is strongly continuous, for every $x \in K_{\infty}(T)$ the linear operator

$$
Z_{x}: \mathscr{O}\left(Z_{x}\right)=\mathfrak{K} \subset \& \rightarrow \S
$$

defined by

$$
Z_{x} \xi=(\widetilde{X} \underline{\xi})(x)
$$

is closed $\left({ }^{4}\right)$.
${ }^{\left({ }^{4}\right)}$ Here is a direct proof. Let $\xi \in \mathscr{D}\left(Z_{x}\right)$ and let $\left\{\xi_{n}\right\}$ be a sequence in $\mathcal{O}\left(Z_{x}\right)$, converging to ξ and such that $\left\{Z_{x} \xi_{n}\right\}$ converges to some $\eta \in \delta$. Since the sequences $\left\{\underline{\xi_{n}}\right\}$ and $\left\{\underline{Z_{x} \xi_{n}}\right\}=$ $=\left\{\tilde{X} \underline{\xi_{n}}\right\}$ in $C(M, 8)$ converge respectively to $\underline{\xi}$ and to $\underline{\eta}$, then $\underline{\xi} \in \mathscr{D}(\tilde{X})$ and $\underline{\eta}=\tilde{X} \underline{\xi}$, i.e., $\xi \in \mathscr{O}\left(Z_{x}\right)$ and $\eta=Z_{x} \xi$.

Let $g \in \mathscr{D}(\widetilde{X}) \cap \mathscr{O}(D)$. Since $g(x) \in \mathcal{K}$, (25) yields

$$
\begin{equation*}
(\widetilde{X} g)(x)=Z_{x}(g(x))+(D g)(x) \tag{27}
\end{equation*}
$$

for all $x \in K_{\infty}(T)$.
If $\mathcal{K}=\mathcal{\delta}$, that is, if $\underline{\xi} \in \mathscr{O}(\tilde{X})$ for all $\xi \in \mathcal{\delta}$, then $g(x) \in \mathcal{D}(\widetilde{X})$, and the following lemma holds.

Lemma 17: If $\mathcal{X}=\mathcal{E}$, then $Z_{x} \in \mathscr{L}(\mathcal{E}), \mathscr{O}(D)=\mathscr{O}(\widetilde{X})$ and (27) holds for all $g \in \mathscr{O}(D)$ and all $x \in K_{\infty}(T)$.

Since the closed operator X is densely defined, conservative and m-dissipative, its spectrum $\sigma(X)$ is non-empty, [16] $\left(^{5}\right)$. Either $\sigma(X)$ is the closed left half-plane $\{\zeta \in C: \mathfrak{R} \zeta \leqslant 0\}$, or $\sigma(X)$ is contained in the imaginary axis: in which case T is the restriction to \boldsymbol{R}_{+}of a strongly continuous group of surjective linear isometries of $C(M, \mathcal{E})\left(\right.$ and $\left.K_{\infty}(T)=M\right)$.

If T is an eventually differentiable semigroup, according to a theorem of A. Pazy (see [11], Theorem 4.7, pp. 54-57), there are $a \in \boldsymbol{R}$ and $b \in \boldsymbol{R}_{+}^{*}$ such that the resolvent set of X contains the set

$$
\{\zeta \in C: \mathfrak{R} \zeta \geqslant a-b \log |\Im \zeta|\} .
$$

As a consequence, the first of the two possibilities listed above is ruled out, and $\sigma(X)$ turns out to be a compact subset of the imaginary axis. But then (see [5], Corollary 8.20), $X \in \mathfrak{L}(C(M, \mathcal{E})$). Hence $\mathscr{O}(X)=C(M, \mathcal{E})$, and (25) - which holds (with \widetilde{X} replaced by X) for all $g \in C(M, \mathcal{E})$ and at all $x \in M-$ yields: $\mathcal{O}(D)=C(M, \mathcal{E})$. Thus, by Lemma 15 the following proposition holds.

Proposition 5: If T is an eventually differentiable semigroup, there is a conservative operator $X \in \mathscr{L}(C(M, \mathcal{E}))$ such that T is the restriction to \boldsymbol{R}_{+}of the group $G: \boldsymbol{R} \rightarrow$ $\rightarrow \mathfrak{L}(C(M, \delta))$ of surjective linear isometries defined by

$$
(G(t) f)(x)=((\exp t X) f))(x)
$$

for all $f \in C(M, \delta), t \in \boldsymbol{R}$ and $x \in M$.

Remark: The same argument as before shows, more in general, that any strongly continuous, eventually differentiable semigroup of linear isometries of a complex Ba nach space \mathfrak{F} is the restriction to \boldsymbol{R}_{+}of a strongly continuous group of surjective linear isometries of \mathfrak{F}.
$\left.{ }^{(5}\right)$ We correct a misprint in [16], where the inclusion $r(X) \subset \Pi_{r}$ displayed at p .309 , shall be replaced by $r(X) \supset \Pi_{r}$.
6. Since, for $t \geqslant 0$ and $b>0$,

$$
C_{t+h, x}=C_{t, x} \circ C_{b, \phi_{t}(x)}
$$

then, for any $\xi \in \mathcal{X}$, (25) yields

$$
\begin{aligned}
\lim _{b \downarrow 0} \frac{1}{b}\left(C_{t+h, x}-C_{t, x}\right)(\xi) & =C_{t, x} \circ \lim _{b \downarrow 0} \frac{1}{b}\left(C_{b, \phi_{t}(x)}-I\right)(\xi) \\
& =C_{t, x}\left((\widetilde{X} \underline{\xi})\left(\phi_{t}(x)\right)\right)=C_{t, x}\left(Z_{\phi_{t}(x)}(\xi)\right)
\end{aligned}
$$

Hence, the map $t \mapsto C_{t, x}(\xi)$ of \boldsymbol{R}_{+}into \mathcal{E} is of class C^{1} on \boldsymbol{R}_{+}, and

$$
\begin{align*}
\frac{d}{d t} C_{t, x}(\xi) & =C_{t, x}\left(\tilde{X}(\underline{\xi})\left(\phi_{t}(x)\right)\right) \tag{28}\\
& =C_{t, x}\left(Z_{\phi_{t}(x)}(\xi)\right)
\end{align*}
$$

for all $x \in K_{\infty}(T)$ and all $\xi \in \mathcal{X}$.
For $t \geqslant 0$, let

$$
A(t): \mathscr{O}(A(t)) \subset \mathfrak{L}\left(C\left(K_{\infty}(T), \mathcal{E}\right), \mathcal{E}\right) \rightarrow \mathfrak{L}\left(C\left(K_{\infty}(T), \delta\right), \delta\right)
$$

be the linear operator defined on

$$
\mathcal{O}(A(t))=\mathfrak{L}(\widetilde{X}(\underline{\mathcal{K}}), \mathcal{E})
$$

by

$$
(A(t) R)(\xi)=R(\widetilde{X}(\underline{\xi})),
$$

i.e.

$$
\begin{aligned}
((A(t) R)(\xi))_{x} & =(R(\widetilde{X}(\underline{\xi})))_{x} \\
& =R_{x}\left(Z_{\phi_{t}(x)}(\xi)\right),
\end{aligned}
$$

where $R \in \mathscr{L}(\widetilde{X}(\mathcal{K}), \mathcal{E})$).
Let $C_{t} \in C(\bar{M}, \mathcal{L}(\delta))$ be defined by

$$
C_{t}: x \mapsto C_{t, x} .
$$

Then (28) yields the initial value problem

$$
\left\{\begin{aligned}
\frac{d}{d t} C_{t} & =A(t) C_{t} \\
C_{0} & =I,
\end{aligned}\right.
$$

i.e.,

$$
\left\{\begin{array}{l}
\left(\frac{d}{d t} C_{t}\right)_{x}=C_{t, x}\left(Z_{\phi_{t}(x)}(\xi)\right) \\
C_{0, x}=I
\end{array}\right.
$$

for all $t \in \boldsymbol{R}_{+}, x \in K_{\infty}(T), \xi \in \mathcal{K}$.
As before, let \mathcal{E} be strictly convex and let $T: \boldsymbol{R} \rightarrow \mathfrak{L}(C(M), \mathcal{E})$ be a strongly continuous group of linear isometries of $C(M, 8)$. Then $K_{\infty}(T)=M$, and T is expressed by

$$
(T(t) f)(x)=C_{t, x}\left(f\left(\phi_{t}(x)\right)\right)
$$

for all $f \in C(M, \mathcal{E}), x \in M, t \in \boldsymbol{R}$, where $\phi: t \mapsto \phi_{t}$ is a continuous flow on M, and $C_{t, x} \in \mathscr{L}(\mathcal{E})$ is a surjective isometry such that

$$
C_{t+s, x}=C_{t, x} \circ C_{s, \phi_{t}(x)} \quad \forall t, s \in \boldsymbol{R}, x \in M .
$$

Suppose now that M is a compact differentiable (i.e. C^{∞}) manifold, and that the flow ϕ is determined by a C^{∞} vector field v on M. For any $f \in C^{1}(M, \delta)$ we define $v(f) \in C(M, 8)$ componentwise; that is to say, setting for $x \in M$ and $\lambda \in \mathcal{E}^{\prime}$,

$$
\langle(v(f))(x), \lambda\rangle=(v(\langle f(\cdot), \lambda\rangle))(x) .
$$

Clearly

$$
f \in C^{\infty}(M, \delta) \Rightarrow v(f) \in C^{\infty}(M, \delta) .
$$

If $L: \boldsymbol{R} \rightarrow \mathscr{L}(C(M, \delta))$ is the group defined by (23) for all $t \in \boldsymbol{R}$ and all $g \in C(M, \delta)$, and if D is its infinitesimal generator, then

$$
C^{\infty}(M, \mathcal{E}) \subset \mathscr{O}(D)
$$

and

$$
D(f)=v(f) \quad \forall f \in C^{\infty}(M, \delta) .
$$

Lemma 18: If the map $x \mapsto C_{t, x}$ of M into $\mathcal{L}(\mathcal{8})$ is of class C^{∞} for all $t \in \boldsymbol{R}$, tha map $t \mapsto C_{t, x}$ is of class C^{∞} on \boldsymbol{R} for all $x \in M$.

Proof: For $t_{0} \in \boldsymbol{R}$ and $r>0$, let $\varrho: \boldsymbol{R} \rightarrow[0,1]$ be a C^{∞} function for which

$$
\begin{array}{ll}
\varrho(t)=1 & \text { if }\left|t-t_{0}\right| \leqslant r \\
0<\varrho(t)<1 & \text { if } r<\left|t-t_{0}\right|<2 r \\
\varrho(t)=0 & \text { if }\left|t-t_{0}\right| \geqslant 2 r .
\end{array}
$$

Then

$$
\int_{-\infty}^{+\infty} \varrho(s) C_{t+s, x} d s=C_{t, x}\left(\int_{-\infty}^{+\infty} \varrho(s) C_{s, \phi_{t}(x)} d s\right)
$$

i.e.,

$$
\int_{-\infty}^{+\infty} \varrho(s-t) C_{s, x} d s=C_{t, x}\left(\int_{-\infty}^{+\infty} \varrho(s) C_{s, \phi_{t}(x)} d s\right)
$$

A neighbourhood U of t_{0} in \boldsymbol{R} and $r>0$ can be so chosen that

$$
\int_{-\infty}^{+\infty} \varrho(s) C_{s, \phi_{t}(x)} d s \neq 0
$$

whenever $t \in U$.
Differentiation with respect to $t \in U$ shows that the function $t \mapsto C_{t, x}$ is of class C^{1} on U for all $x \in M$, and

$$
\begin{aligned}
-\int_{-\infty}^{+\infty}\left(\frac{d \varrho}{d t}\right)(s-t) C_{s, x} d s & =\frac{\partial}{\partial t} C_{t, x}\left(\int_{-\infty}^{+\infty} \varrho(s) C_{s, \phi_{t}(x)} d s\right)+ \\
& +C_{t, x}\left(\int_{-\infty}^{+\infty} \varrho(s) v\left(C_{s, \phi_{t}(x)}\right) d s\right)
\end{aligned}
$$

Iteration of this computation completes the proof of the lemma.
Thus, $Z_{x} \in \mathscr{L}(\mathcal{E})$ for all $x \in M$, and

$$
\begin{equation*}
Z_{x}=\frac{d}{d t} C_{t, x} \tag{29}
\end{equation*}
$$

By the same argument leading to Theorem 4 of [17] one proves then
Theorem 10: If the strongly continuous group $T: \boldsymbol{R} \rightarrow \mathfrak{L}(C(M, 8)$ of linear isometries is such that

$$
T(t) C^{\infty}(M, \delta) \subset C^{\infty}(M, \delta) \quad \forall t \in \boldsymbol{R}
$$

then: $\mathscr{O}(D)=\mathscr{O}(X) ;(27)$ holds for all $g \in \mathcal{O}(X)$ and all $x \in M$, where Z_{x} is expressed by (29), and $C^{\infty}(M, 8)$ is a core for X.
7. If $\operatorname{dim} \mathcal{E}<\infty$ and $\operatorname{dim} \mathscr{F}<\infty$, the sets $K(A)$ and $K(T(t))$ for all $t \geqslant 0$ are closed, $K_{\infty}(T)$ is closed and non-empty, the linear isometries $C_{A, x}$ and $C_{t, x}$ are invertible for all $t \geqslant 0$.

If the semigroup T (or the semigroup \widetilde{T}) is strongly continuous, the isometries $C_{t, x}$ are continuous functions of $(t, x) \in \boldsymbol{R}_{+} \times M$ (or of $(t, x) \in \boldsymbol{R}_{+} \times K_{\infty}(T)$ respectively).

In the case in which $\mathcal{E}=\mathscr{F}=\boldsymbol{C}$, [9], C_{y} is represented by a continuous function $\alpha: M \rightarrow \partial \Delta$; (4) and Theorem 2 yield

$$
\begin{gathered}
\Theta(C(M))=\{b \in C(M):|b(x)|=1 \quad \forall x \in M\}, \\
\Theta\left(C(M)^{\prime}\right)=\left\{c \delta_{x}: c \in \partial \Delta, x \in M\right\} .
\end{gathered}
$$

Lemma 19: [15] If $\lambda \in C(M)^{\prime}$, then $\lambda \in \Theta\left(C(M)^{\prime}\right)$ if, and only if,

$$
|\langle h, \lambda\rangle|=1
$$

for all $h \in \Theta(C(M))$.

Theorem 4 generalizes the second part of the following
Theorem 11: [15] If either

$$
\begin{equation*}
A(\Theta(C(M))) \subset \Theta(C(N)) \tag{30}
\end{equation*}
$$

or

$$
\begin{equation*}
A^{\prime}\left(\Theta\left(C(N)^{\prime}\right)\right) \subset \Theta\left(C(M)^{\prime}\right) \tag{31}
\end{equation*}
$$

then $K(A)=N$, i.e,

$$
\begin{equation*}
(A f)(y)=\alpha(y) \cdot(f \circ \psi(y)) \quad \forall y \in K(A), \quad f \in C(M) . \tag{32}
\end{equation*}
$$

Proof: The theorem is equivalent to the following chain of implications:

$$
(30) \Rightarrow(31) \Rightarrow(32) \Rightarrow(30)
$$

If (31) holds, for every $y \in N$ there are a unique $x \in M$ and a unique $c \in \partial \Delta$ for which

$$
A^{\prime} \delta_{y}=c \delta_{x}
$$

i.e.,

$$
(A f)(y)=c f(x)
$$

for all $f \in C(M)$. Setting $c=\alpha(y)$ and $x=\psi(y)$, (32) follows.
If (30) holds, then, for every $y \in N$ and all $b \in \Theta(M)$,

$$
1=|(A b)(y)|=\left|\left\langle A h, \delta_{y}\right\rangle\right|=\left|\left\langle h, A^{\prime} \delta_{y}\right\rangle\right|
$$

and therefore, by Lemma 19, (31) holds.

Viceversa, if (32) is satisfied, with $\alpha \in \Theta(N)$ and ψ a continuous surjective map of N onto M, then (30) holds.

By the Tietze extension theorem, Lemma 14 yields
Proposition 6: If $\operatorname{dim}_{C} \delta<\infty$, the operator \widetilde{X} is the closure of Y.
We consider now the strongly continuous semigroup $T: \boldsymbol{R}_{+} \rightarrow \mathfrak{L}(C(M))$ of linear isometries of $C(M)$, and the strongly continuous semigroup $\widetilde{T}: \boldsymbol{R}_{+} \rightarrow \mathfrak{L}\left(C\left(K_{\infty}(T)\right)\right)$ expressed on any $g \in C\left(K_{\infty}(T)\right)$ by

$$
(\widetilde{T}(t) g)(x)=\alpha_{t}(x) g\left(\phi_{t}(x)\right),
$$

where $\alpha_{t} \in \Theta\left(C\left(K_{\infty}(T)\right)\right)$ is a continuous function of t, and $\phi: t \mapsto \phi_{t}$ is a continuous semiflow on $K_{\infty}(T)$.

The existence of fixed points of the semiflow ϕ yields some information on the point spectrum $p \sigma(X)$ and the residual spectrum $r \sigma(X)$ of X, as will be illustrated now in the case $\mathcal{E}=\boldsymbol{C}$.

If $x_{0} \in K_{\infty}(T)$ is fixed by ϕ, i.e.,

$$
\phi_{t}\left(x_{0}\right)=x_{0} \quad \forall t \geqslant 0,
$$

then

$$
\begin{equation*}
(T(t) f)\left(x_{0}\right)=\alpha_{t}\left(x_{0}\right) f\left(\phi_{t}\left(x_{0}\right)\right)=\alpha_{t}\left(x_{0}\right) f\left(x_{0}\right) \tag{33}
\end{equation*}
$$

for all $f \in C(M)$, and

$$
\alpha_{t+s}\left(x_{0}\right)=\alpha_{t}\left(x_{0}\right) \alpha_{s}\left(\phi_{t}\left(x_{0}\right)\right)=\alpha_{t}\left(x_{0}\right) \alpha_{s}\left(x_{0}\right)
$$

for all $t, s \geqslant 0$.
Letting

$$
\alpha_{-t}\left(x_{0}\right)=\frac{1}{\alpha_{t}\left(x_{0}\right)}=\overline{\alpha_{t}\left(x_{0}\right)},
$$

we extend the map $\boldsymbol{R}_{+} \ni t \mapsto \alpha_{t}\left(x_{0}\right)$ to a continuous homomorphism of \boldsymbol{R} into the multiplicative group $\partial \Delta$. Hence there is $a \in \boldsymbol{R}$ such that

$$
\begin{equation*}
\alpha_{t}\left(x_{0}\right)=\mathrm{e}^{i a t} \tag{34}
\end{equation*}
$$

for all $t \in \boldsymbol{R}$, and therefore (33) becomes

$$
(T(t) f)\left(x_{0}\right)=\mathrm{e}^{i a t} f\left(x_{0}\right) \quad \forall t \in \boldsymbol{R}_{+},
$$

i.e.,

$$
\left\langle\left(T(t)-\mathrm{e}^{i a t} I, \delta_{x_{0}}\right\rangle=0 \quad \forall t \in \boldsymbol{R}_{+} .\right.
$$

For any $f \in \mathcal{O}(X)$,

$$
\begin{aligned}
(X f)\left(x_{0}\right) & =\left\langle X f, \delta_{x_{0}}\right\rangle=\lim _{t \downarrow 0}\left\langle\frac{1}{t}(T(t)-I) f, \delta_{x_{0}}\right\rangle \\
& =\lim _{t \downarrow 0} \frac{1}{t}\left(\alpha_{t}\left(x_{0}\right) f\left(\phi_{t}\left(x_{0}\right)-f\left(x_{0}\right)\right)=\lim _{t \downarrow 0} \frac{1}{t}\left(\alpha_{t}\left(x_{0}\right)-1\right) f\left(x_{0}\right)\right. \\
& =\lim _{t \downarrow 0} \frac{1}{t}\left(\mathrm{e}^{i a t}-1\right) f\left(x_{0}\right)=\operatorname{iaf}\left(x_{0}\right)=\left\langle(X-i a I) f, \delta_{x_{0}}\right\rangle .
\end{aligned}
$$

Hence, $i a \in p \sigma(X) \cup r \sigma(X)$.
In conclusion, the following theorem holds.
Theorem 12: If $x_{0} \in K_{\infty}(T)$ is fixed by the semiflow ϕ, there is $a \in \boldsymbol{R}$ such that $i a \in p \sigma(X) \cup r \sigma(X)$, and (34) holds for all $t \in \boldsymbol{R}_{+}$.

If $i a$ is an isolated point of $\sigma(X)$, then ([14], p. 178) $i a \in p \sigma(X)$.

REFERENCES

[1] W. Arendt, Characterization of positive semigroups on $C_{0}(X)$, in R. Nagel (ed), One parameter Semigroups of Positive Operators, Lecture Notes in Mathematics, n. 1184, Springer-Verlag, Berlin/Heidelberg/New york/Tokyo, 1980, 122-162.
[2] S. Banach, Théorie des opérations linéaires, in «Monografje Matematyczne», PWN, Warsaw, 1932; Dover, New York, 1955.
[3] E. Behrends, M-Structure and the Banach-Stone-Theorem, Springer-Verlag, Berlin/Heidelberg/New York, 1979.
[4] M. Cambern, A Holsztyński theorem for spaces of continuous vector-valued functions, Studia Math., 63 (1978), 213-217.
[5] E. B. Davies, One parameter semigroups, Academic Press, London, 1980.
[6] N. Dunford - J. P. Schwartz, Linear Operators, I, Interscience, New York, 1958.
[7] K. Hoffman, Banach Spaces of Analytic Functions, Prentice-Hall, Englewood Cliffs, 1962.
[8] E. Hille - R. S. Phillips, Functional Analysis and Semigroups, Amer. Math. Soc. Coll. Publ., Vol. 31, Providence R.I., 1957.
[9] W. Holsztynski, Continuous mappings induced by isometries of spaces of continuous functions, Studia Math., 26 (1966), 133-136.
[10] M. Jerison, The space of bounded maps into a Banach space, Ann. of Math., 52 (1950), 309-327.
[11] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York/Berlin/Heidelberg/Tokyo, 1983.
[12] S. Sakai, C^{*}-algebras and W^{*}-algebras, Springer-Verlag, New York/Heidelberg/Berlin, 1971.
[13] M. H. Stone, Applications of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc., 41 (1937), 375-481.
[14] J. van Neerven, The Asymptotic Behaviour of Semigroups of Linear Operators, Birkhäuser, Verlag, Basel/Boston/Berlin, 1996.
[15] E. Vesentini, On the Banach-Stone theorem, Advances in Math., 112 (1995), 135-146.
[16] E. Vesentini, Conservative operators, in: P. Marcellini, G. Talenti, E. Vesentini (ed), Partial differential equations and applications, Marcel Dekker, New York/Basel/Hong Kong, 1996, 303-311.
[17] E. Vesentini, Semiflows and semigroups, Rend. Mat. Acc. Lincei, (9) 7 (1996), 75-82.
[18] E. Vesentini, Periodicity and Almost Periodicity in Markov Lattice Semigroups, Ann. Sc. Norm. Sup. Pisa, (4) 25 (1997), 829-839.
[19] E. Vesentini, Periodic points and non-wandering points of continuous dynamical systems, Advances in Math., 134 (1998), 308-327.

[^0]: ${ }^{(*)}$ Indirizzo dell'Autore: Politecnico di Torino, Dipartimento di Matematica, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
 (**) Memoria presentata il 30 marzo 2000 da Edoardo Vesentini, uno dei XL.

