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SUMMARY. — Let M be a compact Hausdorff space and let C(M) be the Banach space of all
complex-valued continuous functions on M . The classical Banach-Stone theorem, which asso-
ciates to any surjectice linear isometry A : C(M) KC(M) a homeomorphism of M , was general-
ized by W. Holsztyński to the case in which the linear isometry A is not necessarily surjective.
Holsztyński’s result — which was further extended by M. Cambern to Banach spaces of contin-
uous vector-valued functions on M — associates to A a subset K(A) of M and a continuous sur-
jective map c : K(A) KM . In this paper, a maximal c-invariant subset of M is constructed in
terms of the iterates of A . Actually, the construction of the invariant subset is carried out re-
placing the discrete subgroup of the iterates of A by a strongly continous semigroup of linear
isometries.

Isometrie lineari di funzioni a valori vettoriali

SUNTO. — Sia M uno spazio compatto di Hausdorff, e sia C(M) lo spazio di Banach delle
funzioni continue a valori complessi su M . Il classico teorema di Banach-Stone, che associa ad
ogni isometria lineare A : C(M) KC(M) un omeomorfismo di M , è stato generalizzato da W .
Holsztyński al caso in cui l’isometria lineare A non è necessariamente surgettiva. Il risultato di
Holsztyński — esteso da M. Cambern a spazi di Banach di funzioni a valori vettoriali, continue
su M — associa a A un sottoinsieme K(A) di M ed una applicazione continua c di K(A) su M .
In questo lavoro, si costruisce un sottoinsieme c-invariante massimale di M definito mediante
le iterate di A . Di fatto, il sottoinsieme invariante viene costruito sostituendo al semigruppo di-
screto delle iterate di A un sottogruppo fortemente continuo di isometrie lineari.

In one of the final chapters of [2], S. Banach made the important observation that
two compact metric spaces M and N are homeomorphic if, and only if, the uniform
spaces of all continuous, real-valued functions on M and N are isometric. As a bypro-
duct of his proof, if A is such an isometry, there are a homeomorphism c of N onto M
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ca degli Abruzzi 24, 10129 Torino, Italy.
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and a continuous function a , with modulus one at all points of N , such that

(Af )(y) 4a(y)( f (c(y) ) )(1)

at all y�N and for any real-valued, continuous function f on M . This ground-breaking
result was the starting point of a research field which is quite alive today. In [13]
M. Stone extended Banach’s theorem to continuous, complex-valued functions on
compact (not necessarily metric) Hausdorff spaces and set the stage, within the frame-
work of Boolean algebras, of what would later be called the Banach-Stone problem
(see [3] also for exhaustive historical references until 1979), involving continuous vec-
tor-valued functions.

In [9], W. Holsztyński considered the case in which the linear isometry A is not
surjective (1), and proved that (1) still holds, but gives only a partial description of A
in the sense that c is then a continuous map of a closed subset K(A) of N onto M and
y�K(A). As was shown in [15], the case K(A) 4N can be characterized in terms of
the behaviour of A on the extreme points of the closed unit ball of the space of all con-
tinuous, complex-valued functions on M .

In [4] M. Cambern proved that Holsztyński’s result extends mutatis mutandis to
Banach spaces of continuous vector-valued functions from M to a complex Banach
space E and from N to a strictly convex complex Banach space F.

In the case in which M4N the question arises, for both Holsztyński’s and Cam-
bern’s theorems, whether there exists a subset K(A) %M that is invariant under the ac-
tion of A and on which the action of A is therefore completely described by (1) or by a
generalization thereof. In this paper, a maximal invariant set will be constructed in
terms of the iterates of A . However, instead of considering these iterates, a more gen-
eral situation will be investigated, replacing A by a strongly continuous semigroup of
linear isometries.

After a first section devoted to the set of all extreme points of the closed unit ball
of the Banach space of all continuous maps from M to E, and of the closed unit ball of
the dual space, n. 2 investigates the set K(A) %N , establishing a necessary and suffi-
cient condition for K(A) to coincide with N , and a sufficient condition for K(A) to be
closed, retrieving, as a consequence, a result of M. Cambern whereby K(A) is closed
when E has finite dimension.

In n. 3, A is replaced — under the hypotheses M4N and E 4 F — by a semigroup
T of linear isometries, which, in particular, may coincide with the family of all iterates
of A . Under rather weak hypotheses on T (that are fulfilled when E has finite dimen-
sion), a maximal «invariant» set KQ (T) %M will be shown to exist, on which the ac-
tion of T is determined by a semiflow f acting on KQ (T) and by an operator-valued
cocycle associated to f . If KQ (T) is closed and the semigroup T is assumed to be
strongly continuous — as will be done in nn. 5 and 6 — the semiflow f is continuous,

(1) According to the Mazur-Ulam theorem ([2], pp. 166-168) surjective isometries are li-
near over the reals. The case of non-linear isometries was briefly investigated in [15].
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and the infinitesimal generator of the semigroup defined by T in KQ (T) is a bounded
perturbation of the infinitesimal generator of the semigroup determined by f .

Finally, in n. 7 the particular case of scalar-valued continuous functions will be
considered, extending to semigroups of general linear isometries some results estab-
lished in [17] under additional conditions.

1. Let E be a complex Banach space with norm V VE . If M is a compact Hausdorff
space, C(M , E) will stand for the complex Banach space of all continuous functions
f : MK E, with the uniform norm V f VC(M , E)4 sup ]V f (x)VE : x�M(. For any complex
Banach space E, E8 will stand for the strong dual of E; BE , BE8 , BE, BE8 will indicate re-
spectively the unit ball of E, the unit ball of E8 and their closures.

PROPOSITION 1: Let A c ]0( be a closed linear subspace of C(M , E). If f� A,

V f VC(M , E)4 sup ]Na f , LbN : L extreme point of BA8( .

PROOF: Obviously,

V f VC(M , E)F sup ]Na f , LbN : L extreme point of BA8( .(2)

Let now V f VC(M , E)41.
Since M is compact, there is some x0�M such that 1 4V f VC(M , E)4V f (x0 )VE .
For any l�¯BE8 , with VlVE841, the continuous linear form on A

d x0
7l : f O a f (x0 ), lb

has norm one, showing that the closed set

S»4 ]L� BA8: a f , Lb 41( % A8

is not empty. Since, for L 1 , L 2�S and 0 E tE1,

a f , tL 11 (12 t) L 2 b 4 t112 t41 ,

S is also convex, and therefore is compact for the weak-star topology of A8 . By the
Kreǐn-Milman theorem, S has one extreme point at least.

Let L 0 be one of these extreme points, and let L 1 , L 2� BA8, 0 E tE1 be such
that

L 04 tL 11 (12 t) L 2 .

Since L 0�S ,

ta f , L 1 b1 (12 t)a f , L 2 b 41 ,(3)
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whence

1 G tNa f , L 1 bN1 (12 t)Na f , L 2 bN

G tV f VQ VL 1 VA81 (12 t)V f VQ VL 2 VA8

G t1 (12 t) 41 ,

and therefore

Na f , L 1 bN4Na f , L 2 bN41 ;

(3) yields then

a f , L 1 b 4 a f , L 2 b 41 ,

i.e. L 1 , L 2�S .
Hence

1 4V f VC(M , E)4 a f , L 0 b ,

and this fact, together with (2) completes the proof of the proposition (2) r

LEMMA 1: Let the closed linear subspace A of C(M , E) be such that, for every x�M
and every open neighbourhood U of x in M there is g� A 0]0( with Supp g%U . If f� A

is a complex extreme point of BA, then V f (x)VE 41 for all x�M .

PROOF: If V f (x0 )VE E1 for some x0�M , there exist an open neighbourhood
U of x0 and some eD0 for which

V f (x)VE E12e ( x�U .

Let g� A 0]0( be such that Supp g%U and VgVC(M , E)Ge . Given any z�D4

4 ]t�C : NtNE1(,

V f (x)1zg(x)VE GV f (x)VE 1NzNVg(x)VE

GV f (x)VE 1Vg(x)VE

E12e1e41

if x�U , and

V f (x)1zg(x)VE 4V f (x)VE

if x�M0U . Thus,

V f1zgVC(M , E)G1

(2) The proof follows the ideas in [7], pp. 145-146.
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for all z�D , contradicting the hypothesis whereby f is a complex extreme point
of BA. r

Lemma 1 and the following lemma characterize all extreme points of BC(M , E),
where E is strictly convex.

LEMMA 2: Let E be strictly convex. If, and only if,

V f (x)VE 41 ( x�M ,

f�C(M , E) is an extreme point of BC(M , E).

PROOF: Let g�C(M , E) and let t� (0 , 1 )0]0( be such that

V f1 tgVC(M , E)G1 .

Then

V f (x)1 tg(x)VE G1 ( x�M .

Since f (x) �¯BE is an extreme point of BE, then g(x) 40 for all x�M . r

Let

U(A) 4 ] g� BA: g extreme point of BA( .

Lemma 1 and Lemma 2 yield

THEOREM 1: If E is strictly convex and A c ]0( is a closed linear subspace of
C(M , E) such that, for every x�M and every open neighbourhood of x in M there is
g� A 0]0( with Supp g%U , then

U(A) 4 ] g� A : Vg(x)VE 41 ( x�M( .

In particular, if E is strictly convex, then

U(C(M , E) ) 4 ] f�C(M , E) : V f (x)VE 41 ( x�M( .(4)

We will now describe U(C(M , E)8 ).
Let

C»4 ]d x7l : x�M , l� BE8( % BC(M , E)8 .

LEMMA 3: The set C is weak-star closed in C(M , E)8 .

PROOF: If V is contained in the weak-star closure of C , there is a generalized se-
quence ]d xj

7l j(, with xj�M and l j� BE8, converging to V , i.e., such that

a f , Vb 4 lim a f (xj ), l j b ( f�C(M , E) .(5)

Up to replacing this generalized sequence by a generalized subsequence, there is
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no restriction in assuming that ]xj( converges to a point x0�M , and that ]l j( con-
verges to l 0� BE8 for the weak-star topology. Hence, (5) yields

a f , Vb 4 a f (x0 ), l 0 b ( f�C(M , E) . r

LEMMA 4: If V�C(M , E)8 is an extreme point of BC(M , E)8, there exist x0�M and l 0

extreme point of BE8 such that V4d x0
7l 0 .

PROOF: The closure co (C) of the convex hull co (C) of C coincides with the closed
convex hull co(C), which is closed in BE8.

If V� co (C), there exist, ([6], p. 417), f�C(M , E), c�R and eD0 such that

Da f , Vb Fc

and

Da f , Lb Gc2e ( L�C ,

i.e.,

Da f (x), lb Gc2e ( x�M , l� BE8 .

Since

V f (x)VE 4 sup ]Na f (x), lbN : l� BE8( ,

then

V f (x)VE Gc2e ( x�M ,

and therefore

V f VC(M , E)Gc2e .

If VVVG1, then

cGDa f , Vb GNa f , VbN

GV f VC(M , E) VVVGV f VC(M , E)Gc2e .

This contradiction shows that

V� co (C) ¨ V� BC(M , E)8 ,

i.e.,

BC(M , E)8 % co (C) % BC(M , E)8 ,

and therefore

co (C) 4 BC(M , E)8 .
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Since the extreme points of co (C) are contained in C (see, e.g., [6], pp. 440-441),
there are x0�M and l 0� BE8 such that V4d x0

7l 0 .
If l 0 is not an extreme point of BE8, there are l 1 , l 2� BE8 and t� (0 , 1 ) such that

l 04 tl 11 (12 t)l 2 , and therefore

V4d x0
7l 04 td x0

7l 11 (12 t)d x0
7l 2 . r

In conclusion, the following theorem holds

THEOREM 2: A linear form L�C(M , E)8 is an extreme point of BC(M , E)8 if, and only
if, there exist x�M and an extreme point l of BE8 such that L4d x7l .

2. Let M and N be compact Hausdorff spaces and let E and F be complex Banach
spaces, with F strictly convex. In [4], M. Cambern has characterized all linear isome-
tries of C(M , E) into C(N , F ), proving the following theorem, which extends previous
results established by W. Holsztyński in [9] for the case E 4 F 4C.

THEOREM 3: Let A� L(C(M , E), C(N , F ) ) be a linear isometry. If F is strictly con-
vex, there exist:

a set K(A) %N ;

a continuous, surjective map c : K(A) KM ;

a map N�y O Cy� L(E, F ), which is continuous for the strong operator topology
in L(E, F ), such that

(Af )(y) 4Cy ( f i c(y) )(6)

for all y�K(A) and all f�C(M , E).

The set K(A) and the map c are described as follows.
For x�M , j�¯B(M , E), let

F(j , x) 4 ] f�C(M , E) : f (x) 4V f VC(M , E) j( ,

KA (j , x) 4 ]y�N : V(Af )(y)VF 4V f VC(M , E) (f�F(j , x)( ,

KA (x) 40 ]K(j , x) : j�¯B(M , E)( ,

K(A) 40 ]KA (x) : x�M( .

In [4], Cambern shows that KA (j , x) c¯ for all x�M , and

x1cx2 ¨ KA (x1 )OKA (x2 ) 4¯ .

Hence, for every y�K(A) there is a unique x�M such that y�KA (x). The map
c : K(A) KM is defined by setting x4c(y).
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Any j� E defines a function j �C(M , E) as follows:

j(x) 4j ( x�M .

For y�N , the operator Cy� L(E, F ) is given by

Cy (j) 4A(j) .

Since, for any y�N ,

VCy jVF 4V(Aj)(y)VF GVAV VjVC(M , E)

4VjVC(M , E)4VjVE ,

then

VCy VG1 ( y�N .

Being j �F(j , x) for all x�M , then

VCy jVF 4VjVE ( j� E , ( y�K(A) .

Since y O Cy j is continuous for all j� E, that proves

LEMMA 5: For any y� K(A), Cy is a linear isometry of E into F.

In [4] M. Cambern shows that, if y�KA (x), then

(Af )(y) 4Cy ( f (x) ) (f�C(M , E) .

By the construction of c , that yields (6).

PROPOSITION 2: If the map C : y O Cy of N into L(E, F ) is continuous for the uni-
form operator topology of L(E, F ), the set K(A) is closed.

PROOF: Let y0� K(A).
For any f� BC(M , E) and for n41, 2 , R there is some yn�K(A) such that

V(Af )(y0 )2 (Af )(yn )VF E
1

n
,

i.e.,

V(Af )(y0 )2Cyn
( f (c(yn ) ) )VF E

1

n
,

and moreover

VCy0
2Cyn

VE
1

n
.
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Suppose that the set ]c(yn )( is infinite. Because M is compact, the set ]c(yn )( has
at least one cluster point x0 . For any eD0 there is an open neighbourhood U of x0 in
M such that

V f (x)2 f (x0 )VE Ee ( x�U .

Let n0D0 be so large that 1

n0

Ee , and let nDn0 be such that xn�U . Then

V(Af )(y0 )2Cy0
( f (x0 ) )VF GV(Af )(y0 )2Cyn

( f (xn ) )VF 1

1V(Cyn
2Cy0

)( f (xn ) )VF 1

1VCy0
( f (xn )2 f (x0 ) )VF

GV(Af )(y0 )2Cyn
( f (xn ) )VF 1

1VCyn
2Cy0

V V f (xn )VE 1

1VCy0
V V f (xn )2 f (x0 )VE

E
1

n
1

1

n
1eE3e .

Since eD0 is arbitrary, that shows that

(Af )(y0 ) 4Cy0
( f (x0 ) ) .

Obviously, the same conclusion holds when the set ]c(yn )( is finite; in which case
x0� ]c(yn )( can be chosen such that c(ynj

) 4x0 for n1En2ER .
Let now u0 be another cluster point of the set ]c(yn )( when this latter set is infi-

nite, or such that c(ymj
) 4u0 for m1Em2ER . By the same argument as before, one

shows that

(Af )(y0 ) 4Cy0
( f (u0 ) ) .

Hence,

Cy0
( f (x0 )2 f (u0 ) ) 40 ,

and therefore

f (x0 ) 4 f (u0 ) ( f�C(M , E)

because Cy0
is injective. If x0cu0 , given any two vectors j 1 and j 2 in E, there is a func-

tion f�C(M , E) such that

f (x0 ) 4j 1 , f (u0 ) 4j 2 .

Thus x04u0 , and y0�cA (x0 ). r
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In view of the definition of Cy , the hypothesis of Proposition 2 can be rephrased
by requiring that the restriction of A to the closed subspace of C(M , E) consisting of
all E-valued constant functions on M be continuous for the uniform operator
topology.

COROLLARY 1: [4] If dim E EQ , K(A) is closed in N .

LEMMA 6: Let F be strictly convex and E reflexive. If y�N and there is m�¯BF8 such
that

A 8 (d y7m) 4d x7l

for some x�M and l�¯BE8 , then y�K(A).

PROOF: Since E is reflexive, there exists j� E such that aj , lb 41. If f�C(M , E) is
such that f (x) 4V f VC(M , E) j , then

a(Af )(y), mb 4 aAf , d y7mb 4 a f , A 8 (d y7m)b

4 a f , d x7lb 4 a f (x), lb

4V f VC(M , E) aj , lb 4V f VC(M , E) .

Since

V f VC(M , E)4 a(Af )(y), mb GV(Af )(y)VF VmVF8

4V(Af )(y)VF GVAf VC(M , E)4V f VC(M , E) ,

then

V(Af )(y)VF 4V f VC(M , E) ,

and therefore f�K(A). r

On the other hand, if y�K(A), for any m�¯BF8 and all f�C(M , E)

a f , A 8 (d y7m)b 4 aAf , d y7mb

4 a(Af )(y), mb 4 aCy ( f (c(y) ) ), mb

4 a f (c(y) ), Cy8 (m)b 4 a f , dc(y)7Cy8 (m)b .

In conclusion, in view of Theorem 2, the following theorem holds

THEOREM 4: If F is strictly convex, and E is uniformly convex, then K(A) 4N if,
and only if,

A 8 (U(C(N , F )8 ) ) %U(C(M , E)8 ) .
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3. Let M be, as before, a compact Hausdorff space, let E be a strictly convex com-
plex Banach space, and let T : R1K L(C(M , E) ) be a semigroup of linear isometries
T(t) : C(M , E) KC(M , E).

According to Theorem 3, for every tF0 there exist:

a subset K(T(t) ) of M;

a continuous surjective map f t : K(T(t) ) KM;

a map x O Ct , x of M into L(E), continuous for the strong operator topology in
L(E), such that

(T(t) f )(x) 4Ct , x ( f (f t (x) ) ) ( f�C(M , E), ( x�K(T(t) ) .(7)

If t40, then K(I) 4M , f 04 I and C0, x4 I for all x�M .
If tF0, for all x�M VCt , x VG1, and, if x�K(T(t) ), Ct , x is a linear isometry of E.

LEMMA 7: Let t , sF0 and x�M . If x�K(T(t) ) and f t (x) �K(T(s) ), then
x�K(t1 s). If x�K(T(t) )OK(T(t1 s) ), then f t (x) �K(T(s) ).

PROOF: If f t (x) �K(T(s) ), then x�K(T(t) )Of t
21 (K(T(s) ) ) and, for all

f�C(M , E),

(T(t1 s) f )(x) 4 (T(t) i T(s) f )(x) 4Ct , x ( (T(s) f )(f t (x) ) ) 4(8)

4Ct , x i Cs , f t (x) ( f (f s i f t (x) ) )

4Ct , x i Cs , f t (x) ( f (z) ) ,

where z4 (f s i f t )(x). If f (z) 4V f VC(M , E) j , with VjVE 41, then

VT(t1 s) f (x)VE 4V f (z)VE 4V f VC(M , E)4VT(t1 s) f VC(M , E) .

Therefore x�K(T(t1 s) ) and

T(t1 s) f (x) 4Ct1 s , x ( f (f t1 s (x) ) ) .(9)

Choosing f4 j, for any j� E, (8) and (9) yield

Ct1 s , x (j) 4T(t1 s) j(x)

4Ct , x i Cs , f t (x) (j) ,

whence

Ct1 s , x4Ct , x i Cs , f t (x) ( t , s�R1 ,(10)

and therefore

f (f t1 s (x) ) 4 f (f s i f t (x) ) ( f�C(M , E) .
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If x�K(T(t) )OK(T(t1 s) ), then

Ct1 s , x ( f (f t1 s (x) ) ) 4 (T(t1 s) f )(x) 4 (T(t) i T(s) f )(x)

4Ct , x ( (T(s) f )(f t (x) ) ) .

Letting z4f t1 s (x), if f (z) 4V f VC(M , E) j , with VjVE 41, then

V(T(s) f )(f t (x) )VE 4VCt1 s , x ( f (f t1 s (x) ) )VE 4V(T(t1 s) f )(x)VE

4V f (z)VE 4V f VC(M , E)4VT(t1 s) f VC(M , E) ,

and therefore f t (x) �K(T(s) ). r

COROLLARY 2: If t , sF0,

K(T(t) )OK(T(t1 s) ) ) 4f t
21 (K(T(s) ) ) ,

and f t1 s4f s i f t on f t
21 (K(T(s) ) ).

In general, the family ]K(T(t) ) : tD0( is not increasing, as the following lemma
shows.

LEMMA 8: If

K(T(t) ) %K(T(t1 s) )(11)

for some tF0 and some sD0, then K(T(r) ) 4M for all rF0.

PROOF: If (11) holds for some tF0 and some sD0, then

K(T(t) ) 4K(T(t) )OK(T(t1 s) ) 4f t
21 (K(T(s) ) ) ,

and therefore

M4f t (K(T(t) ) ) 4K(T(s) ) .

Hence, if 0 E lE s and r4 s2 l , then

K(T(r) ) 4K(T(r) )OK(T(s) ) 4K(T(r) )OK(T(r1 l) )

4f r
21 (K(T(l) ) ) ,

and therefore

M4f r (K(T(r) ) ) 4K(T(l) ) ,

showing that, if K(T(s) ) 4M for some sD0, then K(T(r) ) 4M for all r� [0 , s].
Let

s04 sup ]sF0 : K(T(s) ) 4M( .

If 0 E s0EQ , there are t , s , with 0 E tE s0 and 0 E sE s0 , such that t1 sD s0 .
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Then K(T(t) ) 4M4K(T(s) ), and therefore

K(T(t1 s) ) 4K(T(t) )OK(T(t1 s) ) 4f t
21 (K(T(s) ) )

4f t
21 (M) 4K(T(t) ) 4M .

This contradiction shows that either s040 or s041Q , and completes the proof
of the lemma. r

If (11) holds for some tF0 and some sD0, (7) holds for all tF0, f�C(M),
x�M .

Let nD1 and let tjD0 for j41, 2 , R , n . Then

(12) K(T(t1 ) )OK(T(t11 t2 ) )OROK(T(t11 t21R1 tn ) ) 4

(K(T(t1 ) )OK(T(t11 t2 ) ) )O (K(T(t1 ) )OK(T(t11 t21 t3 ) ) )ORO

(K(T(t1 ) ) )OK(T(t11 t21R1 tn ) ) ) 4f t1
21 (K(T(t2 ) ) )O

f t1
21 (K(T(t21 t3 ) ) )OROf t1

21 (K(T(t21R1 tn ) ) ) 4

f t1
21 (K(T(t2 ) )OK(T(t21 t3 ) )OROK(T(t21R1 tn ) ) ) 4

f t1
21

i f t2
21 (K(T(t3 ) )OROK(T(t31R1 tn ) ) ) 4R4

f t1
21

i f t2
21

i R i f tn21
21 (K(T(tn ) ) ) c¯ .

LEMMA 9: The set

1 ]K(T(t) ) : tF0(

is compact and non-empty.

PROOF: By the chain of equalities above, the family ]K(T(t) ) : tF0( of closed sub-
sets of the compact space M has the finite intersection property. r

COROLLARY 3: If K(T(t) ) is closed for all t�R1 , the set

KQ (T) 41 ]K(T(t) ) : tF0((13)

is compact and non-empty.

The fact that the set KQ (T) is non-empty follows from weaker conditions.

THEOREM 5: If there is some sD0 such that K(T(t) ) is closed whenever 0 G tG s ,
the set KQ (T) defined by (13) is non-empty.
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PROOF: Consider the set (12), where tpD0 for p41, 2 , R , n . Letting tp4qp s1

1rp , with qp�Z1 and 0 G rpE s for p41, 2 , R , n , the set (12) contains the set

G(t1 , R , tn ) »4K(T(t1 ) ) 1
p42

n u 1
j40

qp

K(T(t11R1 tp211 js) )1K(T(t11R1 tp ) )v ,

which — as was noticed before — is not empty. Since

K(T(t11R1 tp211 (j21) s) )1K(T(t11R1 tp211 js) ) 4

f t11R1 tp211 ( j21) s
21 (K(T(s) ) )

and

K(T(t11R1 tp211qp s)1K(T(t11R1 tp ) 4

K(T(t11R1 tp211qp s)1K(T(t11R1 tp211qp s1 rp ) 4

f t11R1 tp211qp s
21 (K(T(rp ) ) ) ,

the set G(t1 , R , tn ) is closed. By the finite intersection property, the intersection of all
sets G(t1 , R , tn ) is not empty. Hence KQ (T) is not empty. r

As a consequence of Proposition 2, the following lemma holds.

LEMMA 10: If there is some t0D0 such that the map x O Ct , x of M into L(E) is con-
tinuous for the uniform operator topology whenever t� [0 , t0 ], then KQ (T) c¯ . If the
hypothesis holds for all tD0, KQ (T) is also closed.

Corollary 1 yields

COROLLARY 4: If dimC E EQ , KQ (T) is closed and non-empty.

Let KQ (T) be non-empty.
Since K(T(s) ) 4f s

21 (M), for all sF0

f t
21 (KQ (T) ) 4f t

21 (1]K(T(s) ) : sF0() 41]f t
21 (K(T(s) ) ) : sF0(

41]K(T(t1 s) ) : sF0( 41]K(T(s) ) : sF t( &

&1]K(T(s) ) : sF0() 4KQ (T) ,
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and therefore

f t (KQ (T) ) %KQ (T) ( tF0 .(14)

REMARK: The set KQ (T) — if non-empty — is the largest subset of M which is f t-
invariant for all tF0. Let x�M . Then x�f t

21 (KQ (T) )0KQ (T) for some tD0 if, and
only if,

x�K(T(t) )OK(T(t1 s) ) (sF0 ,

i.e.,

x�K(T(s) ) (sF t ,

and moreover

x�K(T(r) ) for some r� (0 , t) .

Hence

f t
21 (KQ (T) )0KQ (T) %1]K(T(s) ) : sF t(0K(T(r) )(15)

for some r� (0 , t).
If

K(T(t) ) %KQ (T)(16)

for some tD0, then K(T(s) ) &K(T(t) ) for all sD0, and Lemma 8 yields

THEOREM 6: If, and only if, (16) holds for some tD0, then KQ (T) 4M , and (7)
holds for all tF0.

Let KQ (T) be closed and non-empty. In view of the f t-invariance of KQ (T), one
defines a semigroup T

A: R1KL(C(KQ(T), E) ) of linear contractions of C(KQ(T), E), by

(TA(t) g)(x) 4Ct , x ( g(f t (x) ) )

for all tF0, g�C(KQ (T), E), x�C(KQ (T) ).

4. Let M , N , P be compact Hausdorff spaces, E, F, G be complex Banach spaces,
with F, G strictly convex, and let

A� L(C(M , E), C(N , F ) ) , B� L(C(N , F ), C(P , G) )

be linear isometries. Then B i A is a linear isometry of C(M , E) into C(P , G).
Arguing as in the proof of Lemma 7, one shows that

K(B)OK(B i A) 4cB
21 (K(A) )(17)
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and

cB i A4cB i cA on cB
21 (K(A) ) .

If M4P and E 4 G, and if B i A is the identity on M , then K(B i A) 4P , and (17)
becomes

cB (K(B) ) 4K(A) ,

whence K(A) 4N . That implies M. Jerison’s extension, [10], of the classical Banach-
Stone theorem to vector-valued, continuous functions.

Let now M4N and E 4 F. By similar arguments to those developed in n. 3, one
can handle the discrete case, in which the semigroup T is replaced by the iterates
]A n : n�N( of an isometry A� L(C(M , E) ), and the Banach space E is strictly convex.
Assuming in Theorem 3 N4M , E 4 F, and replacing A by A n , K(A) by K(A n ), Cy by
CA n , y , c by cA n , one shows, as in n. 3, that

K(A p )OK(A p1q ) 4cA p
21 (K(A q ) ) .

Let n1 , n2 , R , np be positive integers. As in n. 3 one proves that

(18) K(A n1 )OK(A n11n2 )ROK(A n11R1np ) 4cA n1
21

i R i cA np21
21 (K(A np ) ) c¯ ,

and this shows that

1 ]K(A n ) : n�Z+( c¯ .

Since the left-hand side of (18) contains the set

1
m41

n11R1np

K(A m ) 4cA
21

i cA 2
21

i R i cA n11R1np21
21 (K(A) )

which is (non-empty and) closed when K(A) is closed, the following proposition
holds.

PROPOSITION 3: If K(A) is closed, the set

KQ (A) »41 ]K(A n ) : n�Z1(

is non-empty.

Similar arguments as those developed in the proof of Lemma 8 lead to
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LEMMA 11: If

K(A p ) %K(A p1q )

for two positive integers p and q , then K(A) 4M .

Arguing as in Theorem 6 one proves

THEOREM 7: If, and only if,

K(A p ) %KQ (A)

for some pF0, then K(A) 4M .

If A
A

� L(C(KQ (A), E) ) is defined by

(AA g)(x) 4CA , x (g(cA (x) ) )

for all x�KQ (A) and all g�C(KQ (A), E), then A
A is a contraction of

C(KQ (A), E).
If Aj 4zj for some z�C and j� E 0]0(, then NzN41 and A

A
j 4zj, i.e.,

CA , x (j) 4zj ( x�KQ (A) ,

and viceversa. That proves

LEMMA 12: Let KQ (A) c¯ . If, and only if, z is an eigenvalue of CA , x with an eigen-
vector j� E 0]0( for all x�KQ (A), then NzN41 and z is an eigenvalue of A

A
with an

eigenvector j.

Let now

(Af )(y) 4zf (y) ( f�C(M , E)(19)

and for some y�M and z�C . Then NzNG1. If f�F(j , y) for some j� E with
VjVE 41, then

V(Af )(y)VE 4NzNV f VC(M , E)4NzNVAf VC(M , E) .

Thus

z�¯D ¨ y�K(A) ,

and therefore

CA , y ( f (cA (y) ) ) 4 (Af )(y) 4zf (y) ( f�C(M , E) .
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Because CA , y is an isometry, that implies that

V f (cA (y)VE 4V f (y)VE

for all f�C(M , E), and therefore cA (y) 4y , proving thereby

PROPOSITION 4: If y�M and z�¯D satisfy (19), then y�K(A), cA (y) 4y and
CA , y4zI .

We shall conclude this section with a result on the compression spectrum of A in
the case in which M4N , E 4 F 4C and A is a linear isometry of C(M) onto C(N).
Now K(A) 4M , and A is expressed by (1) for all y�M and all f�C(M), with
a�U(C(M) ) and c a homeomorphism of M onto itself.

The compression spectrum of A is, by definition, the point spectrum ps (A 8 ) of
the dual operator A 8 of A . If z�ps (A 8 ), there is some l�C(M)8 0]0( such
that

aAf , lb 4za f , lb ( f�C(M) ,(20)

i.e.,

�a(x) f (c(x) ) dl(x) 4z� f (x) dl(x)

for all f�C(M), where l has been identified with its representative Borel mea-
sure.

This implies, first of all, that zc0.
Let x0�Supp l be such that c(x0 ) �Supp l . Le U be an open neighbourhood of x0

in M , disjoint from Supp l , and let V4c21 (U).
For any f�C(M) such that Supp f%U ,

� f (x) dl(x) 40 ,

and therefore

�a(x) f (c(x) ) dl(x) 40 .(21)

If g�C(M) is such that Supp g%V , then, setting f4g i c21 , Supp f%U , and (21)
yields

�a(x) g(x) dl(x) 40 ,

showing that x0�Supp l: which is a contradiction.
Hence, c( Supp l) %Supp l , and therefore c( Supp l) 4Supp l because c is a

homeomorphism. That proves

THEOREM 8: If A� L(C(M) ) is a bijective isometry and if z�ps (A 8 ), then
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zc0. Furthermore, the support of any l�C(M)8 0]0( satisfying (20), is c-in-
variant.

As a consequence, if Supp l4 ]x0(, then x0 is fixed by c . In that case,
z4 f (x0 ).

5. – Applying some of the results of n. 4 to T(t), for any tD0, we see that, if K(T(t) ) is
closed, the set

KQ (T(t) ) »41 ]K(T(nt) ) : n�N(

is non-empty and T(t)A is a contraction of C(KQ (T(t) ), E).

LEMMA 13: If (T(t) f )(x) 4zf (x) for some tD0, x�M and z�¯D , and for all
f�C(M , E), then x�K(T(t) ), ft (x) 4x and Ct , x4zI .

COROLLARY 5: Let K(T(t) ) be closed. If x�KQ (T) and tD0 are such that

(TA(t) g)(x) 4g(x) ( g�C(KQ (T), E)

and if, for every t� (0 , t) there is some k�C(KQ (T), E) for which

(TA(t) k)(x) ck(x) ,

then Ct , x4 I and the semiflow f is periodic with period t at the point x .

So far, no hypothesis on the topological structure of the semigroups T and T
A has

been introduced.
Throughout this and the following sections, KQ (T) will be assumed to be closed and

non-empty.
For any tF0 and any x�KQ (T),

(T(t) f )(x) 4Ct , x ( f (f t (x) ) ) 4 (TA fNKQ (T) )(x)

for all f�C(KQ (T), E).
Let the semigroup T

A be strongly continuous.
Since, for any j� E,

Ct , x (j) 4 (TA(t) j)(x) ,

the map (t , x) O Ct , x of R13KQ (T) into L(E) is continuous for the strong operator
topology in L(E).

We will show now that f : t O f t is a continuous semiflow in KQ (T), i.e.,
(t , x) O f t (x) is a continuous map of R13KQ (T) into KQ (T).

If that is not the case, there exist t0F0, x0�KQ (T) and an open neighbourhood U
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of f t0
(x0 ) such that, for every dD0 and for every open neighbourhood V of x0 there

are t�R1O (t02d , t01d) and x�V for which f t (x) �U . In view of the compact-
ness of KQ (T), there are generalized sequences ]tj( in R1 and ]xj( in KQ (T) converg-
ing to t0 and to x0 , such that f tj

(xj ) �U and that ]f tj
(xj )( converges to some

y0�KQ (T)0U .(22)

Hence, for any f�C(KQ (T), E),

Ct0 , x0
( f (f t0

(x0 ) ) 4Ct0 , x0
( f (y0 ) ) .

The injectivity of Ct0 , x0
implies then that f (f t0

(x0 ) ) 4 f (y0 ) for all f�C(KQ (T), E),
and therefore f t0

(x0 ) 4y0 , contradicting (22) and proving thereby that the semiflow
f is continuous.

If L : R1K L(C(KQ (T), E) ) is the semigroup defined by the continuous semiflow
t O f t on KQ (T); i.e.

L(t) g4g i f t(23)

for all tF0 and all g�C(KQ (T), E), then

(24) (TA(t) g)(x) 4Ct , x ( (L(t)g)(x) ) ( tF0, g�C(KQ (T), E), x�KQ (T) .

The map T
A(t) is a linear isometry if, and only if, f t is surjective. It is easily seen,

[18], that the set of all tD0 for which T
A(t) is an isometry is either R1* or the empty

set.
If the semigroup T is strongly continuous, Corollary 5 may yield more information

on the global behaviour of f t and Ct , x . As an example, assume now that M is the unit
circle: M4¯D . According to Proposition 3 of [19], if the continuous semiflow f has a
periodic point with period tD0, then f is periodic with period t . Hence, the follow-
ing theorem holds.

THEOREM 9: Let the semigroup T be strongly continuous. If M is the unit circle and
x and t satisfy the hypotheses of Corollary 5, then f is the restriction to R1 of a continu-
ous periodic flow, and T is the restriction to R1 of a strongly continuous periodic group
R3C(¯D , E) KC(¯D , E) of surjective linear isometries of C(¯D , E).

For any t�R and g�C(¯D , E), x�¯D , T(t) g is expressed by

(T(t) g)(x) 4Ct , x (g(f t (x) ) ) ,

where, Ct , x is invertible in L(C(M , E) ) for all t�R , and, if tG0, Ct , x is expressed by

Ct , x4C2t , f t (x)
21 .

Going back to the general case of C(M , E), since KQ (T) is closed and non-empty,
the contraction semigroup T

A acting on the Banach space C(KQ (T), E) is strongly con-
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tinuous, its infinitesimal generator X
A: D(XA) %C(KQ (T), E) KC(KQ (T), E) is m-dissi-

pative.
If the semigroup T is strongly continuous — in which case its infinitesimal genera-

tor X : D(X) %C(M , E) KC(M , E) is conservative and m-dissipative, [16] — also T
A is

strongly continuous.
The space A

A
consisting of the restrictions to KQ (T) of the elements of D(X) is con-

tained in D(XA). Hence, if Y is the linear operator with domain D(Y) 4 A
A

defined on
the restriction to KQ (T) of any f� D(X) by

(YfNKQ (T) )(x) 4 (Xf )(x) ( x�KQ (T) ,

then Y% X
A.

Because T(t) D(X) % D(X), then

T
A(t) D(Y) % D(Y) .

Since D(X) is dense in C(M , E), if the space C(M , E)NKQ (T) of the restrictions to KQ (T)
of all f�C(M , E) is dense in C(KQ (T), E), then A

A
is dense in C(KQ (T), E). Thus A

A
4

4 D(Y) is a core of X
A, and the following lemma holds.

LEMMA 14: If C(M , E)NKQ (T) is dense in C(KQ (T), E), the operator X
A

is the closure
of Y .

If T
A is strongly continuous, also the semigroup L is strongly continuous. Denoting

by D : D(D) %C(KQ (T), E) KC(KQ (T), E), the infinitesimal generator of L , then, for
any j� E, j � D(D) and Dj 40.

The space C(KQ (T), E) is a module over the ring C(KQ (T) ) of all complex-valued
continuous functions on KQ (T). The infinitesimal generator D0 of the Markov lattice
semigroup L0 defined in C(KQ (T) ) by the semiflow f is a derivation
D0 : D(D0 ) %C(KQ (T) ) KC(KQ (T) ). If W� D(D0 ) and f� D(D), then Wf� D(D)
and

D(Wf ) 4D0 W Q f1W QDf .

Hence, if j� E,

D(Wj) 4D0 W Qj .

Since all non-trivial derivations in C(KQ (T) ) are unbounded (3), and since D is
closed, the following lemma holds.

LEMMA 15: If D(D) 4C(KQ (T), E), then D40.

(3) See [12], or also [17] for a direct proof.
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For all tD0 and all g�C(KQ (T), E),

1

t
(TA(t) g2g)(x) 4

1

t
(Ct , x2 I)( (L(t) g)(x) )

1
1

t
( (L(t)2 I) g)(x) .

Hence, if g� D(XA)O D(D), the limit

lim
tI0

1

t
(Ct , x2 I)( (L(t) g)(x) ) 4 lim

tI0

1

t
(Ct , x2 I)(g(x) ) ,

exists for all x�KQ (T), and

(XA g)(x) 4 lim
tI0

1

t
(Ct , x2 I)(g(x) )1 (Dg)(x) .(25)

In particular, letting

K 4 ]j� E : j � D(XA)( ,

then

(XAj)(x) 4 lim
tI0

1

t
(TA(t) j2j)(x)(26)

4 lim
tI0

1

t
(Ct , x2 I)(j)

for all j� K and all x�KQ (T).
Since X

A is closed and also the image K of K in C(KQ (T), E) by the map j O j is a
closed subspace of D(XA), the operator X

A
N K is closed. As a consequence:

LEMMA 16: If T
A

is strongly continuous, for every x�KQ(T) the linear operator

Zx : D(Zx ) 4 K % E K E

defined by

Zx j4 (XAj)(x)

is closed (4).

(4) Here is a direct proof. Let j� D(Zx ) and let ]j n( be a sequence in D(Zx ), converging to
j and such that ]Zx j n( converges to some h� E. Since the sequences ]j n( and ]Zx j n( 4

4 ]X
A

j n( in C(M , E) converge respectively to j and to h, then j � D(X
A

) and h 4 X
A

j, i.e.,

j� D(Zx ) and h4Zx j .
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Let g� D(XA)O D(D). Since g(x) � K, (25) yields

(XA g)(x) 4Zx (g(x) )1 (Dg)(x)(27)

for all x�KQ (T).
If K 4 E, that is, if j � D(XA) for all j� E, then g(x) � D(XA), and the following lem-

ma holds.

LEMMA 17: If K 4 E, then Zx� L(E), D(D) 4 D(XA) and (27) holds for all g� D(D)
and all x�KQ (T).

Since the closed operator X is densely defined, conservative and m-dissipative, its
spectrum s (X) is non-empty, [16] (5). Either s (X) is the closed left half-plane
]z�C : DzG0(, or s (X) is contained in the imaginary axis: in which case T is the re-
striction to R1 of a strongly continuous group of surjective linear isometries of
C(M , E) (and KQ (T) 4M).

If T is an eventually differentiable semigroup, according to a theorem of A. Pazy
(see [11], Theorem 4.7, pp. 54-57), there are a�R and b�R1* such that the resolvent
set of X contains the set

]z�C : DzFa2b log N4zN( .

As a consequence, the first of the two possibilities listed above is ruled out, and
s (X) turns out to be a compact subset of the imaginary axis. But then (see [5], Corol-
lary 8.20), X� L(C(M , E) ). Hence D(X) 4C(M , E), and (25) — which holds (with X

A

replaced by X) for all g�C(M , E) and at all x�M — yields: D(D) 4C(M , E). Thus, by
Lemma 15 the following proposition holds.

PROPOSITION 5: If T is an eventually differentiable semigroup, there is a conserva-
tive operator X� L(C(M , E) ) such that T is the restriction to R1 of the group G : RK

K L(C(M , E) ) of surjective linear isometries defined by

(G(t) f )(x) 4 ( ( exp tX) f ) )(x)

for all f�C(M , E), t�R and x�M .

REMARK: The same argument as before shows, more in general, that any strongly
continuous, eventually differentiable semigroup of linear isometries of a complex Ba-
nach space F is the restriction to R1 of a strongly continuous group of surjective linear
isometries of F.

(5) We correct a misprint in [16], where the inclusion r(X) %P r displayed at p. 309, shall be
replaced by r(X) &P r .
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6. Since, for tF0 and hD0,

Ct1h , x4Ct , x i Ch , f t (x) ,

then, for any j� K, (25) yields

lim
hI0

1

h
(Ct1h , x2Ct , x )(j) 4Ct , x i lim

hI0

1

h
(Ch , f t (x)2 I)(j)

4Ct , x ( (XAj)(f t (x) ) ) 4Ct , x (Zf t (x) (j) ) .

Hence, the map t O Ct , x (j) of R1 into E is of class C 1 on R1 , and

d

dt
Ct , x (j) 4Ct , x (X

A(j)(f t (x) ) )(28)

4Ct , x (Zf t (x) (j) )

for all x�KQ (T) and all j� K.
For tF0, let

A(t) : D(A(t) ) % L(C(KQ (T), E), E) K L(C(KQ (T), E), E)

be the linear operator defined on

D(A(t) ) 4 L(XA(K), E)

by

(A(t) R)(j) 4R(XA(j) ) ,

i.e.

( (A(t) R)(j) )x4 (R(XA(j) ) )x

4Rx (Zf t (x) (j) ) ,

where R� L(XA(K), E) ).
Let Ct�C(M , L(E) ) be defined by

Ct : x O Ct , x .

Then (28) yields the initial value problem

.
/
´

d

dt
Ct

C0

4A(t) Ct

4 I ,
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i.e.,

.
/
´

u d

dt
Ctv

x

C0, x

4Ct , x (Zf t (x) (j) )

4 I

for all t�R1 , x�KQ (T), j� K.
As before, let E be strictly convex and let T : RK L(C(M), E) be a strongly continu-

ous group of linear isometries of C(M , E). Then KQ(T) 4M , and T is expressed by

(T(t) f )(x) 4Ct , x ( f (f t (x) ) )

for all f�C(M , E), x�M , t�R , where f : t O f t is a continuous flow on M , and
Ct , x� L(E) is a surjective isometry such that

Ct1 s , x4Ct , x i Cs , f t (x) ( t , s�R , x�M .

Suppose now that M is a compact differentiable (i.e. C Q) manifold, and that the
flow f is determined by a C Q vector field v on M . For any f�C 1 (M , E) we define
v( f ) �C(M , E) componentwise; that is to say, setting for x�M and l� E8 ,

a(v( f ) )(x), lb 4 (v(a f (Q), lb) )(x) .

Clearly

f�C Q (M , E) ¨ v( f ) �C Q (M , E) .

If L : RK L(C(M , E) ) is the group defined by (23) for all t�R and all g�C(M , E),
and if D is its infinitesimal generator, then

C Q (M , E) % D(D)

and

D( f ) 4v( f ) ( f�C Q (M , E) .

LEMMA 18: If the map x O Ct , x of M into L(E) is of class C Q for all t�R , tha map
t O Ct , x is of class C Q on R for all x�M .

PROOF: For t0�R and rD0, let r : RK [0 , 1] be a C Q function for which

r(t) 41

0 Er(t) E1

r(t) 40

if Nt2 t0 NG r

if rENt2 t0 NE2 r

if Nt2 t0NF2 r .
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Then

�
2Q

1Q

r(s) Ct1 s , x ds4Ct , xu �
2Q

1Q

r(s) Cs , f t (x) dsv ,

i.e.,

�
2Q

1Q

r(s2 t) Cs , x ds4Ct , xu �
2Q

1Q

r(s) Cs , f t (x) dsv .

A neighbourhood U of t0 in R and rD0 can be so chosen that

�
2Q

1Q

r(s) Cs , f t (x) dsc0

whenever t�U .
Differentiation with respect to t�U shows that the function t O Ct , x is of class C 1

on U for all x�M , and

2 �
2Q

1Q

u dr

dt
v (s2 t) Cs , x ds4

¯

¯t
Ct , xu �

2Q

1Q

r(s) Cs , f t (x) dsv1

1Ct , xu �
2Q

1Q

r(s) v(Cs , f t (x) ) dsv .

Iteration of this computation completes the proof of the lemma. r

Thus, Zx� L(E) for all x�M , and

Zx4
d

dt
Ct , x .(29)

By the same argument leading to Theorem 4 of [17] one proves then

THEOREM 10: If the strongly continuous group T : RK L(C(M , E) of linear isome-
tries is such that

T(t) C Q (M , E) %C Q (M , E) ( t�R ,

then: D(D) 4 D(X); (27) holds for all g� D(X) and all x�M , where Zx is expressed by
(29), and C Q (M , E) is a core for X .

7. If dim E EQ and dim F EQ , the sets K(A) and K(T(t) ) for all tF0 are closed,
KQ (T) is closed and non-empty, the linear isometries CA , x and Ct , x are invertible for
all tF0.
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If the semigroup T (or the semigroup T
A) is strongly continuous, the isometries Ct , x

are continuous functions of (t , x) �R13M (or of (t , x) �R13KQ (T) respectively).
In the case in which E 4 F 4C , [9], Cy is represented by a continuous function

a : MK¯D; (4) and Theorem 2 yield

U(C(M) ) 4 ]h�C(M) : Nh(x)N41 (x�M( ,

U(C(M)8 ) 4 ]cd x : c�¯D , x�M( .

LEMMA 19: [15] If l�C(M)8 , then l�U(C(M)8 ) if, and only if,

Nah , lbN41

for all h�U(C(M) ).

Theorem 4 generalizes the second part of the following

THEOREM 11: [15] If either

A(U(C(M) ) ) %U(C(N) ) ,(30)

or

A 8 (U(C(N)8 ) ) %U(C(M)8 ) ,(31)

then K(A) 4N , i.e,

(Af )(y) 4a(y) Q ( f i c(y) ) ( y�K(A) , f�C(M) .(32)

PROOF: The theorem is equivalent to the following chain of implications:

(30) ¨ (31) ¨ (32) ¨ (30) .

If (31) holds, for every y�N there are a unique x�M and a unique c�¯D for
which

A 8 d y4cd x ,

i.e.,

(Af )(y) 4cf (x)

for all f�C(M). Setting c4a(y) and x4c(y), (32) follows.
If (30) holds, then, for every y�N and all h�U(M),

1 4N(Ah)(y)N4NaAh , d y bN4Nah , A 8 d y bN ,

and therefore, by Lemma 19, (31) holds.
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Viceversa, if (32) is satisfied, with a�U(N) and c a continuous surjective map of
N onto M , then (30) holds. r

By the Tietze extension theorem, Lemma 14 yields

PROPOSITION 6: If dimC E EQ , the operator X
A

is the closure of Y .

We consider now the strongly continuous semigroup T : R1K L(C(M) ) of linear
isometries of C(M), and the strongly continuous semigroup T

A: R1K L(C(KQ (T) ) )
expressed on any g�C(KQ (T) ) by

(TA(t) g)(x) 4a t (x) g(f t (x) ) ,

where a t�U(C(KQ (T) ) ) is a continuous function of t , and f : t O f t is a continuous
semiflow on KQ (T).

The existence of fixed points of the semiflow f yields some information on the
point spectrum ps (X) and the residual spectrum rs (X) of X , as will be illustrated now
in the case E 4C .

If x0�KQ (T) is fixed by f , i.e.,

f t (x0 ) 4x0 ( tF0 ,

then

(T(t) f )(x0 ) 4a t (x0 ) f (f t (x0 ) ) 4a t (x0 ) f (x0 )(33)

for all f�C(M), and

a t1 s (x0 ) 4a t (x0 ) a s (f t (x0 ) ) 4a t (x0 ) a s (x0 )

for all t , sF0.
Letting

a2t (x0 ) 4
1

a t (x0 )
4 a t (x0 ) ,

we extend the map R1� t O a t (x0 ) to a continuous homomorphism of R into the mul-
tiplicative group ¯D . Hence there is a�R such that

a t (x0 ) 4eiat(34)

for all t�R , and therefore (33) becomes

(T(t) f )(x0 ) 4eiat f (x0 ) ( t�R1 ,

i.e.,

a(T(t)2eiat I , d x0
b 40 ( t�R1 .
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For any f� D(X),

(Xf )(x0 ) 4 aXf , d x0
b 4 lim

tI0» 1

t
(T(t)2 I) f , d x0«

4 lim
tI0

1

t
(a t (x0 ) f (f t (x0 )2 f (x0 ) ) 4 lim

tI0

1

t
(a t (x0 )21) f (x0 )

4 lim
tI0

1

t
( eiat21) f (x0 ) 4 iaf (x0 ) 4 a(X2 iaI) f , d x0

b .

Hence, ia�ps (X)N rs (X).
In conclusion, the following theorem holds.

THEOREM 12: If x0�KQ (T) is fixed by the semiflow f , there is a�R such that
ia�ps (X)N rs (X), and (34) holds for all t�R1 .

If ia is an isolated point of s (X), then ([14], p. 178) ia�ps (X).
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