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SummARrY. — Let M be a compact Hausdorff space and let C(M) be the Banach space of all
complex-valued continuous functions on M. The classical Banach-Stone theorem, which asso-
ciates to any surjectice linear isometry A: C(M) — C(M) a homeomorphism of M, was general-
ized by W. Holsztyfiski to the case in which the linear isometry A is not necessarily surjective.
Holsztynski’s result — which was further extended by M. Cambern to Banach spaces of contin-
uous vector-valued functions on M — associates to A a subset K(A) of M and a continuous sur-
jective map 3: K(A) — M. In this paper, a maximal -invariant subset of M is constructed in
terms of the iterates of A. Actually, the construction of the invariant subset is carried out re-
placing the discrete subgroup of the iterates of A by a strongly continous semigroup of linear
isometries.

Isometrie lineari di funzioni a valori vettoriali

Sunto. — Sia M uno spazio compatto di Hausdorff, e sia C(M) lo spazio di Banach delle
funzioni continue a valori complessi su M. Il classico teorema di Banach-Stone, che associa ad
ogni isometria lineare A: C(M) — C(M) un omeomorfismo di M, ¢& stato generalizzato da W.
Holsztyfiski al caso in cui 'isometria lineare A non & necessariamente surgettiva. Il risultato di
Holsztyfiski — esteso da M. Cambern a spazi di Banach di funzioni a valori vettoriali, continue
su M — associa a A un sottoinsieme K(A) di M ed una applicazione continua 3 di K(A) su M.
In questo lavoro, si costruisce un sottoinsieme -invariante massimale di M definito mediante
le iterate di A. Di fatto, il sottoinsieme invariante viene costruito sostituendo al semigruppo di-
screto delle iterate di A un sottogruppo fortemente continuo di isometrie lineari.

In one of the final chapters of [2], S. Banach made the important observation that
two compact metric spaces M and N are homeomorphic if, and only if, the uniform
spaces of all continuous, real-valued functions on M and N are isometric. As a bypro-
duct of his proof, if A is such an isometry, there are a homeomorphism 1 of N onto M

(*) Indirizzo dell’Autore: Politecnico di Torino, Dipartimento di Matematica, Corso Du-
ca degli Abruzzi 24, 10129 Torino, Italy.
(**) Memoria presentata il 30 marzo 2000 da Edoardo Vesentini, uno dei XL.



and a continuous function a, with modulus one at all points of N, such that
(1) (AN y) = aly)(fyp(y)))

at all y € N and for any real-valued, continuous function f on M. This ground-breaking
result was the starting point of a research field which is quite alive today. In [13]
M. Stone extended Banach’s theorem to continuous, complex-valued functions on
compact (not necessarily metric) Hausdorff spaces and set the stage, within the frame-
work of Boolean algebras, of what would later be called the Banach-Stone problem
(see [3] also for exhaustive historical references until 1979), involving continuous vec-
tor-valued functions.

In [9], W. Holsztyfiski considered the case in which the linear isometry A is not
surjective (1), and proved that (1) still holds, but gives only a partial description of A
in the sense that v is then a continuous map of a closed subset K(A) of N onto M and
y € K(A). As was shown in [15], the case K(A) = N can be characterized in terms of
the behaviour of A on the extreme points of the closed unit ball of the space of all con-
tinuous, complex-valued functions on M.

In [4] M. Cambern proved that Holsztynski’s result extends mzutatis mutandis to
Banach spaces of continuous vector-valued functions from M to a complex Banach
space § and from N to a strictly convex complex Banach space .

In the case in which M = N the question arises, for both Holsztyski’s and Cam-
bern’s theorems, whether there exists a subset K(A) ¢ M that is invariant under the ac-
tion of A and on which the action of A is therefore completely described by (1) or by a
generalization thereof. In this paper, a maximal invariant set will be constructed in
terms of the iterates of A. However, instead of considering these iterates, a more gen-
eral situation will be investigated, replacing A by a strongly continuous semigroup of
linear isometries.

After a first section devoted to the set of all extreme points of the closed unit ball
of the Banach space of all continuous maps from M to §, and of the closed unit ball of
the dual space, n. 2 investigates the set K(A) C N, establishing a necessary and suffi-
cient condition for K(A) to coincide with N, and a sufficient condition for K(A) to be
closed, retrieving, as a consequence, a result of M. Cambern whereby K(A) is closed
when § has finite dimension.

In n. 3, A is replaced — under the hypotheses M = N and § = & — by a semigroup
T of linear isometries, which, in particular, may coincide with the family of all iterates
of A. Under rather weak hypotheses on T (that are fulfilled when § has finite dimen-
sion), a maximal «invariant» set K, (T) ¢ M will be shown to exist, on which the ac-
tion of T is determined by a semiflow ¢ acting on K, (T) and by an operator-valued
cocycle associated to ¢. If K., (T) is closed and the semigroup T is assumed to be
strongly continuous — as will be done in nn. 5 and 6 — the semiflow ¢ is continuous,

() According to the Mazur-Ulam theorem ([2], pp. 166-168) surjective isometries are li-
near over the reals. The case of non-linear isometries was briefly investigated in [15].



83

and the infinitesimal generator of the semigroup defined by T in K, (T) is a bounded
perturbation of the infinitesimal generator of the semigroup determined by ¢.

Finally, in n. 7 the particular case of scalar-valued continuous functions will be
considered, extending to semigroups of general linear isometries some results estab-
lished in [17] under additional conditions.

1. Let & be a complex Banach space with norm || ||;. If M is a compact Hausdorff
space, C(M, 8) will stand for the complex Banach space of all continuous functions
f: M— 8, with the uniform norm ||f|c(y. 5 = sup {||/(x)|ls;: x€ M}. For any complex
Banach space &, & will stand for the strong dual of &; B, By, B;, B, will indicate re-
spectively the unit ball of &, the unit ball of §" and their closures.

ProrositioN 1: Let A # {0} be a closed linear subspace of C(M, §). If fe @,

HfHaM, g =sup{|[(f, A)|: A extreme point of B_a}

Proor: Obviously,
(2) [ Alear, o = sup {|{f, A)|: A extreme point of By} .

Let now [|fllco, 5= 1.
Since M is compact, there is some xoe M such that 1 = fllcar s = /(x0)|l5.
For any A€ 8By, with ||A]; =1, the continuous linear form on @

8.0 ® 11 fr{flxo), 2)

has norm one, showing that the closed set
S:={AeBg:(f,Ay=1}ca@
is not empty. Since, for A, A,eS and 0 <¢<1,
([t + (1= A)y=¢t+1—-¢t=1,

S is also convex, and therefore is compact for the weak-star topology of @'. By the
Krein-Milman theorem, § has one extreme point at least.

Let A, be one of these extreme points, and let A, A,€ By, 0 <#<1 be such
that

Ag=tA; + (1 —1) A,.
Since A€,
3) Kf, A+ (1—t{f, Ay) =1,
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whence
L<t|(f, Ay + (1 =0 |(f, A)|
<Al 4 llo + 1 =Dl AL A2 o
<t+(1—-8=1,
and therefore
[, A | =/, 42) [ =15
(3) yields then
(fiA)=(f,42)=1,

ie. Ay, A,€eS8.
Hence

1=|Fllcar, o = (£, A0),

and this fact, together with (2) completes the proof of the proposition (?) ®

Lemma 1: Let the closed linear subspace A of C(M, 8) be such that, for every x e M
and every open neighbourhood U of x in M there is ge A\{0} with Suppgc U. If fe @
is a complex extreme point of By, then ||f(x)|l;=1 for all xe M.

Proor: If ||f(x)|s<1 for some x,eM, there exist an open neighbourhood
U of x, and some ¢ >0 for which

lfx)|ls<1—¢ VxeU.

Let ge A\{0} be such that Suppgc U and ||glcn. 5 <e. Given any fed =
={reC: |7| <1},

[1£00) + &gl < LA ls + 1€l gC) s
<[/l + g0l
<l—-¢+e=1

if xeU, and
1£(x) + Zal) s = £l
if xe M\U. Thus,

£+ Ellow, o < 1

(®) The proof follows the ideas in [7], pp. 145-146.
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for all e A, contradicting the hypothesis whereby # is a complex extreme point
of B. ®m

Lemma 1 and the following lemma characterize all extreme points of By, ),
where § is strictly convex.

Lemma 2: Let & be strictly convex. If, and only if,
l/x)|l=1 VxeM,

feC(M, &) is an extreme point of Bcy, g)-

Proor: Let ge C(M, &) and let ze (0, 1)\{0} be such that
1/ + zglcon s < 1.
Then
I£x0) + tg(x) s <1 VxeM.

Since f(x) € 8B, is an extreme point of By, then g(x) =0 for all xeM. m
Let

O(A) = {ge By: g extreme point of Bg}.
Lemma 1 and Lemma 2 yield

Tueorem 1: If § is strictly convex and A # {0} is a closed linear subspace of
C(M, 8) such that, for every x € M and every open neighbourhood of x in M there is
2e A\{0} with Suppgc U, then

0A) ={ge@:|gx)];=1 YxeM}.
In particular, if & is strictly convex, then
(4) O(CM, 8) ={feCM, 8): |fx)|l;=1 YxeM}.

We will now describe @(C(M, &)').
Let

C:= {(5x®/1 : XEM, lEB_g}CBC(M);;)/.

Lemma 3: The set C is weak-star closed in C(M, 8).

Proor: If Q is contained in the weak-star closure of C, there is a generalized se-
quence {0, ®4;}, with x;e M and ;€ B/, converging to 2, ie., such that

) (f, Qy=lim(f(x,), 1) VfeCM,?§).

Up to replacing this generalized sequence by a generalized subsequence, there is
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no restriction in assuming that {x;} converges to a point x,€ M, and that {4;} con-
verges to Ao e By for the weak-star topology. Hence, (5) yields

(f, 2)={flx), o) VfeClM,é). m

Lemmva 4: If Q € C(M, 8)' is an extreme point of By, sy, there exist xoe M and A
extreme point of By such that Q =05, ®2,.

Proor: The closure co (C) of the convex hull co (C) of C coincides with the closed
convex hull co(C), which is closed in Bj.
If Q¢co(C), there exist, ([6], p. 417), fe C(M, 8), ceR and & > 0 such that

N(f, Q) =c

and
N(f, A)<c—¢ VAeC,

ze.,

NR(f(x),Ay<c—¢ VxeM,AeB,.
Since

1/Gls = sup { |{f(x), 4)| : Ae By},
then

Ifls<c—e VxeM,
and therefore
||f||C(M,é;) Sc—e€.
If |2 <1, then
eSO/ Q)< [(f, Q)]
<[ flleas, o €0 < Al oy < e — e .
This contradiction shows that
Q¢co(C) = 2¢Bcu g
ze.,
Bt 5y €0 (C) € Bog. oy »

and therefore

E (C) = BC(M, 8) -
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Since the extreme points of co (C) are contained in C (see, e.g., [6], pp. 440-441),
there are x,e M and A,e By such that 2 =90, ®41,.

If A, is not an extreme point of By, there are 1;, A, € By and 7€ (0, 1) such that
Ao=1tA1+ (1 —#)A,, and therefore

Q=0,®h =10, @4 +(1-16, 04, =

In conclusion, the following theorem holds

Tueorem 2: A linear form A e C(M, 8)' is an extreme point of Bewy, gy #f, and only
if. there exist xe M and an extreme point A of By such that A =0, A.

2. Let M and N be compact Hausdorff spaces and let § and Fbe complex Banach
spaces, with & strictly convex. In [4], M. Cambern has characterized all linear isome-
tries of C(M, 8) into C(N, ), proving the following theorem, which extends previous
results established by W. Holsztyfiski in [9] for the case § = F=C.

TreoreM 3: Let Ae £(C(M, &), C(N, &F)) be a linear isometry. If F is strictly con-
vex, there exist:

a set K(A)cN;
a continuous, surjective map v : K(A) —M;

a map N3y C, e L&, F), which is continuous for the strong operator topology
in L8, F), such that

(6) (Af)(y) = C,(foy(y))
for all ye K(A) and all fe C(M, §).

The set K(A) and the map 1 are described as follows.
For xeM, E€9B(M, §), let

F(&, x) = {feCM, 8): f(x) = | fllcon. 5 &},
Ry(&, %) = {yeN: AN z=llcw, o VfeFE, x)},
Ky(x) =U{K(&, x): E€B(M, 8)},
K(A) =U{K,(x): xe M}.
In [4], Cambern shows that K4 (&, x) = ¢ for all xe M, and

X1 #Xz = KA(XI) mKA(Xz) =0 .

Hence, for every y € K(A) there is a unique x € M such that y € K;(x). The map
Y : K(A) > M is defined by setting x = y(y).



Any & e 8 defines a function § e C(M, &) as follows:
E&x)=& VxeM.

For ye N, the operator C,e £(§, F) is given by
C,(§) =A&).
Since, for any ye N,
IC, &lls= A& [l7< AN & llcaw,

= lI&llear, o = 5

8
then
ICIs1 VyeN.
Being éeF(E, x) for all xe M, then
ICEl-= 14, vEes, VyeK(A).

Since y—C, & is continuous for all £e §, that proves

Lemma 5: For any ye K(A), C, is a linear isometry of & into J.

In [4] M. Cambern shows that, if ye K, (x), then
(Af)(y) =C,(f(x)) VfeCM, ).

By the construction of 1, that yields (6).

ProposiTioN 2: If the map C: y—>C, of N into £(8, F) is continuous for the uni-
form operator topology of L£(8, F), the set K(A) is closed.

Proor: Let y, e K(A).
For any fe Boy, g and for n=1, 2, ... there is some y, e K(A) such that

A 00) = A < =
ie.,

A9 60) = G Ayl <
and moreover

1
IS, =Gl < —.
n
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Suppose that the set {1(y,)} is infinite. Because M is compact, the set {1(y,)} has
at least one cluster point x,. For any & > 0 there is an open neighbourhood U of x, in
M such that

|f(x) = flxp)ls<e VxeU.
Let 1,> 0 be so large that — <, and let # > 7, be such that x,e U. Then
ICAF) (39) — cy0<f;(¢§co>)Hgs 1A (o) = C,, (Fx, ) |5+
+[[(C,, = C,)Fx ) s+
+]C,, (f(x,) = flxo) 5
< [[(AF)(30) = C,, (Fx,)) 5+
+C,, = C A s +
G A Ce) = Fxo) s

1 1
< —+ —+e<3e¢.
n n

Since € >0 is arbitrary, that shows that
(Af)(pg) = C,, (f(x0)) .

Obviously, the same conclusion holds when the set {1(y,)} is finite; in which case
xo€ {¥(y,)} can be chosen such that y(y,) =x, for n, <m, <....
Let now #, be another cluster point of the set {%(y,)} when this latter set is infi-

nite, or such that v(y,,) = #, for 7, <m, <.... By the same argument as before, one
shows that

(AF) (o) = C,(fluy)).

Hence,

and therefore
fxo) =fluy) VFeCM,8)

because C, is injective. If xo # u, given any two vectors &, and &, in &, there is a func-
tion fe C(M, &) such that

flxg) =&y, fug) =&,.

Thus xy=uy, and yoe4(x,). ™
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In view of the definition of C,, the hypothesis of Proposition 2 can be rephrased
by requiring that the restriction of A to the closed subspace of C(M, 8) consisting of
all 8-valued constant functions on M be continuous for the uniform operator
topology.

Cororrary 1: [4] If dim § < o, K(A) 75 closed in N.

Lemma 6: Let F be strictly convex and § reflexive. If y € N and there is u € B4 such
that

A'(0,®u) =6,®41
for some xeM and A€ OBy, then ye K(A).

Proor: Since § is reflexive, there exists & € § such that (&, 1) = 1. If fe C(M, §) is
such that f(x) = ||f||c<M, o &, then

((Af) ), u) = (Af, 0, @u) = (f, A" (6, Qu))
= <f) 6x®/1> = <f(x); j~>
= Alleo, <&, A) = 1/ llccus, -

Since

1A llcas, & = (A @), 1) < AP Il
= AN =< 1Aflcon, & = I Alcws, »»

then

AN = 1l
and therefore fe K(A). =
On the other hand, if y e K(A), for any e 9By and all fe C(M, &)

(f, A"(6,@u) =(Af, 6,®u)
= (A1) ), ) = (C,(f(p (), u)
= (fp(»), C) (W) = (£, 0,0 ®C, (w)).

In conclusion, in view of Theorem 2, the following theorem holds

TureoreM 4: If F is strictly convex, and & is uniformly convex, then K(A) =N if,
and only i,

A" (O(C(N, F)'))cOCM, &)").
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3. Let M be, as before, a compact Hausdorff space, let § be a strictly convex com-
plex Banach space, and let T: R, — £(C(M, &)) be a semigroup of linear isometries
T(z): CM, 8 —=C(M, &).

According to Theorem 3, for every #= 0 there exist:

a subset K(T(¢)) of M;
a continuous surjective map ¢,: K(T(¢)) = M;

a map x+>C, , of M into £(8), continuous for the strong operator topology in

£(8), such that
() (T(2) f)(x) =C, (flg,(x) VfeCM, 8, VxeK(T(2)).

If =0, then K(I) =M, ¢o=1and C, , =1 for all xeM.
If 120, for all xeM ||C, ,||<1, and, if xeK(T(2)), C, , is a linear isometry of &.

Lemma 7: Let t,520 and xeM. If xeK(T(z)) and ¢,(x)eK(T(s)), then
xeK(t+s). If xeK(T(2)) NK(T(t +5)), then ¢,(x) e K(I(s)).

Proor: If ¢,(x) eK(T(s)), then xeK(T(z))N¢, (K(I(s))) and, for all
feCM, 8),

(8) (T(z+5) /)x) = (T(2) o T(s) f)x) =C, ((T(s) f)(p,(x))) =
=C oG 4,00 (f@s09,(x))
=G5 0G0 (f(2),
where z= (¢, 09, )(x). If Az) =|fllcaw, &, with [|gl|;= 1, then
ITC +5) £ s =1/ Nls =l o = 1T+ 5) Allc, o-
Therefore x e K(T(# + 5)) and
) T(t+5) fx) = Cris ([, 4 (x))).
Choosing /= & for any &c 8, (8) and (9) yield
Cris (&) =Tz +5) &%)
=G 0C p0(8),
whence

(10) C/er,x:C/,xo s, ¢, (x) Vf,XER+,

and therefore

A, :(0) =flp,09,(x))  VieCM,8).
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If xe K(T(#)) N K(T(¢+s)), then
Cois o (f@ry () = (T(t+5) FHlx) = (T(2) o T(s) £)(x)
=G, ((T(s) /)@, (x))).
Letting 2= ¢, ,(x), if /(z) =||fllcw, » &, with [|&]; =1, then
I(TCs) )@ Dz = 1Cs 15, (S s GN s = [T+ 5) /) s
= /@ ls = llcos, o = 1TC + 5) fllean, o
and therefore ¢,(x) €K(T(s)). m

CoRrROLLARY 2: If t,5=0,
K(T()) NK(T(¢ +5))) = ¢, " (K(T(5))),
and ¢, ;= ¢, op, on ¢; (K(T(s))).

In general, the family {K(T(#)): #> 0} is not increasing, as the following lemma
shows.

Lemma 8: If
(11) K(T(#)) cK(T(t +5))
for some t=0 and some s >0, then K(T(r)) =M for all r=0.

Proor: If (11) holds for some =0 and some s> 0, then
K(T(2)) = K(T(2)) N K(T(z + 5)) = ¢ (K(T(5))),
and therefore
M=¢,(K(T(2))) = K(T(s)) .
Hence, if 0 </<s and r=s5—/, then
K(T(r)) = K(T(r)) " K(T(s)) = K(T(r)) N K(T(r + 1))
= ¢, (K(T(])),
and therefore
M= ¢,(K(T(r))) = K(T(])),

showing that, if K(T(s)) =M for some s >0, then K(T(r)) =M for all re [0, s].
Let

so=sup{s=0: K(T(s)) = M}.

If 0 <s5,< o, there are ¢, 5, with 0 << s, and 0 < s < 5y, such that #+ 5> 5.
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Then K(T(z)) = M = K(T(s)), and therefore
K(T(z+5)) = K(T(£)) N K(T(z + 5)) = ¢, (K(T(s)))
= ¢, (M) =K(T(z)) =M.

This contradiction shows that either s, =0 or 5, = + o, and completes the proof
of the lemma. =

If (11) holds for some =0 and some s >0, (7) holds for all =0, fe C(M),
xeM.
Let #>1 and let #,>0 for j=1,2, ..., n. Then

(12) K(TH)NKI(H+6) N NKT(H+5+...+82)) =
(K(T(£,)) N K(T(#, + £))) N (K(T()) NK(T(#, + 1, + 1)) N ... N

(K(T(t,) NK(T(t, + &+ ... + 2,))) = ¢, " (K(T(%))) N
¢, (KT +6)))N..Ng, HK(T(t+ ...+ 2,) =

¢, (K(TL) NK(T( + ) N NK(T( + ...+ 8,)) =
¢ o KT N NK(T( + ...+ 2,) =...=

pilop, o op, !t (K(T(2,)) #0.

Lemma 9: The set
N{K(T(): t=0}
is compact and non-empty.

Proor: By the chain of equalities above, the family {K(T(¢)): #= 0} of closed sub-
sets of the compact space M has the finite intersection property. ™

CoroLLary 3: If K(T(z)) is closed for all teR ., the set
(13) K. (T) = N{K(T(1)): t= 0}
is compact and non-empty.

The fact that the set K., (T) is non-empty follows from weaker conditions.

TueoreM 5: If there is some s > 0 such that K(T(¢)) is closed whenever 0 < ¢t <,
the set Ko (T) defined by (13) is non-empty.
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Proor: Consider the set (12), where £,>0 for p=1, 2, ..., . Letting £, = g,s +
+7,, with g,€Z, and 0<7,<s for p=1,2, ..., n, the set (12) contains the set

” 9p

Glty, ooy t,) =K(T(t,)) N | N K(T(t, + ...+ 1,1 + ) NK(T(t, + ... + 1,)) |,

p=2\/=0
which — as was noticed before — is not empty. Since
KTt + oo+ t, 1+ G= D) NOK(T(t + ..o+ 2,y +j5) =

(ptl+,“+tp71+(/71)y—1(K(T(5)))

and
KTty + ...+ t, 1+ g, 9) NK(T(#, + ... + 2,) =
KTt + oo+ t, o+ g, NK(T( + .o+ 1y + g5+ 1,) =
DPovtovy g (K(T(r,))),
the set G(¢, ..., t,) is closed. By the finite intersection property, the intersection of all
sets G(ty, ..., t,) is not empty. Hence K (T) is not empty. ®

As a consequence of Proposition 2, the following lemma holds.

Lemma 10: If there is some ty> 0 such that the map x> C, , of M into L£(8) is con-
tinuous for the uniform operator topology whenever te [0, t,1, then K, (T) 2 0. If the
hypothesis holds for all +>0, K., (T) is also closed.

Corollary 1 yields
CoroLLary 4: If dim:8 < oo, K, (T) is closed and non-empty.

Let K, (T) be non-empty.
Since K(T(s)) = ¢, " (M), for all s=0

¢ UKL (D) =¢, " (N{K(T(s)): s=0}) = N{pp, " (K(T(5))): s =0}
=M{K(T(z+5):5=0} = N{K(T(s)): s=¢} >

SMN{K(T(s)): s=0}) =K., (T),



and therefore

(14) ¢, (Ko (T))cKo(T) V=0.

Remark: The set K, (T) — if non-empty — is the largest subset of M which is ¢ -
invariant for all 7= 0. Let xe M. Then x e ¢, (K., (T))\ K (T) for some ¢ > 0 if, and
only if,

xeK(T(#)) NK(T(t+5)) Vs=0,
ze.,
xeK(IT(s)) Vs=¢,
and moreover

xe K(T(r))  for some re (0, #).

Hence
(15) ¢ (Ko (T))\K.. (T) ¢ N{K(TX =} \K(T
for some re (0, ¢).

If
(16) K(T(#)) cK. (1)

for some #> 0, then K(T(s)) >K(T(z)) for all s> 0, and Lemma 8 yields

Tueorem 6: If, and only if, (16) holds for some t >0, then K, (T) =M, and (7)
holds for all t=0.

Let K (T) be closed and non-empty. In view of the ¢ -invariance of K.. (T), one
defines a semigroup T: R, —L(C(K,, (T), 8)) of linear contractions of C(K, (T), §), by

(T(2) g)(x) = G, . (glg,(x)))
for all £1=0, ge C(K,(T), 8), xe C(K,(T)).

4. Let M, N, P be compact Hausdorff spaces, §, F, § be complex Banach spaces,
with &, G strictly convex, and let

Ae L(CM, 8), C(N, F)), BeL(C(N,TF), CP,Q)

be linear isometries. Then Bo A is a linear isometry of C(M, &) into C(P, G).
Arguing as in the proof of Lemma 7, one shows that

(17) K(B)NK(BoA) =yg'(K(A))
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and

Yroa=ypops on Y5 (KA)).

If M=Pand § = G, and if Bo A is the identity on M, then K(Bo A) = P, and (17)
becomes

whence K(A) = N. That implies M. Jerison’s extension, [10], of the classical Banach-
Stone theorem to vector-valued, continuous functions.

Let now M = N and § = & By similar arguments to those developed in n. 3, one
can handle the discrete case, in which the semigroup T is replaced by the iterates
{A": ne N} of an isometry A € £L(C(M, §)), and the Banach space § is strictly convex.
Assuming in Theorem 3 N =M, & = &, and replacing A by A", K(A) by K(A"), C, by
Ca» y, Y by ¥ 4+, one shows, as in n. 3, that

K(A?) NK(A?*1) =y 1} (K(AT)).
Let ny, ny, ..., n, be positive integers. As in n. 3 one proves that
(18) KA™)YNKAm ) . . NKA"T %)=y ho...op b (KA™)) #0,
and this shows that
N{KA"): neZ,}#0.
Since the left-hand side of (18) contains the set

n ot .ty

ﬂ1 KA™) =yt oyt o opihs in1(KA))

m=

which is (non-empty and) closed when K(A) is closed, the following proposition

holds.

Prorosition 3: If K(A) is closed, the set

K. (A) :=N{KA"): nez,}

is non-empty.

Similar arguments as those developed in the proof of Lemma 8 lead to
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Lemma 11: If
K(A?)cK(A?*9)

for two positive integers p and q, then K(A) =M.
Arguing as in Theorem 6 one proves

TueoreM 7: If, and only if,
K(A?)cK,(A)
for some p=0, then K(A) =M.

If Ae £(C(K.(A),8)) is defined by

(Ag)(x) = Cy, (gl 4(x)))

for all xeK.(A) and all geC(K.(A),8), then A is a contraction of
C(K, (A), 8). ~
If AL =& for some e C and §€ 8\{0}, then |{| =1 and AE =CS, ie,

Ca () =05 VxeK,.(4),

and viceversa. That proves

Lemma 12: Let Ko (A) # 0. If, and only if, C is an eigenvalue of Cy_, wz’z‘/yNan eigen-
vector Ee 8\{0} for all xe K, (A), then |C| =1 and  is an eigenvalue of A with an
eigenvector &.

Let now

(19) (Af)(y) =Cfly) VYfeCM,S$§)

and for some yeM and §eC. Then |{| <1. If feF(§, y) for some §e & with
||'§||8: 1, then

AN s = 1211 e, = 1E 1A e, o-
Thus
tedd = yeK(A),
and therefore

Cay(fly () = (AN)y) =&f(y)  VfeClM,§).
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Because Cy , is an isometry, that implies that

£ a0l = 17 s
for all fe C(M, 8), and therefore ¥ 4(y) =y, proving thereby

ProrosiTioN 4: If yeM and e dA satisfy (19), then ye K(A), Y 4(y) =y and
CA,y = é]

We shall conclude this section with a result on the compression spectrum of A4 in
the case in which M =N, § = §=C and A is a linear isometry of C(M) onto C(N).
Now K(A) =M, and A is expressed by (1) for all yeM and all fe C(M), with
ae @(C(M)) and ¥ a homeomorphism of M onto itself.

The compression spectrum of A is, by definition, the point spectrum po(A’') of
the dual operator A" of A. If epo(A’), there is some e C(M)' \{0} such
that

(20) (Af, Ay =¢&f, Ay VYfeCM),

ze.,
[ at) o) datx) = ¢ [0 dat)

for all fe C(M), where A has been identified with its representative Borel mea-
sure.

This implies, first of all, that {# 0.

Let x, € Supp 4 be such that y(x;) ¢ Supp 4. Le U be an open neighbourhood of x,
in M, disjoint from SuppA, and let V=1 ~1(U).

For any fe C(M) such that Suppfc U,

[ da) =0,
and therefore
1) jau) Fp(x)) dilx) =0 .

If ge C(M) is such that Supp gc V, then, setting f=goy ', Suppfc U, and (21)
yields

[ a0 gx) di) =0,

showing that x; ¢ Supp A: which is a contradiction.
Hence, y(SuppA) cSuppa, and therefore ¥(Suppld) = Supp A because y is a
homeomorphism. That proves

Tueorem 8: If Ae L(C(M)) is a bijective isometry and if {epo(A'), then



& #0. Furthermore, the support of anmy 2eC(M)'\{0} satisfying (20), is -in-
variant.

As a consequence, if Suppd={x,}, then x;, is fixed by ¥. In that case,

&= flx).

5. — Applying some of the results of n. 4 to T(¢), for any # > 0, we see that, if K(T(#)) is
closed, the set

K. (T(#)) :== N{K(T(nt)): neN}

is non-empty and T(z) is a contraction of C(K, (T(z)), &).

Lemma 13: If (T(z) £)(x) = &f(x) for some 1> 0, xe M and € dA, and for all
feCM, 8), then xe K(1(7)), ¢.(x) =x and C, ,=Cl.

Cororrary 5: Let K(T(t)) be closed. If xe K (T) and © >0 are such that

(T(r) g)(x) = g(x) VgeCK,(T),8)
and if, for every te (0, 1) there is some ke C(K(T), 8) for which

(T(2) k) (x) # klx),

then C, =1 and the semiflow ¢ is periodic with period v at the point x.

So far, no hypothesis on the topological structure of the semigroups T and T has
been introduced.

Throughout this and the following sections, K., (T) will be assumed to be closed and
non-empty.

For any =0 and any xe K, (1),

(T(t) F)(x) =C, (flp,(x) =(T fik ) (x)
for all fe C(K,(T), 8).

Let the semigroup T be strongly continuous.
Since, for any &€ §,

G, (E) = (T &),

the map (¢, x) = C, , of R, X K. (T) into £(8) is continuous for the strong operator
topology in £(8).

We will show now that ¢ :¢—¢, is a continuous semiflow in K, (T), Ze.,
(¢, x) = ¢,(x) is a continuous map of R, X K, (T) into K (T).

If that is not the case, there exist £, = 0, x, € K., (T) and an open neighbourhood U
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of ¢, (xy) such that, for every 6 > 0 and for every open neighbourhood V of x, there
are teR, N (t,— 9, t, + 0) and x e V for which ¢,(x) ¢ U. In view of the compact-
ness of K., (T), there are generalized sequences {#;} in R and {x;} in K.. (T) converg-
ing to # and to x, such that ¢, (x;) ¢ U and that {¢,(x;)} converges to some

(22) yoeKm(T)\U.
Hence, for any fe C(K, (T), 8),
Cfo, Xo(f(¢to(x0)) = C;O,Xo(f(yo)).

The injectivity of C, ,, implies then that f(¢, (x,)) = f(y,) for all fe C(K., (T), &),
and therefore ¢, (x,) = y,, contradicting (22) and proving thereby that the semiflow
¢ is continuous.

fL:R,—L(CK,(T),8)) is the semigroup defined by the continuous semiflow
t—¢, on K. (T); ze.

(23) L(t)g=go¢,
for all #=0 and all ge C(K,(T), §), then

24 (T 9x) =C, (LIN(x) V=0, geCK.(T),8), xeKu(T).

The map T(z) is a linear isometry if, and only if, ¢, is surjective. It is easily seen,
[18], that the set of all #> 0 for which T(z) is an isometry is either R* or the empty
set.

If the semigroup T is strongly continuous, Corollary 5 may yield more information
on the global behaviour of ¢, and C, . As an example, assume now that M is the unit
circle: M = 94. According to Proposition 3 of [19], if the continuous semiflow ¢ has a
periodic point with period 7 > 0, then ¢ is periodic with period 7. Hence, the follow-
ing theorem holds.

TueoreM 9: Let the semigroup T be strongly continuous. If M is the unit circle and
x and T satisfy the hypotheses of Corollary 5, then ¢ is the restriction to R, of a continu-
ous periodic flow, and T is the restriction to R, of a strongly continuous periodic group
R X C(04, 8§ —C(9A4, 8) of surjective linear isometries of C(34, 8).

For any #eR and ge C(04, 8), xe dA, T(¢) g is expressed by
(T(2) g)(x) = C, . (g(g,(x))),
where, C, , is invertible in £(C(M, &)) for all &R, and, if <0, C, , is expressed by
C.=Cy ¢,(x)_1-

Going back to the general case of C(M, §), since K., (T) is closed and non-empty,
the contraction semigroup T acting on the Banach space C(K,, (T), 8) is strongly con-
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tinuous, its infinitesimal generator X: M(X) c C(K,, (T), &) — C(K (T), &) is m-dissi-
pative.

If the semigroup T is strongly continuous — in which case its infinitesimal genera-
tor X : M(X) c C(M, &) — C(M, 8) is conservative and m-dissipative, [16] — also T is
strongly continuous.

The space A consisting of the restrictions to K., (T) of the elements of M(X) is con-
tained in M(X). Hence, if Y is the linear operator with domain M(Y) = @ defined on
the restriction to K, (T) of any fe M(X) by

Yk, m)(x) = (Xf)x)  VxeK.(T),

then Yc X.
Because T(¢) D(X) c A(X), then

T(t) DY) cd(Y).

Since M(X) is dense in C(M, &), if the space C(M, &) k., (1) of the restrictions to K., (T)
of all fe C(M, §) is derlse in C(K, (T), &), then @ is dense in C(K, (T), &). Thus A =
=®@(Y) is a core of X, and the following lemma holds.

Lemma 14: If C(M, &) k(1) #s dense in C(K.,(T), &), the operator X is the closure
of Y.

If T is strongly continuous, also the semigroup L is strongly continuous. Denoting
by D: ®M(D)c C(K, (T), §) = C(K, (T), &), the infinitesimal generator of L, then, for
any £€ 8, Ee D(D) and D& =0.

The space C(K, (T), ) is a module over the ring C(K,, (T)) of all complex-valued
continuous functions on K., (T). The infinitesimal generator D, of the Markov lattice
semigroup L, defined in C(K,(T)) by the semiflow ¢ 1is a derivation
Dy: D(Dy) c C(K, (T)) > C(K (T)). If pe @D(D,y) and fe M(D), then ¢fe MD(D)

and
D(¢f) =Dy¢-f+ ¢-Df .
Hence, if £€ 8,
D(¢§) =Dy §.

Since all non-trivial derivations in C(K, (T)) are unbounded ), and since D is
closed, the following lemma holds.

Lemma 15: If D(D) = C(K, (T), 8), then D=0.

() See [12], or also [17] for a direct proof.
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For all #>0 and all ge C(K, (1), §),

~ | =

(T(1) g — g)(x) = %(cz,x—n((uz:) ()

; %((Lm ~ D g)x).

Hence, if ge M(X) N D(D), the limit

lim = (C,., = DL )00) = lim = (G, o= Do),

0

exists for all xe K, (T), and

(25) X g)x) = lilm L (G, — D(g(x)) + (Dg)(x).

ty0 ¢

In particular, letting

R={Ec8: EcX)},

for all £e X and all xe K, (7).

Since X is closed and also the image %X of X in C(K, (T), &) by the map &+> fisa
closed subspace of (X), the operator X, is closed. As a consequence:

Lemma 16: If T is strongly continuous, for every xeK, (T) the linear operator

Z,DZ,)=Rc&E—E§
defined by
Z.E= (X&(x)
is closed (*).

() Here is a direct proof. Let £ e M(Z,) and let {€,} be a sequence in M(Z,), converging to
& and such that {Z,£,} converges to some 5 € &. Since the sequences {&,} and {Z,§,} =

= {Xé} in C(M, 8) converge respectively to £ and to 7, then fe M(X) and 7= j(g, le.,

EeM(Z,) and n=27E.
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Let ge M(X) N M(D). Since g(x) € K, (25) yields

27) (Xg)(x) = Z,(g(x)) + (Dg)(x)

for all xe K, (T).
If X = &, thatis, if § e M(X) for all E€ &, then alx) e ®(X), and the following lem-
ma holds. T

Lemma 17: If X = &, then Z, e £(8), D(D) = W(X) and (27) holds for all g M(D)
and all xe K, (T).

Since the closed operator X is densely defined, conservative and m-dissipative, its
spectrum o(X) is non-empty, [16](). Either o(X) is the closed left half-plane
{eC: Mg <0}, or 0(X) is contained in the imaginary axis: in which case T is the re-
striction to R, of a strongly continuous group of surjective linear isometries of
C(M, &) (and K, (T) =M).

If T is an eventually differentiable semigroup, according to a theorem of A. Pazy
(see [11], Theorem 4.7, pp. 54-57), there are a € R and b € R* such that the resolvent
set of X contains the set

{CeC:NE=a—blog |IC|}.

As a consequence, the first of the two possibilities listed above is ruled out, and
o(X) turns out to be a compact subset of the imaginary axis. But then (see [5], Corol-
lary 8.20), X € £L(C(M, 8)). Hence M(X) = C(M, §), and (25) — which holds (with X
replaced by X) for all ge C(M, &) and at all xe M — yields: (D) = C(M, §). Thus, by
Lemma 15 the following proposition holds.

ProrositioN 5: If T is an eventually differentiable semigroup, there is a conserva-
tive operator X € L(C(M, 8)) such that T is the restriction to R, of the group G : R—
— L(C(M, 8)) of surjective linear isometries defined by

(G(2) flx) = ((exptX) f))(x)
for all fe C(M, 8), teR and xeM.
Remark: The same argument as before shows, more in general, that any strongly
continuous, eventually differentiable semigroup of linear isometries of a complex Ba-

nach space Jis the restriction to R, of a strongly continuous group of surjective linear
isometries of 7.

(°) We correct a misprint in [16], where the inclusion #(X) ¢ 11, displayed at p. 309, shall be
replaced by #(X)>1I,.
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6. Since, for t=0 and 5 >0,
Cl+/9,x:Cl,xOC/9,¢,(X)’

then, for any £e X, (25) yields

_C/XXE (¢,(x))) /xZ(p, (E)

Hence, the map #—C, (&) of R, into § is of class C' on R, , and

(28) = Gl = C, (X, (x)))

= Ct, X (Z(p,(x) (6))

for all xe K, (T) and all £ XK.
For =0, let

A(2): D(A(2)) € L(C(K, (T), 8), &) = LIC(K, (T), &), 8)

be the linear operator defined on

D(A() = LX(R), 8)

by
(A(2) R)(§) = E ),
ze.

((A(2) R)(&)), = (RX(&)));

where R e £(X (RX), &)).
Let C,e C(M, £(8)) be defined by

C:x—C, .
Then (28) yields the initial value problem

de_anc
dt

CO :I,
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ze.,

for all reR,, xeK,(T), Ee XK.
As before, let § be strictly convex and let T: R— £(C(M), 8) be a strongly continu-
ous group of linear isometries of C(M, &). Then K, (T) =M, and T is expressed by

(T(2) /)(x) =C, (f(9,(x)))

for all fe C(M, 8), xe M, teR, where ¢ : t— ¢, is a continuous flow on M, and
C, .e £(8) is a surjective isometry such that

Crisx=0C, . 0C 4 Vi, seR, xeM.

Suppose now that M is a compact differentiable (z.e. C ) manifold, and that the
flow ¢ is determined by a C* vector field » on M. For any fe C*(M, &) we define
v(f) e C(M, 8 componentwise; that is to say, setting for xe M and 1€ §’,

(W N(x), 4y = (((f(), AP (x) .
Clearly
feC*M, 8) = v(f)eC* (M, 8).

IfL: R— L(C(M, §)) is the group defined by (23) for all 7€ R and all ge C(M, §),
and if D is its infinitesimal generator, then

C*(M, 8 c®(D)
and

D(f)=uv(f) VfeC”(M,§8).

Lemma 18: If the map x> C, , of M into £(8) is of class C* for all t e R, tha map
t—>C, , is of class C” on R for all xe M.

Proor: For f5eR and »>0, let 9 : R—[0, 1] be a C* function for which
o) =1 i |t—ty| <7
0<o() <1 #fr<|t—ty|<2r
o(t) =0 if |t—ty|=2r.
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Then

— o0

+ o +
J Q(S) Ct+x,de:Ct,x( f Q(S) s, ¢,x)dx)

ze.,

+ +
fgs—t C, ds= x( f@(f) C,y,q),(x)ds)'

©

A neighbourhood U of # in R and >0 can be so chosen that

[ o) C. g 0ds=0

whenever ze U.
Differentiation with respect to # € U shows that the function ¢+ C, . is of class C'
on U for all xeM, and

+ o0
_ i(‘;_i’)(x—t)cwdx fg C,pds |+

Tteration of this computation completes the proof of the lemma. m

Thus, Z,e £(8) for all xe M, and

(29) z-4e
dr

By the same argument leading to Theorem 4 of [17] one proves then

Tueorem 10: If the strongly continuous group T : R— L(C(M, 8) of linear isome-
tries is such that
T(HC*(M,8)cC*(M,8 VieR,

then: M(D) = W(X); (27) holds for all ge O(X) and all x e M, where Z,, is expressed by
(29), and C* (M, 8) is a core for X.

7. If dim § < » and dim F< o, the sets K(A) and K(T(¢)) for all £= 0 are closed,
K, (T) is closed and non-empty, the linear isometries C4 , and C, , are invertible for
all £1=0.
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If the semigroup T (or the semigroup T) is strongly continuous, the isometries C,
are continuous functions of (¢, x) e R, X M (or of (¢, x) e R, X K, (T) respectively).

In the case in which § = F=C, [9], C, is represented by a continuous function
a: M—9A4; (4) and Theorem 2 yield

OCM)) ={heCM): |h(x)| =1 VxeM},
OCM)") ={cd,: cedd, xeM}.

Lemma 19: [15] If Ae C(M)', then L€ O(C(M)') i, and only i,
(b, 2] =1
for all he O(C(M)).

Theorem 4 generalizes the second part of the following

Tueorem 11: [15] If either

(30) A(B(C(M))) c O(C(N)),
or
G1 A"(B(C(N)") cOCM)"),

then K(A) =N, ie,
(32) (Af)(y) = aly)-(foy(ly) VyeKA), feCM).

Proor: The theorem is equivalent to the following chain of implications:
(30) = (31) = (32) = (30).

If (31) holds, for every y e N there are a unique xeM and a unique ce 94 for
which

A'd,=co,,
ze.,
(Af)(y) = ¢f(x)

for all fe C(M). Setting ¢ = a(y) and x =y(y), (32) follows.
If (30) holds, then, for every ye N and all /e ®(M),

1= |(Ab)(y) | = [{Ah, 0,)| = |[<h, A" 0,)],

and therefore, by Lemma 19, (31) holds.
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Viceversa, if (32) is satisfied, with a € @(N) and ¥ a continuous surjective map of
N onto M, then (30) holds. =

By the Tietze extension theorem, Lemma 14 yields
ProposITION 6: If dime & < o, the operator X is the closure of Y.

We consider now the strongly continuous semigroup T : R, — £(C(M)) of linear

isometries of C(M), and the strongly continuous semigroup T: R, — £2(C(K, (T)))
expressed on any ge C(K, (T)) by

(T(2) @)(x) = a,(x) gl ,(x)),

where a,e @(C(K,, (T))) is a continuous function of ¢, and ¢ : £~ ¢, is a continuous
semiflow on K, (T).

The existence of fixed points of the semiflow ¢ yields some information on the
point spectrum po (X) and the residual spectrum 7o (X) of X, as will be illustrated now
in the case § =C.

If x,e K, (T) is fixed by ¢, ie,

o, (x) =% V=0,
then
(33) (T(2) Hlxo) = a,(x) F(@,(x)) =a,(xq) flxo)
for all fe C(M), and
a4 5(x0) = a,(x) a (@, (x0)) = a,(x)) a,(x))

for all ¢, s=0.
Letting

@-ib) = 2o

we extend the map R, 3¢~ «,(x,) to a continuous homomorphism of R into the mul-
tiplicative group 94. Hence there is 2 € R such that

(34) a,(x,) = e
for all zeR, and therefore (33) becomes

(T(2) £)(x) =e“ f(x,) VteR,,
ze.,

(T(2) —e™1,6,)=0 VieR,.
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For any fe M(X),

—_

(XF)(xy) = (XF, 0,) = }ifré<7<T<f> - £ 6x0>

1 1
= lim — (a,(x,) f(@,(x0) — f(x0)) = lim — (a,(x0) — 1) flx)
tl0 ¢ tl0 ¢
= }1% ;(e’”‘ —1) flxo) = daf (xg) = (X —zal) £, 0,,).

Hence, € po(X) U ro(X).
In conclusion, the following theorem holds.

TueoreM 12: If xoe K (T) is fixed by the semiflow ¢, there is a€R such that
po(X) U ro(X), and (34) holds for all teR, .

If iz is an isolated point of o(X), then ([14], p. 178) 1z epo(X).
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