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NICOLÒ PINTACUDA (*)

Liu’s Markov Chains Generalized (**)

ABSTRACT. — In this paper, the Markov chain model proposed by Liu [2] is extended and
analyzed in detail. Recurrence conditions and invariant measures are discussed, the mean pas-
sage times between states are worked out in explicit form.

Una generalizzazione delle catene di Markov del tipo di Liu

SUNTO. — In questa nota viene esposta e analizzata una generalizzazione delle catene di
Markov proposte da Liu [2]. Si stabiliscono condizioni di ricorrenza, esistenza e forma delle mi-
sure invarianti; si perviene infine al calcolo in forma esplicita dei tempi medi di passaggio tra gli
stati.

1. - INTRODUCTION AND PRELIMINARY RESULTS

We consider in this paper a general model of Markov chains on the positive inte-
gers, with transition probabilities p(m , n) given by

p(m , n) 40 for nDm11 p(n , n11) 4pn with 0 EpnE1

p(n , k) 4
rk

r01R1 rn

(12pn ) for kGn (rnF0)

We suppose r041, and put sn4 r01R1 rn for short.

(*) Indirizzo dell’Autore: Corso Cairoli 96, 27100 Pavia.
(**) Memoria presentata il 20 giugno 2000 da Giorgio Letta, uno dei XL.
AMS Subject Classification: 60 J 10.
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Markov chains Xn of this kind are irreducible; they are skip–free to the
right, in that the probability P(Xn112XnD1) vanishes for every n .

Letting rn41 for every n , we get the model of Liu [2]. The renewal chain is ob-
tained when rn40 for every nD0.

Some noticeable applications of the former case are mentioned in Liu [2]; the
model of this paper is concerned with the following replacement situation: an elec-
tronic component is replaced (upon failure at age n) with another component, still op-
erating though not necessarily fresh, aged according to a distribution which is propor-
tional to the numbers r0 , R , rn .

In the present section we collect some preliminaries and establish a technical lem-
ma; the invariant measures are treated in Section 2. In Section 3 some hitting probabil-
ities are determined and the recurrence condition is found. Finally, Section 4 is devot-
ed to the explicit computation of the mean passage times between states.

We first introduce two positive functions defined on the state space; they will play
a major role in all developments concerning the quantitative behaviour of our Markov
chains.

Define

g(0) 40 g(1) 4
1

p0

g(n11) 4g(n)1
12pn

sn p0 Rpn

for nD0(1)

s (0) 41 s (n) 4 sn p0 p1 R pn21 for nD0(2)

Clearly, g is increasing, s is strictly positive. By s we also mean the measure
s (A) 4 !

k�A
s (k).

LEMMA 1: For nD0 the following equality holds:

g(n) 4 !
k41

n rk

sk21 s (k)
1

1

s (n)
.

PROOF: The proof is a trivial verification for n41. For nD1, a simple computa-
tion gives

1

s (n11)
2

1

s (n)
1

rn11

sn s (n11)
4

4
1

sn11 p0 R pn

2
1

sn p0 R pn21

1
rn11

sn sn11 p0 R pn

4

4
12pn

sn p0 R pn

4g(n11)2g(n)

and the lemma is proved.
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For a given function f , we write

f (n) 4 !
k40

n rk

sn

f (k) Sn ( f ) 4 sn f (n)2 !
k40

n

rk f (k) 4 sn (f (n)2 f (n) )

whence the identity

Sn11 ( f )

sn

4 f (n11)2 f (n) .(3)

2. - INVARIANT MEASURES

The existence of invariant measures is completely settled by the following
proposition.

PROPOSITION 1: An invariant non zero measure exists if and only if the products
(p0 R pn ) tend to zero for nKQ . In this case the measure s , defined as in (2), is the
only invariant measure up to multiplication by a positive constant.

PROOF: Let m be a (positive) non zero invariant measure. The invariance equation
m(k) 4!

j
p( j , k) m( j) for k40 reads

m(0) 4 !
j40

Q 12pj

sj

m( j) .(4)

Then m(0) D0. Denoting m(0) by c , the other invariance equations are

m(k11) 4pk m(k)1 rk11 !
j4k11

Q 12pj

sj

m( j) 4(5)

4pk m(k)1 rk11uc2 !
j40

k 12pj

sj

m( j)v .

For k40, we immediately get

m(1) 4p0 c1 r1 c2 r1 (12p0 ) c4cs1 p04cs (1)

If the equality m(k) 4cs (k), just checked for k40 and k41, is supposed to hold for
j40, R , k , equation (5) implies m(k11) 4cs (k11), as seen by a tedious but
straightforward verification.
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In conclusion, we have m4cs , and the equality (4) implies

c4c(12p0 )1 lim
n

!
j41

n

c(12pj ) p0 R pj214c2c lim
n

(p0 R pn )

that is (p0 R pn ) K0.
Conversely, suppose (p0 R pn ) K0. Then m(k) 4s (k) is easily shown to satisfy

the invariance relations (4) and (5).
The proposition is proved. r

Note that the condition occurring in Proposition 1 can also be expressed under
the equivalent form !

n
(12pn ) 4Q .

3. - HARMONIC FUNCTIONS, HITTING PROBABILITIES AND RECURRENCE

A function f satisfying the equality f (k) 4!
j

p(k , j) f ( j) is usually said to be har-
monic in k .

The probability u (n) (k) of hitting the state n before entering 0 as a function of the
starting point k is a well known example of a function which vanishes in 0 and is har-
monic in the interval ]0 , n[. Due to the irreducibility, u (n) (1 ) c0.

We prove the following

PROPOSITION 2: Let f be harmonic in the interval ]m , n[ and g be defined as in (1).
Then the ratio

f (k)2 f (m)

g(k)2g(m)

does not depend on k for mEkGn .

PROOF: For mEkEn , harmonicity in k entails

f (k) 4pk f (k11)1 (12pk ) f (k)

that is

pk ( f (k11)2 f (k) )4 (12pk ) ( f (k)2 f (k) )4
Sk ( f )

sk

.(6)

Taking (3) into account, the following simple recursive relation for Sk ( f ) is
obtained

Sk11 ( f ) 4Sk ( f )1 sk ( f (k11)2 f (k) )4Sk ( f )1 sk
12pk

pk

( f (k)2 f (k) )4
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4Sk ( f )1Sk ( f )
12pk

pk

4
Sk ( f )

pk

leading by iteration to

Sk ( f ) 4
p0 R pm

p0 R pk21

Sm11 ( f ) .(7)

Letting Cm4p0 R pm , substitution in (6) yields

f (k11)2 f (k) 4Cm Sm11 ( f )
12pk

sk p0 R pk

4Cm Sm11 ( f ) (g(k11)2g(k) )

for mEkEn . Summing over k

f (k)2 f (m11) 4Cm Sm11 ( f ) (g(k)2g(m11))(8)

for mEkGn .
Take a function u , vanishing in 0 , harmonic in ]0 , N[, with u(1) c0 (we saw an

example at the beginning of this Section). Since clearly S1 (u) 4u(1), equation (8) for
f4u and m40 gives

u(k)2u(1) 4C1 u(1)(g(k)2g(1)) for 0 EkEN .

Thus g(k) 4
1

C1 u(1)
u(k)1constant is also harmonic in ]0 , N[, for any N .

Relation (7) applies to g , m40 and kD0; remarking that p0 S1 ( g) 41 we
have

Sk ( g) 4
p0 S1 ( g)

p0 R pk21

4
1

Ck21

4
sk

s (k)
(kD0) .(9)

The identity (3) allows us to write

f (m11)2 f (m) 4
Sm11 ( f )

sm

4Cm Sm11 ( f )
Sm11 ( g)

sm

4

4Cm Sm11 ( f ) (g(m11)2g(m) ) .

Adding this to (8), we finally obtain

f (k)2 f (m) 4Cm Sm11 ( f ) (g(k)2g(m) )

for mEkGn . The proof of Proposition 2 is accomplished. r

The next proposition deals with the hitting probabilities.
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PROPOSITION 3: Starting from mEn , the probability w(m , n) of hitting n before re-
turning to m is given by

w(m , n)214s (m) u 1

s (n)
1 !

k4m11

n rk

sk21 s (k)
v .

PROOF: Let u(k) be the probability of hitting n before entering m , as a function of
the starting point k; obviously w(m , n) 4pm u(m11).

Since u is harmonic in the interval ]m , n[ and u(m) 40, Proposition 2
implies

u(k) 4C(g(k)2g(m) ) .

Observing that u(n) 4C(g(n)2g(m) )41, we find

u(k) 4
g(k)2g(m)

g(n)2g(m)

whence

w(m , n) 4
pm (g(m11)2g(m) )

g(n)2g(m)
.

Thanks to (9), g(m) is easily computed:

g(m) 4g(m)2 (g(m)2g(m) )4g(m)2
Sm ( g)

sm

4g(m)2
1

s (m)
.

Taking Lemma 1 into account, Proposition 3 is proved. r

COROLLARY 1: The chain is transient if and only if the function g is bounded.

PROOF: The sequence w(0 , n) tends to the probability of no return to 0; so tran-
sience is equivalent to boundedness of w(0 , n)21 . On the other hand, w(0 , n)214

4g(n) by Proposition 3. r

Recurrent chains do have an invariant measure. But also transient chains may have
one, as shown in the following simple example: take rn41 for every n , pn4

4k(n11)/(n12) and verify that s (n) 4kn11 is indeed an invariant measure,
though the chain is transient.

Positive recurrence, in turn, is easily characterized, being equivalent to s (N ) 4

4 !
kF0

s (k) E1Q .

In the positive recurrent case, the invariant measure s can be normalized to the
(unique) invariant probability distribution p; the quantity 1/s (N ) equals the expect-
ed return time to 0 .
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4. - MEAN PASSAGE TIMES

This section deals with the calculation of the mean passage times between states.
Let t(m , n) denote the expected time to hit the state n starting from m . The results we
prove are summarized in two propositions.

PROPOSITION: 4: For mEn the expected time to reach n starting from m is given by
t(m , n) 4 t(0 , n)2 t(0 , m), where

t(0 , n) 4 sA(n)1 !
k41

n rksA(k)

sk21

with sA(k) 4
1

s (k)
!
j40

k21

s ( j)

for any nD0, and s defined as in (2).

PROOF: The chain being skip-free to the right, the additivity t(0 , m)1 t(m , n) 4

4t(0 , n) holds for 0 GmGn , which allows us to treat t(0 , n) for nD0 as the sum
t(0 , n) 4 t(0)1R1 t(n21) of one stair passage times t(k) 4 t(k , k11).

A simple first step analysis yields

t(k) 4 t(k , k11) 411!
i

p(k , i) t(i , k11) 411 (12pk ) !
i40

k ri

sk

t(i , k11) 4

411
12pk

sk

!
i40

k

ri t(i , k11) .

In particular, we immediately get t(0) 411 (12p0 ) t(0), t(0) 41/p0 .
As sA(1) 41/s (1) 41/(s1 p0 ), the claim of Proposition 4 is true for n41.

The equations above are best written putting Ak4 !
i40

k

ri t(i , k11) and read

sk t(k) 4 sk1 (12pk ) Ak .

Remarking that

Ak4 !
i40

n

!
j4 i

k

t( j) 4 !
j40

k

!
i40

j

ri t( j) 4 !
j40

k

sj t( j) Ak2Ak214 sk t(k)

the recurrence equation becomes

pk Ak4 sk1Ak21 .

A very simple relation is obtained by multiplying both sides by p0 R pk21 :

p0 R pk Ak4p0 R pk21 Ak211s (k)

leading to

p0 R pk Ak4p0 A01s (1)1R1s (k) 4s[0 , k] .
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Adding up the one stair passage times gives, for nD1

t(0 , n) 4 !
k40

n21

t(k) 4A01 !
k41

n21 Ak2Ak21

sk

4

4A01 !
k41

n21 u Ak

sk

2
Ak21

sk21

v1 !
k41

n21

Ak21u 1

sk21

2
1

sk

v4

4
An21

sn21

1 !
k41

n21 rk Ak21

sk sk21

4
An21

sn

1 !
k41

n rk Ak21

sk sk21

.

The proof is complete, because

Ak21

sk

4
p0 R pk21

s (k)
Ak214

s[0 , k[

s (k)
4 sA(k) . r

Since t(m , n) is finite for mEn , the passage times t(m , n) with mDn have finite
expectation if and only if the chain is positive recurrent (see [1], Th.1, p. 62), in which
case the following proposition holds.

PROPOSITION 5: In the positive recurrent case, let p be the invariant probability dis-
tribution and mEn . The expected time to reach the state m starting from n is given
by

t(n , m) 4 t(n , 0 )2 t(m , 0 )1
1

p(m)

where

t(n , 0 ) 4m(n)1 !
k41

n rk m(k)

sk21

with m(k) 4
1

s (k)
!
jFk

s ( j)

for any nD0 and s defined as in (2).

PROOF: Recall that p is related to s by the relation p(n) 4s (n) /s (N ).
According to a well known result about positive recurrent Markov chains (see [1],

Cor. 1, p. 65), the mean commute time comm (m , n) 4 t(m , n)1 t(n , m) is given
by

comm (m , n) 4
s (N )

s (m) w(m , n)
4

1

p(n)
1 !

k4m11

n rk

sk21 p(k)
.(10)
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For m40 one obtains

t(n , 0 ) 4comm (0, n)2 t(0 , n) 4s (N ) u 1

s (n)
1 !

k41

n rk

sk21 s (k)
v2 t(0 , n) .

Observing that sA(k)1m(k) 4s (N ) /s (k), the second half of Proposition 5 is
proved.

For the first half, we have after (10)

comm (0, m)1comm (m , n)2comm (0, n) 4
1

p(m)
.

As t(0 , m)1 t(m , n)2 t(0 , n) vanishes, the conclusion follows. r
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