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Liv’s Markov Chains Generalized (**)

AsstracT. — In this paper, the Markov chain model proposed by Liu [2] is extended and
analyzed in detail. Recurrence conditions and invariant measures are discussed, the mean pas-
sage times between states are worked out in explicit form.

Una generalizzazione delle catene di Markov del tipo di Liu

Sunto. — In questa nota viene esposta e analizzata una generalizzazione delle catene di
Markov proposte da Liu [2]. Si stabiliscono condizioni di ricorrenza, esistenza e forma delle mi-
sure invarianti; si perviene infine al calcolo in forma esplicita dei tempi medi di passaggio tra gli
stati.

1. - INTRODUCTION AND PRELIMINARY RESULTS

We consider in this paper a general model of Markov chains on the positive inte-
gers, with transition probabilities p(#z, #) given by

plm,n)=0 for n>m+1 pn,n+1)=p, with 0<p,<1

p(n,k)=ﬁ (1—p,) for k<n (r,=0)

We suppose 7,=1, and put s,=r,+ ... +r, for short.

(*) Indirizzo dell’Autore: Corso Cairoli 96, 27100 Pavia.
(**) Memoria presentata il 20 giugno 2000 da Giorgio Letta, uno dei XL.
AMS Subject Classification: 60 J 10.
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Markov chains X, of this kind are irreducible; they are skip—free to the
right, in that the probability P(X,,, — X, > 1) vanishes for every #.

Letting 7, = 1 for every 7, we get the model of Liu [2]. The renewal chain is ob-
tained when r, =0 for every » > 0.

Some noticeable applications of the former case are mentioned in Liu [2]; the
model of this paper is concerned with the following replacement situation: an elec-
tronic component is replaced (upon failure at age #) with another component, still op-
erating though not necessarily fresh, aged according to a distribution which is propor-
tional to the numbers 7y, ..., 7,.

In the present section we collect some preliminaries and establish a technical lem-
ma; the invariant measures are treated in Section 2. In Section 3 some hitting probabil-
ities are determined and the recurrence condition is found. Finally, Section 4 is devot-
ed to the explicit computation of the mean passage times between states.

We first introduce two positive functions defined on the state space; they will play
a major role in all developments concerning the quantitative behaviour of our Markov
chains.

Define
1 1-p,
(1) 20)=0 g(1)=— gr+1)=gln)+ ——— for n>0
Do SnPo---Pu
2) o(0)=1 o(n)=s,pop1---py-1 for n>0

Clearly, g is increasing, o is strictly positive. By o we also mean the measure

o(A)= 2 o(k).
keA

Lemma 1: For n >0 the following equality holds:

7

. 7 1
g(n) = kgl o + ok

Proor: The proof is a trivial verification for » = 1. For » > 1, a simple computa-
tion gives

]. _ 1 n Ty 41
on+1) o(n) s,0(n+1)

_ 1 1 + Tn+1 _
Sn+1p0"'pn SﬂpO"'pﬂ—l snjnJrlpO"'pﬂ

L=p,
$nPo -+ DPn

and the lemma is proved.
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For a given function f, we write

fln) = /;::0 Z_kf(k) S, (f)=s,f(n) —;: o f(B) =5, (f(n) = F(n))

n

whence the identity

(3) L =fn+1)—f(n).

2. - INVARIANT MEASURES

The existence of invariant measures is completely settled by the following
proposition.

ProrosiTiON 1: An invariant non zero measure exists if and only if the products
(po---p,) tend to zero for n—> . In this case the measure o, defined as in (2), is the
only invariant measure up to multiplication by a positive constant.

Proor: Let #2 be a (positive) non zero invariant measure. The invariance equation

m(k) = 2])(/’, &) m(j) for £ =0 reads
7

1—p/-

i

m(j).

4) m(0) = éc:o

Then 72(0) > 0. Denoting 72(0) by ¢, the other invariance equations are

9 1_ X
5) b+ 1) = pemB) 41y S —— ) =

=k+1 Ly

k1 —n0p.
:pkm(k)-f-rkrl(c—.zo p] m(]))
j=

5
For £=0, we immediately get
m(1) =poc+ric—r(1—py) c=csipy=co(l)

If the equality 72(k) = ca(k), just checked for £ =0 and &= 1, is supposed to hold for
7=0, ..., &, equation (5) implies 7(k£+ 1) =co(k+ 1), as seen by a tedious but
straightforward verification.
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In conclusion, we have 7z = co, and the equality (4) implies
c=c(1—pg) +li£n Zlc(l —Pi)Po--Pi—1=C— cli}{n(po...pn)
P

that is (py...p,) —0.

Conversely, suppose (pg...p,) —0. Then m(k) = o(k) is easily shown to satisfy
the invariance relations (4) and (5).

The proposition is proved. =

Note that the condition occurring in Proposition 1 can also be expressed under
the equivalent form X, (1 —p,) = ©.
n

3. - Harmonic FUNCTIONS, HITTING PROBABILITIES AND RECURRENCE

A function f satisfying the equality £(£) = 2 p(k, 7) f(;) is usually said to be har-
monic in k. /

The probability " (k) of hitting the state # before entering 0 as a function of the
starting point £ is a well known example of a function which vanishes in 0 and is har-
monic in the interval 10, #[. Due to the irreducibility, (1) 0.

We prove the following

ProrosiTION 2: Let f be harmonic in the interval 1m, nl and g be defined as in (1).
Then the ratio

f(k) = f(m)
g(k) — g(m)

does not depend on k for m<k<un.

Proor: For 7 < k& < n, harmonicity in 4 entails

Fk) =pp flE+ 1)+ (1 —py) f(k)

that is

S (f)

Sk

(6) pe(flk+1) = f(k)) = (1= pp) (f(k) = (k) =

Taking (3) into account, the following simple recursive relation for S,(f) is
obtained

1—pe
Dk

Skt () =S () + 5 (flk+1) = flk)) =5:.(f) + 5



1-— A
_ S+ S 1o 2 S
Dk Dk
leading by iteration to
7) Suf)= Lol g ().
Do Pe-1

Letting C,,=py...p,,, substitution in (6) yields

f+ 1) = () = Cp S,y (F) ——P2 =5, () (gl + 1) = k)
SeDo -+ P
for 7 < k£ <n. Summing over £
(8) flk) = flm+1)=C,S,, .1 (f)(glk) — glm+1))

for m<k<un.

Take a function «, vanishing in 0, harmonic in 10, N[, with z(1) # 0 (we saw an
example at the beginning of this Section). Since clearly §; () = «(1), equation (8) for
Ff=u and m =0 gives

u(k) —u(1) = Ciu(1)(g(k) —g(1)) for 0<k<N.

_ 1
Thus g(k) = el

Relation (7) applies to g, =0 and %> 0; remarking that p,S5,(g) =1 we
have

u(k) + constant is also harmonic in ]0, N[, for any N.

poSi(g) 1 St
) Si(g) = = = (£>0).
T s G, o®)

The identity (3) allows us to write

Sonl) oo Sen®)

Sy Sy

fon+1) = f(m) =

=C,S, 1 (gm+1)—3(m)) .

Adding this to (8), we finally obtain

f(k) = F(m) = C,S,, 4 1(f)(g(k) —g(m))

for 7 < k< n. The proof of Proposition 2 is accomplished. m

The next proposition deals with the hitting probabilities.
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ProrosiTioN 3: Starting from m < n, the probability w(m, n) of hitting n before re-
turning to m is given by

+

o(n) k=m+1s,_,0(k)

w(m, n)™ ' =o0(m)

Proor: Let u(£) be the probability of hitting 7 before entering 7z, as a function of
the starting point 4; obviously w(z, n) = p,, u(nz + 1).

Since # is harmonic in the interval ]z, #n[ and u(#) =0, Proposition 2
implies

ulk) = Cg(k) —g(m)) .

Observing that u(#) = C(g(n) —g(m)) =1, we find

whence

P (glm +1) =3(m))

w(m, n) = —
g2(n) —g(m)

Thanks to (9), g(#) is easily computed:

2(m) = glm) — (g(m) — g(m)) = g(m) — = g(m) —

Taking Lemma 1 into account, Proposition 3 is proved. ™
CoroLLary 1: The chain is transient if and only if the function g is bounded.

Proor: The sequence w(0, #) tends to the probability of no return to 0; so tran-
sience is equivalent to boundedness of (0, #)~!. On the other hand, w(0, #)~! =
= g(n) by Proposition 3. =

Recurrent chains do have an invariant measure. But also transient chains may have
one, as shown in the following simple example: take 7,=1 for every n, p,=
=\ (z+1)/(n+2) and verify that 0(#) =V/» + 1 is indeed an invariant measure,
though the chain is transient.

Positive recurrence, in turn, is easily characterized, being equivalent to o(N) =

= > o(k) <+ .

k>0

In the positive recurrent case, the invariant measure ¢ can be normalized to the
(unique) invariant probability distribution s; the quantity 1/0(N) equals the expect-
ed return time to 0.
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4. - MEAN PASSAGE TIMES

This section deals with the calculation of the mean passage times between states.
Let #(m72, n) denote the expected time to hit the state # starting from 2. The results we
prove are summarized in two propositions.

ProrosiTioN: 4: For m < n the expected time to reach n starting from m is given by
Hm, n) =10, n)—HO, m), where

K0 m) = 50m) + 3 100

k=1 Sp_1

=
ith o(k) = —— i
with G(k) 57 E,OO(J)
for any n>0, and o defined as in (2).

Proor: The chain being skip-free to the right, the additivity #(0, »2) + (12, n) =
=#(0, »n) holds for 0 < m < », which allows us to treat #(0, #) for » > 0 as the sum
HO, n) =H0)+ ...+ n—1) of one stair passage times t(k) =t(k, £+ 1).

A simple first step analysis yields

kg,

HR)=tlk, k+1)=1+2plk, )t k+1)=1+(1—-p) 2 =i, k+1)=

i=0 A

1— k
=1+ Pi > i, k+1).
St =0

In particular, we immediately get #(0) =1+ (1 —p,y)£(0), £(0) = 1/p,.

As (1) =1/0(1) =1/(s;py), the claim of Proposition 4 is true for 7 =1.
&

The equations above are best written putting A, = 2 r;#(Z, B+ 1) and read

Xkl‘(k) =s5,+ (1 _Pk) Ak-

Remarking that

the recurrence equation becomes
prAe=sp+Ap-1.
A very simple relation is obtained by multiplying both sides by pg...pr_1:
po---PrAr=po- pr—1 A1+ 0(k)
leading to

Po---PrAr=poAg+o(1)+ ...+ 0(k) =0l0, £].
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Adding up the one stair passage times gives, for » > 1

n=1 n—lA —A ~
HO, 1) = 2 ak) =Ag+ 2, ZE_ Tkt
k=0 k=1 S
n—1 n—1
Ae Ao 1 1
e S A m)+2AH( __):
k=1 St Sp—1 k=1 St 5y

14

_ A,y +”21 reAr _ A,y n Z 1 Ar .

Su—1 k=1 SpSp Su k=1 SpSp—1

The proof is complete, because

Ap-y _ Po---Pr-1 _ol0, &L

e ok U gk

=o(k). [

Since (2, n) is finite for 72 < n, the passage times #(772, n) with 7 > 1 have finite
expectation if and only if the chain is positive recurrent (see [1], Th.1, p. 62), in which
case the following proposition holds.

ProrosITION 5: In the positive recurrent case, let w be the invariant probability dis-
tribution and m < n. The expected time to reach the state m starting from n is given

by

tn, m)=tn,0)—Htm, 0)+ L
7(m2)
where
o, 0) =i+ 3 i ey = L S
k=1 St o(k) iz

for any n>0 and o defined as in (2).

Proor: Recall that 7 is related to ¢ by the relation 7(n) = o(#)/0(N).
According to a well known result about positive recurrent Markov chains (see [1],
Cor. 1, p. 65), the mean commute time comm (12, n) = t(m, n) + t{n, m) is given

by

o(N) 1 N
10 = - Seamk)
(10) comm (2, 7) om)wm. n)  aln) +k=‘?;:+1 sp—17(k)

"k
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For 7 =0 one obtains

H(n,0) = comm (0, 1) — £0, ) = ¢(N) 1) T —~ 40, n).

o(n) k=1 s5,_,0(k)

Observing that o(£) + u(k) = o(N)/o(k), the second half of Proposition 5 is
proved.
For the first half, we have after (10)

comm (0, #) + comm (72, n) — comm (0, ) = —— .
7(m)

As 10, m)+ t(m, n) — t(0, n) vanishes, the conclusion follows. =
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