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ABSTRACT. — In a Bayesian framework, the current indexes used to study the local sensitivity
of a posterior expectation, with the respect to the choice of the prior in a given class, are either
restricted to locally-convex classes or in the parametric case, depend on the parametrization.
We will define a general sensitivity index for posterior expectations which avoids these restric-
tions. In the case of locally-convex classes, we show that this index coincides with the indexex
currently used in literature such as the norm of the Fréchet derivative, or the norm of the
Gateaux derivative. We will develope the parametric case in detail.

Misurazione della sensitività locale
nell’inferenza bayesiana: un’impostazione generale

SUNTO. — Nel contesto dell’inferenza statistica bayesiana, gli indici usualmente impiegati
per misurare la cosiddetta «sensitività locale» al variare della scelta di una legge a priori in un’as-
segnata classe, sono definiti solo per classi localmente convesse e, nel caso parametrico, dipen-
dono dalla particolare parametrizzazione. Nella presente Nota si definisce un indice generale,
esente da questi difetti. Dopo aver mostrato che, nel caso di classi localmente convesse, esso
coincide con gli indici abituali (quali la norma della derivata di Fréchet o quella della derivata di
Gateaux), si esamina più da vicino il caso parametrico.

In a Bayesian analysis, inference depends on the prior distribution over the par-
ameter space. Then the problem of quantifying the degree whose posterior quantities
are influenced by changes in the prior, is of much concern. In global robustness the
goal is to find the range of posterior quantities as the prior varies in a «reasonable»
class G . If the range is small, the analysis is robust to misspecification of the prior. For
a review and extended references on the subject see Berger (1994) [2]. A limitation of

(*) Indirizzo dell’Autrice: Université de Haute Alsace, Laboratoire de Mathématiques 4,
rue des Frères Lumière - F-68093 Mulhouse Cédex (E-mail: M.MusioHuniv-Mulhouse.fr)

(**) Memoria presentata il 30 novembre 1999 da Giorgio Letta, uno dei XL.
1991 Mathematics Subject Classification: 62 F 15, 62 F 35



— 28 —

the global approach is that computation is often non trivial. For this reason, in the last
few years, there has been a growing interest in the local approach. The local sensitivity
explores the effects on the posterior of infinitesimal perturbation around some elicited
prior (see Basu, Jammalamadaka and Liu (1996) [1], Cuevas and Sanz (1988) [4], Dia-
conis and Freedman (1986) [6], Gustafson and Wasserman (1995) [9], Gustafson, Sri-
nivasan and Wasserman (1995) [10], Ruggeri and Wasserman (1993) [13], Gustafson
(1996) [7], Gustafson (1996) [8]). Recent papers have also dealt with sensitivity to si-
multaneus perturbations of priors and likelihood (see Clarke and Gustafson (1998)
[3], Dey, Ghosh and Lou (1996) [5] ). The idea of local sensitivity is to study the rate
at which the posterior changes relative to the prior. In this sense, finding the direction
in which the sensitivity is the largest, might give some important information about
the elicitation process. The current indexes used to study local sensitivity in a convex
class of priors are based on the notions of Frechét derivative and Gateaux derivative.
In the literature, only a few cases concerning local sensitivity measures for a non-local-
ly convex class of priors are presented. One possible approach is attributed to Basu,
Jammalamadaka and Liu (1996) [1], but it is restricted to the case of parametric clas-
ses. However, as we shall show later, the index they have defined depends on the cho-
sen parametrisation for defining the class.

The aim of this paper is to propose a general definition of local sensitivity for po-
sterior expectations with the following properties. Firstly, for a convex class, it should
coincide with the indexes currently used. Secondly it has to be an intrinsic characteri-
stic of the class, i.e. the definition depends only on G and not on the particular way the
class has been defined.

The structure of the paper is as follows: in the first section we shall focus on gene-
ral definitions and notations which will be used through out the present work; in sec-
tion two we shall propose a definition of local sensitivity and we shall prove that it
coincides with the definitions currently used in the case of a locally convex class of
priors; in section three, we shall analyse the case of a parametric class in detail.

1. - NOTATIONS AND DEFINITIONS

Let X4 (X1 , R , Xn ) be i.i.d. random variables obtained from a distribution with
density p(xNu) where u�U is an unknown parameter. Let s (U) be a s-algebra on the
parameter space U , P the set of all probability measures P on s (U) and G a class of
probability measures on (U , s (U) ). For a prior distribution P�G , let C be the po-
sterior expectation of a given non-constant measurable function f : UKR , in-
deed

C(P) 4
N(P)

D(P)

where N(P) 4�
U

f (u) l(u) P(du) and D(P) 4�
U

l(u) P(du) are supposed to be well



— 29 —

defined. The likelihood function l(u) 4 »
i41

n

p(xi Nu) is supposed to be positive for each
u�U .

Local sensitivity measures which are commonly used in literature are based on the
notion of functional derivatives. One criterion for measuring the local sensitivity
around a fixed P 0 uses the norm of the Fréchet derivative of C with respect to P eva-
luated at P 0 . Recall that C : GKR is Fréchet differentiable at P 0 , if there exists a li-
near bounded map TP0

Q , defined on the vector space M of all signed measures, such
that

C(P 01h)2C(P 0 ) 4TP0
Q (h)1o(VhV) .

The index TP0
Q is called the Fréchet derivative of C at P 0 . Define the local sensitivity

of C in P 0�G as

VTP0
Q

V4 sup
h4P2P0 , P�G

NTP0
Q (h)N

VhV

,(1)

where V QV is the total variation norm given by

VhV4 sup
A�s (U)

Nh(A)N .

Another approach is to use the norm of the Gateaux derivative DC(P 0 , P2P 0 ) of
C at P 0 , defined by

G(P 0 ) 4 sup
P�G

NDC(P 0 , P2P 0 )N .

Recall that the function C is Gateaux differentiable at P 0 , in the direction P2P 0 , if
there exists a linear functional DC(P 0 , P2P 0 ), such that

DC(P 0 , P2P 0 ) 4 lim
tK0

C(P 01 t(P2P 0 ) )2C(P 0 )

t
.

The Gateaux derivative exists quite generally and the two notions coincide for
bounded likelihood functions.

It is important to remark that the two notions above are well defined only in the
case of the class of prior distributions being locally convex. The non-convex case has
been explored only in the context of parametric classes. Indicate a parametric class of
priors by GL4 ]Pl : l�L( and assume that L%Rm . Basu, Jammalamadaka and Liu
(1996) [1] have defined the local sensitivity of the function

C(l) 4
N(Pl )

D(Pl )
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at 0 in terms of the norm of the total derivative of this function at 0 , i.e.,

VTC0
V4 sup

h�R m

NTC0
(h)N

VhV

.

It should be recalled that the function

C : L%RmKR

is called total differentiable at 0 �L , if there exists a linear function TC0
, such

that

VC(h)2C(0)2TC0
(h)V

VhV

K0

as VhVK0 (where VhV is the standard euclidian norm on Rm ). Basu, Jammalamadaka
and Liu (1996) [1] have shown that

VTC0
V4q!

i41

m y ¯C(0)
¯l iz2

.(2)

REMARK 1.1: Note that the index VTC0
V not only depends on the class of priors, but

also on the parametrisation defining the class.

From these considerations it emerges that there may exist a way to define the local
sensitivity for a general class of priors intrinsically, extending the notions commonly
used in the context of locally convex classes.

2. - A GENERAL DEFINITION OF LOCAL SENSITIVITY

In order to define the local sensitivity of the function C at P 0 one is led to exami-
ne the behaviour of the quantity

C(P)2C(P 0 )

in terms of certain measures of the ’difference’ between P and P 0 as PKP 0 . In ge-
neral there is not a natural way to evaluate this «difference», nor to take a limit. For
these reasons we choose a particular way to let P tend to P 0 and to express the diffe-
rence between P and P 0 .

We will see later that in certain special cases these choices are natural and have a
suitable statistical meaning.

We introduce a set of pairs

CP0
4 ((P(t), d(t) ))

defined in the interval I4 [0 , a] aD0, where:
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1) P(Q) is a curve in G such that P(0) 4P 0 and P(t) cP 0 for tc0;

2) d : IKR is a continuous function tending to 0 as tK0.

The latter function is a manner to quantify the «difference» between P(t) and P 0 .
We suppose that lim

tK0
(d(t) /t)4 l where lc0, so that, in an intuitive way, t and d(t) ha-

ve the same order of «magnitude».
Whenever the corresponding limits exist, one defines the local sensitivity of C at

P 0 along the curve P(Q) relative to d(Q) by

L(P(t), d(t) )4 lim
tK0

C(P(t) )2C(P 0 )

d(t)
.(3)

and the local sensitivity of C at P 0 relative to CP0
by

S(CP0
, G) 4 sup

(P(t), d(t) ) �CP0

NL(P(t), d(t) )N .(4)

The index S(CP0
, G) reflects the maximum possible change at P 0 of the posterior

expectation C for a given «difference measure« d(t).
We shall examine now different examples depending on the nature of the class G .

We will use subscripts (G , GN , ect.) to identify L(P(Q), d(Q) ) and S(CP0
, G) in each

class.

2.1. G convex class.

Given a probability measure P 0�G , for each P�G , the segment between P and
P 0 is completely contained in the class G . A natural path to go from P 0 to P is then
given by the line with parametrization

P(t) 4P 01 t(P2P 0 ) 4 (12 t) P 01 tP

for t� [0 , 1] and an appropriate difference measure is d(t) 4 t . Thus

CP0
4 ((P(t), d(t) ))

where

P(t) 4 (12 t) P 01 tP

for t� [0 , 1] and d(t) 4 t . One may now relate LG (P(t), t) and SG (CP0
, G) to the

Gateaux derivative. One has

LG (P(t), t)4 lim
tK0

C(P(t) )2C(P 0 )

t
4 lim

tK0

1

t
y N(P 01 t(P2P 0 ) )

D(P 01 t(P2P 0 ) )
2

N(P 0 )

D(P 0 )
z
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which is a linear function of P , in fact

LG (P(t), t)4
N(P) D(P 0 )2D(P) N(P 0 )

D(P 0 )2
.(5)

One can easily recognize that LG (P(t), t) is the Gateaux derivative of the function C
at P 0 (see Diaconis and Freedman [6]). Concerning SG (CP0

, G), we have

SG (CP0
, G) 4SG (P 0 , G) 4 sup

P�G
N N(P) D(P 0 )2D(P) N(P 0 )

D(P 0 )2 N(6)

which is the norm of the Gateaux derivative.

2.2. G convex class with a given norm

Let G be a set of probability measures contained in a normed vector space V ,
where V is a subspace of the vector space M of all signed measures over U . In this case
we may choose CP0

4 (P(t), d(t) ) , where

P(t) 4P 01 t(P2P 0 ) for t� [0 , 1]

and

d(t) 4VP(t)2P 0V4Vt(P2P 0 )V .

We have

LGN (P(t), d(t) )4
N(P) D(P 0 )2D(P) N(P 0 )

VP2P 0VD(P 0 )2
(7)

and

SGN (CP0
, G) 4SGN (P 0 , G) 4 sup

P�G
N N(P) D(P 0 )2D(P) N(P 0 )

VP2P 0 V D(P 0 )2 N .(8)

REMARK 2.1: LGN (P(t), d(t) ) depends only on the direction of P . In fact, each
point P

A
4P 01m(P2P 0 ) of the line through P 0 and P gives the same value for

LGN (P(t), d(t) ) . For this reason, it can be considered as a more coherent index than
LG (P(t), t) .

It can be highlighted that, if the Fréchet derivative of the function C exists at P 0 ,
we have SGN (P 0 , G) 4VTP0

Q
V (see 1).

2.3. G class with a given norm.

Let G be a set of probability measures contained in a normed vector space V where
V is a subspace of the vector space M of all signed measures over U . In this context,
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the notion of derivative P
.

(0 ) of the curve P(Q) for t40 is well defined, in fact

P
.

(0 ) 4 lim
tK0

P(t)2P 0

t

where P(0) 4P 0 , or equivalently

P(t)2P 04 tP
.

(0 )1 te(t) where Ve(t)VK0 as tK0 .

We choose, as CP0
, the set of pairs

((P(t), d(t) ))

defined on the interval [0 , 1], where P(t) is differentiable at t40 and

d(t) 4VP(t)2P 0 V .

The expression of LN (P(t), d(t) ) is given by the following theorem:

THEOREM 2.1: Let P(t) be a curve in G differentiable at 0 such that P
.

(0 ) c0. If
N(Q) and D(Q) are continuous functionals of P , then

LN (P(t), d(t) )4 lim
tK0

C(P(t) )2C(P 0 )

VP(t)2P 0 V

4(9)

4
N(P

.
(0 ) ) D(P 0 )2D(P

.
(0 ) ) N(P 0 )

VP
.

(0 )V D(P 0 )2
.

PROOF: Write

C(P(t) )2C(P 0 ) 4
N(P 01 tP

.
(0 )1 te(t) )

D(P 01 tP
.

(0 )1 te(t) )
2

N(P 0 )

D(P 0 )
.

The result follows from the continuity and linearity of N(Q) and D(Q). r

REMARK 2.2: LN (P(t), d(t) ) depends only on P
.

(0 ), that is, two different differen-
tiable curves of G starting at P 0 with the same derivative k4 P

.
(0 ) c0 give the same

value for LN (P(t), d(t) ) . Then, in a given normed space, the value of LN (P(t), d(t) )
does only depend on P(t) through P

.
(0 ).

On behalf of this dependence, we may introduce the set of tangent vectors at P 0 in
G, defined in the following way

V(G)P0
4 ]k�V2 ]0( : )P(Q) �CP0

, P
.

(0 ) 4k( .(10)
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For each k�V(G)P0
, the expression

LN (P(t), d(t) )4
N(k) D(P 0 )2D(k) N(P 0 )

VkV D(P 0 )2
4LN (k)

gives the sensitivity on P 0 for all the curves P(Q) such that P
.

(0 ) 4k .
Then one has

SN (CP0
, G) 4SN (P 0 , G) 4 sup

k�V(G)P0

NLN (k)N .(11)

In the case where G is a convex class one introduces the line parametrized by

P(t) 4P 01 t(P2P 0 )

where P�G , that verifies the condition P
.

(0 ) 4P2P 0c0. Thus one has

LGN (P(t), d(t) )4LN (P(t), d(t) ) .

In the particular case of the curves

P(t) 4P 01 t(P2P 0 )

we characterise the sensitivity at P 0 using the set of restricted tangent vectors at P 0 in
G defined by

VR(G)P0
4 (h�V2 ]0( : )tD0, (t� [0 , t], P 01 th�G) .(12)

Then

SGN (P 0 , G) 4 sup
k�VR(G)P0

NLGN (k)N .(13)

REMARK 2.3: Let P 0 be specified. Then V(G)P0
N ]0( and VR(G)P0

N ]0( are not,
in general, vector spaces, for instance if P 0 in in the boundary of G .

We have

SGN (P 0 , G) GSN (P 0 , G)

because SGN (P 0 , G) requires a maximisation over VR(G)P0
, whereas SN (P 0 , G) requi-

res a maximisation over V(G)P0
, and clearly VR(G)P0

%V(G)P0
. Moreover, as a conse-

quence of the following two theorems, we will see that these two indexes are
equal.



— 35 —

THEOREM 2.2: If N(Q) and D(Q) are two continuous functionals of P , and if VR(G)P0

is dense in V(G)P0
, then

SGN (P 0 , G) 4SN (P 0 , G) .

PROOF: SN (P 0 , G) 4 sup
P�V(G)P0

LN (P(t), d(t) ) . Then, for each eD0 there exists
h�V(G)P0

such that

LN (h) � ySN (P 0 , G)2
e

2
, SN (P 0 , G)z .

The continuity of LN (P(t), d(t) ) is a consequence of the continuity of the functionals
N(Q) and D(Q). Thus, there exists hD0 such that, for a�V(G)P0

, Va2hVEh , we
have

VLN (a)2LN (h)VE
e

2
.

By the density of VR(G)P0
, it contains c such that Vc2hVEh . Hence

VLN (c)2LN (h)VE
e

2

and

LN (c) FSN (P 0 , G)2e .

Since

LN (c) 4LGN (c)

one has

SGN (P 0 , G) FSN (P 0 )2e

for each eD0, then

SGN (P 0 , G) FSN (P 0 , G) .

Conversely, one clearly has

SGN (P 0 , G) GSN (P 0 , G) . r

THEOREM 2.3: Let V be a normed vector space, G a subset of V , VR(G)P0
and V(G)P0

defined as above. Then, if G is convex, the set VR(G)P0
is dense in V(G)P0

.
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PROOF: One has

P(t)2P(0) 4 tP
.

(0 )1 te(t) where Ve(t)VK0 as tK0 .

From the convexity it follows that

h4
P(t)2P(0)

t
4 P

.
(0 )1e(t)

is a vector of VR(G)P0
. Then, each element k4 P

.
(0 ) of V(G)P0

is the limit of a se-
quence of elements of VR(G)P0

, and the theorem is proved. r

We now carry out the complete computation of the sensitivity index S(CP0
, G) in

the parametric case. We will take advantage of the geometric structure induced by the
parametric class G on V(G)P0

, to solve the problem of finding the supremum of the
posterior expectation over the space V(G)P0

.

3. - G PARAMETRIC CLASS

Let G be a parametric class, defined by the C 1 map

F : LKG

such that

l4 (l 1 , R , lm ) KP4F(l 1 , R , lm ) .

Here, G is a set of probability measures contained in a normed vector subspace V of
the vector space M of all signed measures over U , and L is an open set of Rm .

Suppose that 0 �L . Let P 04F(0) and assume that the rank of F at 0 is equal to
m , which means that the vectors of V

¯F

¯l 1

(0), R ,
¯F

¯lm

(0)

are linear independent. It is a known result of differential geometry that the set
V(G)p0

N ]0( is a vector space generated by these vectors. Thus, each element
h�V(G)p0

N ]0( can be written as follows

h4 !
i41

m

ai
¯F

¯l i

(0)

where (a1 , R , am ) �Rm . Generally, the class G is non-convex. The local sensitivity at
P 0 defined in Section 2.3 is equal to

SN (P 0 , G) 4 sup
k�V(G)P0

ND(P 0 ) N(k)2N(P 0 ) D(k)N

VkVD(P 0 )2
.
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In order to compute explicity SN (P 0 , G), we have to find

sup
k�V(G)P0

ND(P 0 ) N(k)2N(P 0 ) D(k)N

VkV D(P 0 )2

under the constraint

V
!

i41

m ¯F

¯l i

(0)
V

41 .

Assume that the norm V QV is associated with an inner product a , b. Let ]Ii(0 G iGm be an
orthonormal basis of V(G)P0

N ]0(. Then, one can write the linear operator L such
that

L(k) 4D(P 0 ) N(k)2N(P 0 ) D(k)

as

L(k) 4 ak , Bb ,

and the coordinates of B in the basis ]Ii(0 G iGm are given by

aIi , Bb 4L(Ii ) 4D(P 0 ) N(Ii )2N(P 0 ) D(Ii ) .

In order to compute explicity SN (P 0 , G), we will use the following proposition:

PROPOSITION 3.1: Let A be a finite dimensional Hilbert space and B�A . Then

sup
VkV41, k�A

Nak , BbN4VBV .

The hypotheses of the Proposition 3.1 are satisfied for A4V(G)P0
N ]0( and we

have

SN (P 0 , G) 4
VBV

D(P 0 )2
4

o!
i41

m

L(Ii )
2

D(P 0 )2

or equivalently

SN (P 0 , G) 4
o!

i41

m

[D(P 0 ) N(Ii )2N(P 0 ) D(Ii ) ]
2

D(P 0 )2
.

REMARK 3.1: It follows directly from the intrinsic definition of SN (P 0 ) that a chan-
ge of parametrisation induces a change of the vectors Ii i41, R , m but not of the value
of SN (P 0 , G).
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REMARK 3.2: This expression of SN (P 0 , G) does not match, in general, the expres-
sion of the index VTC0

V (see (1.3)). In fact, the former depends only on the class G and
not on the parametrisation chosen to define the class. We find the same result only if
the parametrisation is such that the vectors

{ ¯F

¯l i

(0)}
1 G iGm

are orthonormal. In fact, in this case we have

VTC0
V4q!

i41

m y ¯(C i F)(0)

¯l i

z2

and

¯(C i F)(0)

¯l i

4
¯

¯l i

y N i F(0)

D i F(0)
z4

4
N(¯F/¯l i ) D(F(0))2D(¯F/¯l i ) N(F(0))

D(F(0))2
.

Thus we find

VTC0
V4

q!
i41

m yN u ¯F

¯l i

v D(P 0 )2D u ¯F

¯l i

v N(P 0 )z2

D(P 0 )24SN (P 0 , G) .

Suppose, for instance, that U%R 2 and assume the following prior density

p4F(l 1 , l 2 ) 4
1

2p
exp {2

1

2
[ (u 12l 1 )21 (u 22l 2 )2 ]}

the two vectors

¯F

¯l 1

4 (u 12l 1 ) F(l 1 , l 2 )

¯F

¯l 2

4 (u 22l 2 ) F(l 1 , l 2 )
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give a basis of V(G)p0
. Let ]I1 , I2( be the following orthonormalized basis associated to

{ ¯F

¯l 1

,
¯F

¯l 2

} :

I14k8p
¯F

¯l 1

I24k8p
¯F

¯l 2

.

Then

SN (p 0 , G) 4
q8p !

i41

2 yN u ¯F

¯l i

v D(P 0 )2D u ¯F

¯l i

v N(P 0 )z2

D(P 0 )24k8p VTC0
V .

4. - DISCUSSION

The main novelty of this work is the introduction of a quite general definition of
local sensitivity. This definition can be applied to any class of priors (convex or not,
parametric or non parametric) and it gives an intrinsec characteristic of the class under
consideration. The resulting expression has a natural statistical interpretation: we re-
gard the sensitivity index S(CP0

, G) as a measure on the posterior expectation of the
effect of small changes in P 0 . The calculation is carried out completely in the parame-
tric case. More work will be needed to obtain explicit expression in the other cases.
Solutions of this problem are already available in the literature. For results in this area
we remaind to Gustavson (1996) [7], Gustavson (1996) [8], Musio (1997) [11], Musio
(1999) [12]. In Musio (1997) [11] the calculation of the sensitivity index is solved in
other non-convex cases i.e. classes with specified moments or for classes defined by k
independent non-linear equations. Most of the recent work on local sensitivity indices
has addressed the problem of weird behavior in the case where the sample size increa-
ses to infinity. Local measures tend to diverge to infinity as the sample size grows. Gu-
stavson (1996) shows that if we do not consider the whole posterior distribution but
we restrict to a posterior expectation, we can obtain sensitivity measures with a more
satisfactory asymptotic behaviour. In the context of e-contamination classes, Sivagane-
san (1996) [14] gives some sufficient conditions for the convergence to zero of local
sensitivity for posterior expectation C . In this case the local sensitivity of C with re-
spect to the prior

p�G4 ]pe (u) 4 (12e) p 01eq , q� Q (
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based on a sample of size n is defined as

LS(n) 4 sup
q
y d

de
C(p)z

e40

.

Here p is the density of P w.r.t. the Lebesgue measure, and u is one dimensional. The
index LS(n) is a particular case of the definition 2.5 for the choices p(e) 4p 01e(q2

2p 0 ) q� Q , and d(e) 4e . In our more general context we can easily extende the Siva-
ganesan’s convergence therem. Under the same regularity assumptions ([14]), guaran-
teeing the asymptotic convergence of the posterior w.r.t. each p�G , we have the follo-
wing theorem:

THEOREM 4.1: If p
.
(0 ) is bounded then SN (p 0 , G) is O(n 1/2 ).

The proof follows easily from the convergence of LS(n), if we remark that

SN (p 0 , G) 4LS(n)
1

Vp
.
(0 )2p 0 V

.

Than the asymptotic behavior of SN (p 0 , n) follows from the behavior of LS(n).
For instance if we assume that p(xNu) 4N(u , s 2 ), p(u) 4N(m , t 2 ), and G4

4 ]Qa , t2 (, then the hypotheses of the theorem above is satisfied and the
lim

nKQ
SN (p 0 , G) 40. From a different way, we find the same result as Gustafson, Srini-

vasan and Wasserman, (1995) [10].
A problem related to sensitivity is the one of calibration, that is, the interpretation

of the numerical value found. The index SN (P 0 , G) depends on the prior P 0 , on the
choice of d(t) and on the choice of the class G . If d(t) is specified, for instance if we ta-
ke d(t) 4VP(t)2P 0 V , G 1 and G 2 are classes of priors, we call the ratio

SN (P 0 , G 1 )

SN (P 0 , G 2 )
.

the corresponding relative sensitivity. From a mathematical viewpoint, one is not able
to interpret the values of the sensitivity index absolutely, but only in a relative
sense.
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