Rendiconti
Accademia Nazionale delle Scienze detta dei XL
Memorie di Matematica e Applicazioni 118° (2000), Vol. XXIV, fasc. 1, pagg. 63-79

Second Order Elliptic Equations with Discontinuous Coefficients in Irregular Domains (**)

Аbstract. - In this paper we study the Dirichlet problem for a class of linear second order elliptic equations in non divergence form in an open subset Ω of R^{n} with $\partial \Omega$ irregular and coefficients discontinuous in Ω and singular on a subset of $\partial \Omega$.

Equazioni ellittiche del secondo ordine con coefficienti discontinui in domini non regolari

Sunto. - In questo lavoro si studia il problema di Dirichlet per una classe di equazioni ellittiche del secondo ordine in forma non variazionale in un aperto Ω di R^{n} a coefficienti discontinui in Ω e singolari su un sottoinsieme di $\partial \Omega$.

Introduction

Let Ω be an open subset of $R^{n}, n \geqslant 2$.
Let us consider a weight function ϱ in the class $\mathcal{G}(\Omega)$ (see Section 1 for the definition) and denote by S_{ϱ} the subset of $\partial \Omega$ where ϱ goes to zero. We observe (see (1.1)) that, if $S_{\varrho} \neq \emptyset$, then ϱ is related to the distance function to S_{ϱ}.

Let L be the uniformly elliptic differential operator

$$
\begin{equation*}
L u=-\sum_{i, j=1}^{n} a_{i j} u_{x_{i} x_{j}}+\sum_{i=1}^{n} a_{i} u_{x_{i}}+a u \tag{1}
\end{equation*}
$$

${ }^{(*)}$ Indirizzo degli Autori: DIIMA, Facoltà di Scienze, Università di Salerno, Via S. Allende, 84081 Baronissi (SA), Italy.

E-mail: canale@diima.unisa.it; caso@diima.unisa.it; transiri@diima.unisa.it
(**) Memoria presentata il 15 dicembre 1999 da Mario Troisi, uno dei XL.
Mathematics Subject Classification: 35 J 25, 46 E 35.
with coefficients $a_{i j}=a_{j i} \in L^{\infty}(\Omega), i, j=1, \ldots, n$. We study the following Dirichlet problem

$$
\begin{equation*}
u \in W_{s}^{2}(\Omega) \cap \stackrel{\circ}{W_{s-1}^{1}}(\Omega), \quad L u+\lambda \beta u=f, \quad f \in L_{s}^{2}(\Omega) \tag{2}
\end{equation*}
$$

where β is a positive function, $\lambda, s \in R, W_{s}^{2}(\Omega), \stackrel{\circ}{W}_{s-1}^{1}(\Omega)$ and $L_{s}^{2}(\Omega)$ are some weighted Sobolev spaces (see Section 1 for definitions) and the weight functions are suitable powers of ϱ.

In a recent paper (see [9]) problem (2) has been studied under the following hypotheses on coefficients $a_{i j}$ of L :

$$
\begin{equation*}
\left(a_{i j}\right)_{x_{k}} \in L_{l o c}^{q}\left(\bar{\Omega} \backslash S_{\varrho}\right), \quad \sup _{x \in \Omega}\left\|\left(a_{i j}\right)_{x_{k}}\right\|_{L^{q}(\Omega \cap B(x, \varrho(x)))}<+\infty, \quad i, j, k=1, \ldots, n \tag{3}
\end{equation*}
$$

where $q>2$ if $n=2, q=n$ if $n \geqslant 3$ and $B(x, \varrho(x))$ is the open ball centered at x of radius $\varrho(x)$. In such a paper similar hypotheses are made on a_{i}, a and β. If $\partial \Omega$ is singular, further conditions on $\varrho, a_{i j}, a_{i}, a, \beta$ and λ are given in order to problem (2) be uniquely solvable.

We observe that if, in particular, ϱ is positive constant and Ω is a bounded open subset of $R^{n}, n \geqslant 3$, condition (3) becomes

$$
\left(a_{i j}\right)_{x_{k}} \in L^{n}(\Omega), \quad i, j, k=1, \ldots, n,
$$

that is the classical hypothesis of C. Miranda (see [16]).
This means that the result in [9] extends that one contained in [16] to the case Ω unbounded open set with singular boundary and $\left(a_{i j}\right)_{x_{k}}, a_{i}$ and a singular functions near to S_{0}.

Further generalizations of Miranda's result can be found in literature. For example in [2], [10], [11], [12] the coefficients $a_{i j}$ of the operator L belong to wider functional spaces and in [19] Ω is an unbounded open set.

In this paper we study problem (2) with coefficients $a_{i j}$ which satisfy a condition more general than (3).

In fact we suppose (see conditon α) in Section 3) that $a_{i j}$ do not necessarily satisfy the last requirement in (3) and can be split in the following way

$$
\begin{equation*}
a_{i j}=\alpha_{i j}+\gamma_{i j}, \quad i, j=1, \ldots, n, \tag{4}
\end{equation*}
$$

where $\alpha_{i j}$ are bounded simmetric functions which verify an uniformly elliptic condition and hypothesis (3), $\gamma_{i j}$ are sufficiently small near to S_{O} and at infinity.

In Section 6 we give an example of a function with a behaviour similar to $\gamma_{i j}$, but which does not satisfy the last requirement in (3).

We emphasize that in these weaker hypotheses on $a_{i j}$ it is not possible to use, as in [9], some results of variational type contained in [5].

In this paper we are able to get a priori bounds for solutions of problem (2) (see sections 3 and 4) as follows. On the part of Ω close to S_{ϱ} or to infinity, we suitably
adapt to $\alpha_{i j}$ in (4) some results contained in [9] and make use of the smallness hypotheses on $\gamma_{i j}$. On the rest of Ω we use some imbedding and compactness theorems contained in [8].

From a priori bounds we deduce some existence and uniqueness results in Section 5.

1. - Notations and function classes

Let E be a Lebesgue measurable subset of R^{n} and $\Sigma(E)$ the σ-algebra of Lebesgue measurable subsets of E.

For any $A \in \Sigma(E),|A|$ is the Lebesgue measure of $A, \mathscr{O}(A)$ is the class of restrictions to A of functions $\zeta \in C_{o}^{\infty}\left(R^{n}\right)$ such that $\operatorname{supp} \zeta \cap \bar{A} \subset A, L_{l o c}^{p}(A)$ is the class of functions $f: A \rightarrow C$ such that $\zeta f \in L^{p}(A)$ for any $\zeta \in \mathcal{O}(A)$. We set

$$
|f|_{p, A}=\|f\|_{L^{p}(A)}, \quad 1 \leqslant p \leqslant+\infty .
$$

We put

$$
B(x, r)=\left\{y \in R^{n}:|y-x|<r\right\}, \quad B_{r}=B(0, r) \forall x \in R^{n}, \quad \forall r \in R_{+} .
$$

Let Ω be an open subset of R^{n}. We set

$$
\Omega(x, r)=\Omega \cap B(x, r) \quad \forall x \in \Omega, \quad \forall r \in R_{+} .
$$

We call $\mathcal{C}(\Omega)$ the class of functions $\varrho: \Omega \rightarrow R_{+}$satisfying

$$
\sup _{\substack{x, y \in \Omega \\|x-y|<\varrho(y)}}\left|\log \frac{\varrho(x)}{\varrho(y)}\right|<+\infty .
$$

It is easy to see that $\varrho \in \mathcal{G}(\Omega)$ if and only if $\varrho: \Omega \rightarrow R_{+}$and there exists a constant $\gamma \in R_{+}$such that

$$
\gamma^{-1} \varrho(y) \leqslant \varrho(x) \leqslant \gamma \varrho(y) \quad \forall x \in \Omega, \quad \forall y \in \Omega(x, \varrho(x)) .
$$

Some examples of functions $\varrho \in \mathcal{G}(\Omega)$ are given in [22] where it is also observed that $\mathfrak{G}(\Omega)$ contains the class of positive Lipschitz functions with Lipschitz constant less than 1.

For any $\varrho \in \mathcal{G}(\Omega)$ we set

$$
S_{\varrho}=\left\{y \in \partial \Omega: \lim _{x \rightarrow y} \varrho(x)=0\right\} .
$$

As shown in [8], S_{ϱ} is a closed subset in $\partial \Omega$. Moreover if $S_{\varrho} \neq \emptyset$ it results (see [22])

$$
\begin{equation*}
\varrho(x) \leqslant \operatorname{dist}\left(x, S_{\varrho}\right) \quad \forall x \in \Omega . \tag{1.1}
\end{equation*}
$$

It is well-known (see, e.g., Theor. 2, Chap. VI in [18] and Lemma 3.6.1 in [24]) that
there exist $\alpha \in C^{\infty}(\Omega) \cap C^{0,1}(\bar{\Omega}), c_{1}, c_{2} \in R_{+}$such that

$$
c_{1} \operatorname{dist}\left(x, S_{\varrho}\right) \leqslant \alpha(x) \leqslant c_{2} \operatorname{dist}\left(x, S_{\varrho}\right) \quad \forall x \in \Omega
$$

We put

$$
\Omega_{k}=\{x \in \Omega:|x|<k, \alpha(x)>1 / k\} \quad \forall k \in N .
$$

If $f \in \mathscr{O}\left(\bar{R}_{+}\right)$is a fixed function such that

$$
0 \leqslant f \leqslant 1, \quad f(t)=1 \text { if } t \leqslant 1 / 2, \quad f(t)=0 \text { if } t \geqslant 1
$$

we define the functions

$$
\psi_{k}: x \in \bar{\Omega} \rightarrow(1-f(k \alpha(x))) f(|x| / 2 k) \quad \forall k \in N
$$

We remark that, for any $k \in N, \psi_{k}$ belongs to $\mathscr{O}\left(\bar{\Omega} \backslash S_{Q}\right)$ and the following conditions hold

$$
0 \leqslant \psi_{k} \leqslant 1, \quad \psi_{k \mid \bar{\Omega}_{k}}=1, \quad \text { supp } \psi_{k} \subset \bar{\Omega}_{2 k}
$$

Let $\mathfrak{Q}_{o}(\Omega)$ be the class of measurable functions $\varrho \in \mathcal{G}(\Omega)$. If $\varrho \in \mathcal{Q}_{o}(\Omega)$, then (see [8])

$$
\begin{equation*}
\varrho \in L_{l o c}^{\infty}(\bar{\Omega}), \quad \varrho^{-1} \in L_{l o c}^{\infty}\left(\bar{\Omega} \backslash S_{\varrho}\right) . \tag{1.2}
\end{equation*}
$$

Further examples and properties of functions of $\mathcal{G}(\Omega)$ can be found in [22], [20], [4], [8], [7].

If $r \in N, 1 \leqslant p \leqslant+\infty, s \in R$ and $\varrho \in \mathcal{C}_{o}(\Omega)$, we denote by $W_{s}^{r, p}(\Omega)$ the space of distributions u on Ω such that $\varrho^{s+|\alpha|-r} \partial^{\alpha} u \in L^{p}(\Omega)$ for $|\alpha| \leqslant r$ endowed with the norm

$$
\begin{equation*}
\|u\|_{W_{s}^{r, p}(\Omega)}=\sum_{|\alpha| \leqslant r}\left|\varrho^{s+|\alpha|-r} \partial^{\alpha} u\right|_{p, \Omega} . \tag{1.3}
\end{equation*}
$$

Moreover we denote by $\stackrel{\circ}{W_{s}^{r}, p}(\Omega)$ the closure of $C_{o}^{\infty}(\Omega)$ in $W_{s}^{r, p}(\Omega)$. We put

$$
W_{s}^{0, p}(\Omega)=L_{s}^{p}(\Omega), \quad W_{s}^{r, 2}(\Omega)=W_{s}^{r}(\Omega), \quad \stackrel{\circ}{W_{s}^{r, 2}}(\Omega)=\stackrel{\circ}{W_{s}^{r}}(\Omega)
$$

For some properties of weighted Sobolev spaces, where the weight functions are powers of a function $\varrho \in \mathcal{G}(\Omega)$, see, e.g., [3], [14], [17], [15], [21], [4], [8], [7].

If $1 \leqslant p<+\infty, s \in R$ and $\varrho \in \mathcal{C}_{o}(\Omega)$, we set

$$
\begin{equation*}
\Omega(x)=\Omega(x, \varrho(x)) \quad \forall x \in \Omega \tag{1.4}
\end{equation*}
$$

and consider the spaces $K_{s}^{p}(\Omega), \widetilde{K}_{s}^{p}(\Omega), \stackrel{\circ}{K_{s}^{p}}(\Omega)$ defined in [4] in correspondence of the family of open sets defined by (1.4). Let us recall that:
$K_{s}^{p}(\Omega)$ is the space of functions $g \in L_{l o c}^{p}\left(\bar{\Omega} \backslash S_{\varrho}\right)$ such that

$$
\begin{equation*}
\|g\|_{K_{j}^{p}(\Omega)}=\sup _{x \in \Omega}\left(\varrho^{s-n / p}(x)|g|_{p, \Omega(x)}\right)<+\infty, \tag{1.5}
\end{equation*}
$$

endowed with the norm defined by (1.5),
$\widetilde{K}_{s}^{p}(\Omega)$ is the closure of $L_{s}^{\infty}(\Omega)$ in $K_{s}^{p}(\Omega)$,
${ }_{K}^{\circ}(\Omega)$ is the closure of $C_{o}^{\infty}(\Omega)$ in $K_{s}^{p}(\Omega)$.
For some properties of the spaces $K_{s}^{p}(\Omega), \widetilde{K}_{s}^{p}(\Omega)$ and $\stackrel{\circ}{s}_{p}^{p}(\Omega)$ we refer to [4], [8], [7].

Remark 1.1: Let us fix $\varrho \in \mathcal{G}_{o}(\Omega), 1 \leqslant p<+\infty, s \in R$. We observe that if $g \in L_{l o c}^{p}\left(\bar{\Omega} \backslash S_{\varrho}\right)$, then, for any $\zeta \in \mathcal{O}\left(\bar{\Omega} \backslash S_{\varrho}\right)$, we have $\zeta g \in{ }_{K}^{\circ}{ }_{s}^{p}(\Omega)$.

Now, if we fix $\zeta \in \mathscr{O}\left(\bar{\Omega} \backslash S_{\varrho}\right)$, then $\zeta g \in L^{p}(\Omega)$ and so there exists a sequence of functions $\left(g_{n}\right)_{n \in N}, g_{n} \in C_{o}^{\infty}(\Omega)$, such that

$$
g_{n} \rightarrow \zeta g \quad \text { in } L^{p}(\Omega)
$$

For every fixed $\psi \in \mathscr{O}\left(\bar{\Omega} \backslash S_{\varrho}\right)$ with $\psi_{\left.\right|_{\text {supp } \zeta}}=1$, evidently we have

$$
\begin{equation*}
\psi g_{n} \rightarrow \zeta g \quad \text { in } L^{p}(\Omega) \tag{1.6}
\end{equation*}
$$

From (1.2) and (1.6) we obtain that $\zeta g \in K_{s}^{p}(\Omega)$ and

$$
\psi g_{n} \rightarrow \zeta g \quad \text { in } K_{s}^{p}(\Omega),
$$

so $\zeta g \in \stackrel{\circ}{K_{s}^{p}}(\Omega)$.
2. - A preliminar lemma

Let us suppose $n \geqslant 2$ and fix $\varrho \in \mathcal{G}(\Omega) \cap L^{\infty}(\Omega)$ such that $S=S_{\varrho} \neq \emptyset$.
Set

$$
B_{+}=\left\{x \in B_{1}: x_{n}>0\right\}, \quad B_{o}=\left\{x \in B_{1}: x_{n}=0\right\},
$$

we suppose that there exists an open subset Ω^{*} of R^{n} such that
h_{1}) there are a $d \in R_{+}$, an open cover $\left\{U_{i}\right\}_{i \in I}$ of $\partial \Omega^{*}$ and, for any $i \in I$, a C^{2}-diffeomorphism $\psi_{i}: \bar{U}_{i} \rightarrow \bar{B}_{1}$ such that

$$
\begin{equation*}
\psi_{i}\left(U_{i} \cap \Omega^{*}\right)=B_{+}, \quad \psi_{i}\left(U_{i} \cap \partial \Omega^{*}\right)=B_{o} \tag{2.1}
\end{equation*}
$$

(2.2) the components of ψ_{i} and ψ_{i}^{-1} and of their first and second derivatives are bounded by a constant independent of i;
(2.3) for any $x \in \Omega_{d}^{*}$ there exists an $i \in I$ such that $B(x, d) \subset U_{i}$ and, for any $x \in \Omega^{*} \backslash \Omega_{d}^{*}, B(x, d) \subset \Omega^{*}$, where $\Omega_{d}^{*}=\left\{x \in \Omega^{*}: \operatorname{dist}\left(x, \partial \Omega^{*}\right)<d\right\} ;$

$$
\begin{equation*}
\Omega \subset \Omega^{*}, \quad \partial \Omega \backslash S \subset \partial \Omega^{*} \tag{2.4}
\end{equation*}
$$

Remark 2.1: It is easy to prove that (2.1), (2.2) and (2.3) hold when Ω^{*} has the uniform C^{2}-regularity property defined in Section 4.6 in [1].

Let us consider in Ω the second order linear differential operator

$$
\begin{equation*}
L u=-\sum_{i, j=1}^{n} a_{i j} u_{x_{i} x_{j}}+\sum_{i=1}^{n} a_{i} u_{x_{i}}+a u \tag{2.5}
\end{equation*}
$$

with the following conditions on the coefficients:

$$
\begin{array}{r}
\left.h_{2}\right) \quad a_{i j}=a_{j i}, \quad a_{i j} \in L^{\infty}(\Omega), \quad i, j=1, \ldots, n, \\
\sum_{i, j=1}^{n} a_{i j} \xi_{i} \xi_{j} \geqslant v|\xi|^{2} \quad \forall \xi \in R^{n}, \text { a.e. in } \Omega,
\end{array}
$$

where v is a positive constant independent of x and ξ;

$$
\left.h_{3}\right) \quad\left(a_{i j}\right)_{x_{k}} \in L_{l o c}^{q}(\bar{\Omega} \backslash S), \quad i, j, k=1, \ldots n,
$$

where

$$
\begin{array}{ll}
& q>2 \quad \text { if } \quad n=2, \quad q=n \quad \text { if } \quad n \geqslant 3 ; \\
\left.b_{4}\right) \quad & a_{i} \in \widetilde{K}_{1}^{q}(\Omega), \quad i=1, \ldots, n, \quad a \in \widetilde{K}_{2}^{t}(\Omega),
\end{array}
$$

where

$$
t=2 \quad \text { if } \quad 2 \leqslant n<4, \quad t>2 \quad \text { if } \quad n=4, \quad t=\frac{n}{2} \quad \text { if } \quad n>4
$$

In the sequel

$$
u_{x}=\left(\sum_{i=1}^{n} u_{x_{i}}^{2}\right)^{1 / 2}, \quad u_{x x}=\left(\sum_{i, j=1}^{n} u_{x_{i} x_{j}}^{2}\right)^{1 / 2} .
$$

We consider a function $\beta: \Omega \rightarrow R_{+}$such that the following hypothesis holds:

$$
\left.h_{5}\right) \quad \beta \in \widetilde{K}_{2}^{t}(\Omega), \quad \exists \delta \in \widetilde{K}_{1}^{q}(\Omega) \quad \text { such that } \beta_{x} \leqslant \beta \delta .
$$

An example of function β which satisfies the hypothesis h_{5}) can be given in the following way. From Remark 3.1 in [8] and Theorem 3.2 in [22], there exist $\sigma \in \mathcal{G}(\Omega) \cap C^{\infty}(\Omega) \cap C^{0,1}(\bar{\Omega}), c_{0}, c_{1}, c_{2} \in R_{+}$such that

$$
\begin{gather*}
c_{1} \varrho(x) \leqslant \sigma(x) \leqslant c_{2} \varrho(x) \quad \forall x \in \Omega, \tag{2.6}\\
\sigma_{x} \leqslant c_{0} \quad \forall x \in \Omega . \tag{2.7}
\end{gather*}
$$

So, the function

$$
\begin{equation*}
\beta=\frac{1}{\sigma^{2}} \tag{2.8}
\end{equation*}
$$

satisfies the hypothesis h_{5}).
Indeed, $\beta \in L_{2}^{\infty}(\Omega)$ and then $\beta \in \widetilde{K}_{2}^{t}(\Omega)$. If we put $\delta=\frac{2 \sigma_{x}}{\sigma}, \delta \in L_{1}^{\infty}(\Omega)$ and so $\delta \in \widetilde{K}_{1}^{q}(\Omega)$. Furthermore we have $\beta_{x}=\beta \delta$.

Another example of function which satisfies the hypothesis b_{5}) is the function

$$
\begin{equation*}
\beta(x)=\frac{1}{\left(1+|x|^{2}\right)^{\tau}}, \quad x \in \Omega, \tau>0 \tag{2.9}
\end{equation*}
$$

Indeed, $\beta \in L_{2}^{\infty}(\Omega)$ and then $\beta \in \widetilde{K}_{2}^{t}(\Omega)$. If we set $\delta=\frac{2 \tau|x|}{1+|x|^{2}}, \delta \in L_{1}^{\infty}(\Omega)$ and then $\delta \in \widetilde{K}_{1}^{q}(\Omega)$. Moreover we have $\beta_{x}=\beta \delta$.

We also observe that, from Lemma 2.1 in [8], $\beta \in \stackrel{\circ}{K_{2}^{t}}(\Omega)$.
Remark 2.2: One can show that under hypotheses h_{1})- b_{5}), from Remark 3.1 and Theorem 3.1 in [8] (see also [7]), it follows that for any $s, \lambda \in R$ the operator

$$
u \in W_{s}^{2}(\Omega) \rightarrow L u+\lambda \beta u \in L_{s}^{2}(\Omega)
$$

is bounded.

We put

$$
\begin{gathered}
L_{o} u=-\sum_{i, j=1}^{n} a_{i j} u_{x_{i} x_{j}}, \\
\tilde{g}=\sum_{i, j=1}^{n}\left(\left(a_{i j}\right)_{x}+\left|a_{i j}\right| \delta\right),
\end{gathered}
$$

where δ is the function defined in h_{5}).
Let us fix a bounded open subset V of R^{n} such that
(2.10) $\quad V \subset \Omega \quad$ or $\quad V \cap \partial \Omega \neq \emptyset \quad$ and $\quad V \subset U_{i} \backslash S$ for some $i \in I$.

Lemma 2.1: If the bypotheses $\left.h_{1}\right)-h_{3}$) and h_{5}) hold, then, for any $\lambda \geqslant 0$ and for any function v satisfying

$$
v \in W^{2}(\Omega) \cap \stackrel{\circ}{W}^{1}(\Omega), \quad \operatorname{supp} v \subset V,
$$

we have the bound

$$
\begin{equation*}
\left|v_{x x}\right|_{2, \Omega} \leqslant c\left(\left|L_{o} v+\lambda \beta v\right|_{2, \Omega}+\left|\tilde{g} v_{x}\right|_{2, \Omega}+|v|_{2, \Omega}\right), \tag{2.11}
\end{equation*}
$$

where $c \in R_{+}$is independent of v and λ.
Proof: Proceeding as in the proof of Lemma 5.1 in [7] (see also Section 7 in [6]), we obtain

$$
\begin{equation*}
\left|v_{x x}\right|_{2, \Omega}^{2} \leqslant c_{1}\left(\left|L_{o} v\right|_{2, \Omega}^{2}+\left|g v_{x}\right|_{2, \Omega}^{2}+|v|_{2, \Omega}^{2}\right), \tag{2.12}
\end{equation*}
$$

where $g=\sum_{i, j=1}^{n}\left(a_{i j}\right)_{x}$ and $c_{1} \in R_{+}$is independent of v and λ.
By means of known techniques (see, e.g., [13], [6], [7]) we have

$$
\begin{align*}
\int_{\Omega}\left(L_{o} v+\lambda \beta v\right)^{2} d x & \geqslant \int_{\Omega}\left(L_{o} v\right)^{2} d x+\lambda^{2} \int_{\Omega} \beta^{2} v^{2} d x+ \tag{2.13}\\
& +2 \lambda v \int_{\Omega} \beta v_{x}^{2} d x-2 \lambda \int_{\Omega} \beta \tilde{g}|v| v_{x} d x .
\end{align*}
$$

Moreover we have

$$
\begin{equation*}
\int_{\Omega} \beta \tilde{g}|v| v_{x} d x \leqslant \frac{\lambda}{2} \int_{\Omega} \beta^{2} v^{2} d x+\frac{1}{2 \lambda} \int_{\Omega}\left|\tilde{g} v_{x}\right|^{2} d x . \tag{2.14}
\end{equation*}
$$

From (2.12), (2.13) and (2.14) we deduce the result.

3. - A priori bounds

Let us suppose that $a_{i j}$ satisfy the following further condition:
$\alpha)$ there exist functions $\alpha_{i j}$ such that

$$
\begin{gathered}
\alpha_{i j}=\alpha_{j i} \in L^{\infty}(\Omega), \quad\left(\alpha_{i j}\right)_{x_{k}} \in \tilde{K}_{1}^{q}(\Omega), \quad i, j, k=1, \ldots, n, \\
\sum_{i, j=1}^{n} \alpha_{i j} \xi_{i} \xi_{j} \geqslant v_{o}|\xi|^{2} \quad \forall \xi \in R^{n}, \quad \text { a.e. in } \Omega,
\end{gathered}
$$

where v_{o} is a positive constant independent of x and ξ and for any $\varepsilon \in R_{+}$there exists $k_{\varepsilon} \in N$ such that:

$$
\underset{\Omega \backslash \Omega_{k_{e}}}{\operatorname{ess} \sup } \sum_{i=1}^{n}\left|\alpha_{i j}-a_{i j}\right|<\varepsilon,
$$

where $\Omega_{k}, k \in N$, are the sets defined in Section 1 .

Lemma 3.1: If the conditions $\left.\left.\left.h_{1}\right)-h_{5}\right), \alpha\right)$ hold and λ_{1} is a real number, then there exists a constant $c \in R_{+}$such that

$$
\begin{equation*}
\left|v_{x x}\right|_{2, \Omega} \leqslant c\left(|L v+\lambda \beta v|_{2, \Omega}+\left|\varrho^{-1} v_{x}\right|_{2, \Omega}+\left|\varrho^{-2} v\right|_{2, \Omega}\right), \tag{3.1}
\end{equation*}
$$

for any $\lambda \in\left[\lambda_{1},+\infty[\right.$ and for any function v satisfying

$$
v \in W^{2}(\Omega) \cap \stackrel{\circ}{W}^{1}(\Omega), \quad \operatorname{supp} v \subset V
$$

Proof: Let us suppose $\lambda \geqslant 0$ and consider the functions $\psi_{k}, k \in N$, introduced in Section 1.

Applying Lemma 2.1 in [9] to the function $\left(1-\psi_{k}\right) v$ in the case $L=$ $=-\sum_{i, j=1}^{n} \alpha_{i j} \frac{\partial^{2}}{\partial x_{i} \partial x_{j}}$, we get
(3.2)

$$
\begin{aligned}
& \left|\left(\left(1-\psi_{k}\right) v\right)_{x x}\right|_{2, \Omega} \leqslant \\
& \quad \leqslant c_{1}\left(\left|-\sum_{i, j=1}^{n} \alpha_{i j}\left(\left(1-\psi_{k}\right) v\right)_{x_{i} x_{j}}+\lambda \beta\left(1-\psi_{k}\right) v\right|_{2, \Omega}+\right. \\
& \left.\quad+\left|\varrho^{-1}\left(\left(1-\psi_{k}\right) v\right)_{x}\right|_{2, \Omega}+\left|\varrho^{-2}\left(1-\psi_{k}\right) v\right|_{2, \Omega}\right),
\end{aligned}
$$

where $c_{1} \in R_{+}$is independent of λ, v and k.
Moreover we have

$$
\begin{align*}
& \left|-\sum_{i, j=1}^{n} \alpha_{i j}\left(\left(1-\psi_{k}\right) v\right)_{x_{i} x_{j}}+\lambda \beta\left(1-\psi_{k}\right) v\right|_{2, \Omega} \leqslant \tag{3.3}\\
& \leqslant\left|L_{o}\left(\left(1-\psi_{k}\right) v\right)+\lambda \beta\left(1-\psi_{k}\right) v\right|_{2, \Omega}+ \\
& +\left|\sum_{i, j=1}^{n}\left(\alpha_{i j}-a_{i j}\right)\left(\left(1-\psi_{k}\right) v\right)_{x_{i} x_{j}}\right|_{2, \Omega} \leqslant \\
& \leqslant c_{2}\left(\left|\left(1-\psi_{k}\right)\left(L_{o} v+\lambda \beta v\right)\right|_{2, \Omega}+\left|\left(1-\psi_{k}\right)_{x} v_{x}\right|_{2, \Omega}+\right. \\
& \\
& \left.+\left|\left(1-\psi_{k}\right)_{x x} v\right|_{2, \Omega}+\left|\left(\left(1-\psi_{k}\right) v\right)_{x x} \sum_{i, j=1}^{n}\left(\alpha_{i j}-a_{i j}\right)\right|_{2, \Omega}\right),
\end{align*}
$$

where $c_{2} \in R_{+}$is independent of λ, v and k.
From (3.2), (3.3) and α) we easily deduce that there exists $k_{o} \in N$ such that
(3.4) $\left|\left(\left(1-\psi_{k_{o}}\right) v\right)_{x x}\right|_{2, \Omega} \leqslant c_{3}\left(\left|L_{o} v+\lambda \beta v\right|_{2, \Omega}+\left|\varrho^{-1} v_{x}\right|_{2, \Omega}+\left|\varrho^{-2} v\right|_{2, \Omega}\right)$,
where $c_{3} \in R_{+}$is independent of λ and v. From now on, we denote by $c_{j}, j=4,5,6$, positive constants independent of λ and v.

Applying Lemma 2.1 to the function $\psi_{k_{o}} v$, we get

$$
\begin{align*}
\left|\left(\psi_{k_{o}} v\right)_{x x}\right|_{2, \Omega} & \leqslant c_{4}\left(\left|L_{o}\left(\psi_{k_{o}} v\right)+\lambda \beta \psi_{k_{o}} v\right|_{2, \Omega}+\right. \tag{3.5}\\
& \left.+\left|\tilde{g}\left(\psi_{k_{o}} v\right)_{x}\right|_{2, \Omega}+\left|\psi_{k_{o}} v\right|_{2, \Omega}\right) .
\end{align*}
$$

Let $\chi \in \mathscr{O}(\bar{\Omega} \backslash S)$ be a function such that $\chi_{\left.\right|_{\text {supp } \psi_{k_{o}}}}=1$. Since the function $\chi \tilde{g}$ belongs to the space $\widetilde{K}_{1}^{q}(\Omega)$ (see Remark 1.1), from the estimate (3.6) in [8] we deduce

$$
\begin{align*}
\left|\chi \tilde{g}\left(\psi_{k_{o}} v\right)_{x}\right|_{2, \Omega} & \leqslant \varepsilon\left\|\left(\psi_{k_{o}} v\right)_{x}\right\|_{W_{o}^{1}(\Omega)}+c_{1}(\varepsilon)\left\|\left(\psi_{k_{o}} v\right)_{x}\right\|_{L_{-1}^{2}(\Omega)} \leqslant \tag{3.6}\\
& \leqslant \varepsilon\left|\left(\psi_{k_{o}} v\right)_{x x}\right|_{2, \Omega}+c_{2}(\varepsilon)\left|\varrho^{-1}\left(\psi_{k_{o}} v\right)_{x}\right|_{2, \Omega} .
\end{align*}
$$

Then from (3.5) and (3.6) we have

$$
\begin{equation*}
\left|\left(\psi_{k_{o}} v\right)_{x x}\right|_{2, \Omega} \leqslant c_{5}\left(\left|L_{o} v+\lambda \beta v\right|_{2, \Omega}+\left|\varrho^{-1} v_{x}\right|_{2, \Omega}+\left|\varrho^{-2} v\right|_{2, \Omega}\right) . \tag{3.7}
\end{equation*}
$$

From (3.4) and (3.7) we get

$$
\begin{equation*}
\left|v_{x x}\right|_{2, \Omega} \leqslant c_{6}\left(\left|L_{o} v+\lambda \beta v\right|_{2, \Omega}+\left|\varrho^{-1} v_{x}\right|_{2, \Omega}+\left|\varrho^{-2} v\right|_{2, \Omega}\right) . \tag{3.8}
\end{equation*}
$$

If $\lambda_{1}<0$, we fix $\lambda \in\left[\lambda_{1}, 0[\right.$. From (3.6) in [8] we get
(3.9) $|\lambda \beta v|_{2, \Omega} \leqslant\left|\lambda_{1}\right|\left(\varepsilon\left|v_{x x}\right|_{2, \Omega}+c_{3}(\varepsilon)\left|\varrho^{-1} v_{x}\right|_{2, \Omega}+c_{4}(\varepsilon)\left|\varrho^{-2} v\right|_{2, \Omega}\right)$.

From (3.8) for $\lambda=0$ and (3.9) we deduce (3.1) with L_{o} instead of L.
Finally, again by (3.6) in [8] we can obtain the result.
We denote by $W_{l o c}^{2}(\bar{\Omega} \backslash S)$ (respectively $\stackrel{\circ}{W}_{{ }_{l o c}}^{1}(\bar{\Omega} \backslash S)$) the space of all functions $u: \Omega \rightarrow R$ such that $\zeta u \in W^{2}(\Omega)$ (respectively $W^{1}(\Omega)$) for any $\zeta \in \mathscr{O}(\bar{\Omega} \backslash S)$.

Theorem 3.1: In the same bypotheses of Lemma 3.1, for any $u: \Omega \rightarrow R$ such that

$$
\begin{align*}
& u \in W_{l o c}^{2}(\bar{\Omega} \backslash S) \cap \stackrel{\circ}{W_{l o c}^{1}}(\bar{\Omega} \backslash S) \cap L_{s-2}^{2}(\Omega), \tag{3.10}\\
& L u+\lambda^{\prime} \beta u \in L_{s}^{2}(\Omega), \quad \text { for some s, } \lambda^{\prime} \in R
\end{align*}
$$

we have $u \in W_{s}^{2}(\Omega)$. Moreover, for any $\lambda_{1} \in R$, we have the bound

$$
\begin{equation*}
\|u\|_{W_{s}^{2}(\Omega)} \leqslant c\left(\|L u+\lambda \beta u\|_{L_{s}^{2}(\Omega)}+\|u\|_{L_{s-2}^{2}(\Omega)}\right) \quad \forall \lambda \geqslant \lambda_{1}, \tag{3.11}
\end{equation*}
$$

where the constant $c \in R_{+}$is independent of u and λ.
Proof: The result follows from Lemma 3.1 applying arguments similar to those one used in [9] in order to get Theorem 2.1 from Lemma 2.1.

Corollary 3.1: In the same bypotheses of Theorem 3.1 and if

$$
\begin{equation*}
\exists \mu \in R_{+}: \beta \geqslant \mu \varrho^{-2} \quad \text { a.e. in } \Omega, \tag{3.12}
\end{equation*}
$$

then for any $s \in R$ there exist $c, \lambda_{o} \in R_{+}$such that

$$
\begin{gather*}
\|u\|_{W_{s}^{2}(\Omega)} \leqslant c\|L u+\lambda \beta u\|_{L_{s}^{2}(\Omega)} \tag{3.13}\\
\forall u \in W_{s}^{2}(\Omega) \cap \stackrel{\circ}{W_{s-1}^{1}}(\Omega), \quad \forall \lambda \geqslant \lambda_{o} .
\end{gather*}
$$

Proof: By means of known techniques (see, e.g., [23], [19]) and Theorem 3.1, we have

$$
\begin{align*}
& \lambda\|u\|_{L_{s-2}^{2}(\Omega)} \leqslant \mu^{-1}\|\lambda \beta u\|_{L_{s}^{2}(\Omega)} \leqslant \mu^{-1}\|L u+\lambda \beta u\|_{L_{s}^{2}(\Omega)}+ \\
& \quad+\mu^{-1}\|L u\|_{L_{s}^{2}(\Omega)} \leqslant \mu^{-1}\|L u+\lambda \beta u\|_{L_{s}^{2}(\Omega)}+c_{1}\|u\|_{W_{s}^{2}(\Omega)} \leqslant \tag{3.14}\\
& \leqslant c_{2}\|L u+\lambda \beta u\|_{L_{s}^{2}(\Omega)}+c_{3}\|u\|_{L_{s-2}^{2}(\Omega)} \\
& \quad \forall u \in W_{s}^{2}(\Omega) \cap \stackrel{\circ}{W_{s-1}^{1}}(\Omega), \quad \forall \lambda \in R_{+},
\end{align*}
$$

where $c_{1}, c_{2}, c_{3} \in R_{+}$are independent of u and λ.
From (3.11) and (3.14) we deduce the result.

4. - Further a priori bounds

We assume that the following further hypotheses hold:
h_{6}) the function σ which satisfies (2.6) and (2.7) is such that

$$
\sigma_{x} \in \stackrel{\circ}{K_{o}^{q}}(\Omega),
$$

where q is the number defined in the hypothesis h_{3});

$$
\begin{aligned}
&\left.b_{7}\right) \quad\left(\alpha_{i j}\right)_{x_{k}}, a_{i} \in \stackrel{\stackrel{\circ}{K}}{q}(\Omega), i, j, k=1, \ldots, n, \\
& a=a^{\prime}+a^{\prime \prime}, a^{\prime} \in \stackrel{\circ}{K_{2}^{t}}(\Omega), \\
& a^{\prime \prime} \geqslant \mu_{o} \varrho^{-2} \\
& \text { a.e. in } \Omega,
\end{aligned}
$$

where t is the number defined in the hypothesis h_{4}) and $\mu_{o} \in R_{+}$is independent of x.
An example of function $\varrho \in \mathcal{Q}_{o}(\Omega)$ satisfying the condition $\left.h_{6}\right)$ can be found in [9].

Theorem 4.1: If the bypotheses $\left.h_{1}\right)-h_{7}$) and α) bold, then for any $s \in R$ there exist $c \in R_{+}$and an open set $\Omega_{o} \subset \subset \bar{\Omega} \backslash S$ such that

$$
\begin{align*}
& \|u\|_{W_{s}^{2}(\Omega)} \leqslant c\left(\|L u+\lambda \beta u\|_{L_{s}^{2}(\Omega)}+|u|_{2, \Omega_{o}}\right) \tag{4.1}\\
& \forall u \in W_{s}^{2}(\Omega) \cap \stackrel{\circ}{W_{s-1}^{1}}(\Omega), \quad \forall \lambda \geqslant 0 .
\end{align*}
$$

Proof: Proceeding as in the proof of Lemma 3.1, let us consider the functions ψ_{k}, $k \in N$, defined in Section 1.

From Theorem 3.1 in [9] we have
(4.2) $\quad\left\|\left(1-\psi_{k}\right) u\right\|_{W_{s}^{2}(\Omega)} \leqslant$

$$
\begin{aligned}
& \leqslant c_{1}\left\|-\sum_{i, j=1}^{n} \alpha_{i j}\left(\left(1-\psi_{k}\right) u\right)_{x_{i} x_{j}}+a^{\prime \prime}\left(1-\psi_{k}\right) u+\lambda \beta\left(1-\psi_{k}\right) u\right\|_{L_{s}^{2}(\Omega)} \leqslant \\
& \leqslant c_{1}\left(\left\|L_{o}\left(\left(1-\psi_{k}\right) u\right)+a^{\prime \prime}\left(1-\psi_{k}\right) u+\lambda \beta\left(1-\psi_{k}\right) u\right\|_{L_{s}^{2}(\Omega)}+\right. \\
& \left.+\left\|\sum_{i, j=1}^{n}\left(\alpha_{i j}-a_{i j}\right)\left(\left(1-\psi_{k}\right) u\right)_{x_{i x j}}\right\|_{L_{s}^{2}(\Omega)}\right) \leqslant \\
& \leqslant c_{2}\left(\left\|\left(1-\psi_{k}\right)\left(L_{o} u+a^{\prime \prime} u+\lambda \beta u\right)\right\|_{L_{s}^{2}(\Omega)}+\left\|\left(1-\psi_{k}\right)_{x} u_{x}\right\|_{L_{s}^{2}(\Omega)}+\right. \\
& \left.+\left\|\left(1-\psi_{k}\right)_{x x} u\right\|_{L_{s}^{2}(\Omega)}+\left\|\left(\left(1-\psi_{k}\right) u\right)_{x x} \sum_{i, j=1}^{n}\left(\alpha_{i j}-a_{i j}\right)\right\|_{L_{s}^{2}(\Omega)}\right),
\end{aligned}
$$

where $c_{1}, c_{2} \in R_{+}$are independent of λ, u and k.
From hypothesis α) and from (4.2) we deduce that there exists $k_{o} \in N$ such that

$$
\begin{align*}
& \left\|\left(1-\psi_{k_{o}}\right) u\right\|_{W_{s}^{2}(\Omega)} \leqslant c_{3}\left(\left\|L_{o} u+a^{\prime \prime} u+\lambda \beta u\right\|_{L_{s}^{2}(\Omega)}+\right. \tag{4.3}\\
& \left.\quad+\left\|\left(1-\psi_{k_{o}}\right)_{x} u_{x}\right\|_{L_{s}^{2}(\Omega)}+\left\|\left(1-\psi_{k_{o}}\right)_{x x} u\right\|_{L_{s}^{2}(\Omega)}\right)
\end{align*}
$$

where $c_{3} \in R_{+}$is independent of λ and u, as all the positive constants appearing in the rest of the proof.

On the other hand, from Theorem 3.1 we get

$$
\begin{align*}
& \left\|\psi_{k_{o}} u\right\|_{W_{s}^{2}(\Omega)} \leqslant c_{4}\left(\left\|L_{o}\left(\psi_{k_{o}} u\right)+a^{\prime \prime} \psi_{k_{o}} u+\lambda \beta \psi_{k_{o}} u\right\|_{L_{s}^{2}(\Omega)}+\right. \tag{4.4}\\
& \left.\quad+\left\|\psi_{k_{o}} u\right\|_{L_{s-2}^{2}(\Omega)}\right) \leqslant c_{5}\left(\left\|\psi_{k_{o}}\left(L_{o} u+a^{\prime \prime} u+\lambda \beta u\right)\right\|_{L_{s}^{2}(\Omega)}+\right. \\
& \left.\quad+\left\|\left(\psi_{k_{o}}\right)_{x} u_{x}\right\|_{L_{s}^{2}(\Omega)}+\left\|\left(\psi_{k_{o}}\right)_{x x} u\right\|_{L_{s}^{2}(\Omega)}+\left\|\psi_{k_{o}} u\right\|_{L_{s-2}^{2}(\Omega)}\right) .
\end{align*}
$$

From (4.3) and (4.4) it follows

$$
\begin{align*}
\|u\|_{W_{s}^{2}(\Omega)} & \leqslant c_{6}\left(\left\|L_{o} u+a^{\prime \prime} u+\lambda \beta u\right\|_{L_{s}^{2}(\Omega)}+\left\|\left(\psi_{k_{o}}\right)_{x} u_{x}\right\|_{L_{s}^{2}(\Omega)}+\right. \tag{4.5}\\
& \left.+\left\|\left(\psi_{k_{o}}\right)_{x x} u\right\|_{L_{s}^{2}(\Omega)}+\left\|\psi_{k_{o}} u\right\|_{L_{s-2}^{2}(\Omega)}\right) .
\end{align*}
$$

We remark that, by (1.2), we have

$$
\begin{equation*}
\left\|\left(\psi_{k_{o}}\right)_{x} u_{x}\right\|_{L_{s}^{2}(\Omega)} \leqslant c_{7}\left|u_{x}\right|_{2, \operatorname{supp} \psi_{k_{o}}} \tag{4.6}
\end{equation*}
$$

Moreover, from (3.7) in [8], for any $\varepsilon \in R_{+}$there exist $c(\varepsilon) \in R_{+}$and an open set $\Omega_{\varepsilon} \subset \subset \Omega$ such that

$$
\begin{align*}
& \sum_{i=1}^{n}\left\|a_{i} u_{x_{i}}\right\|_{L_{s}^{2}(\Omega)}+\left\|a^{\prime} u\right\|_{L_{s}^{2}(\Omega)} \leqslant \tag{4.8}\\
& \leqslant \varepsilon\|u\|_{W_{s}^{2}(\Omega)}+c(\varepsilon)\left(\left|u_{x}\right|_{2, \Omega_{\varepsilon}}+|u|_{2, \Omega_{\varepsilon}}\right)
\end{align*}
$$

From (4.5)-(4.8), taking in mind (1.2), we deduce the assertion.
Corollary 4.1: If the bypotheses of Theorem 4.1 are satisfied and if

$$
\begin{equation*}
\beta^{-1} \in L_{l o c}^{\infty}(\bar{\Omega} \backslash S) \tag{4.9}
\end{equation*}
$$

then for any $s \in R$ there exist $c, \lambda_{o} \in R_{+}$such that

$$
\begin{gather*}
\|u\|_{W_{s}^{2}(\Omega)} \leqslant c\|L u+\lambda \beta u\|_{L_{s}^{2}(\Omega)} \tag{4.10}\\
\forall u \in W_{s}^{2}(\Omega) \cap \stackrel{\circ}{W}_{s-1}^{1}(\Omega), \quad \forall \lambda \geqslant \lambda_{o} .
\end{gather*}
$$

Proof: From (4.9) and (1.2) it follows that

$$
\begin{align*}
& \lambda|u|_{2, \Omega_{o}} \leqslant c_{1}\left|\varrho^{s} \lambda \beta u\right|_{2, \Omega_{o}} \leqslant c_{1}\|\lambda \beta u\|_{L_{s}^{2}(\Omega)} \tag{4.11}\\
& \forall u \in W_{s}^{2}(\Omega) \cap \stackrel{\circ}{W_{s-1}^{1}}(\Omega), \quad \forall \lambda \in R_{+},
\end{align*}
$$

where Ω_{o} is the open set of Theorem 4.1 and $c_{1} \in R_{+}$is independent of u and λ.
Proceeding as in the proof of Corollary 3.1, using Theorem 4.1 instead of Theorem 3.1, we obtain the result.

5. - Existence theorems

Theorem 5.1: If either the bypotheses $\left.h_{1}\right)$ - h_{6}), α) and (3.12) or the bypotheses $\left.\left.\left.h_{1}\right)-b_{7}\right), \alpha\right)$ and (4.9) hold, then for any $s \in R$ there exists $\lambda_{o} \in R_{+}$such that for any
$\lambda \geqslant \lambda_{0}$ the problem

$$
\begin{equation*}
u \in W_{s}^{2}(\Omega) \cap \stackrel{\circ}{W}_{s-1}^{1}(\Omega), \quad L u+\lambda \beta u=f, \quad f \in L_{s}^{2}(\Omega) \tag{5.1}
\end{equation*}
$$

is uniquely solvable.
Proof: We denote by A the operator $-\Delta$ if $\left.\left.h_{1}\right)-h_{6}\right), \alpha$) and (3.12) hold, the operator $-\Delta+a^{\prime \prime}$ in the other case.

For any $\tau \in[0,1]$ we set

$$
L_{\tau}=(1-\tau) A+\tau L
$$

Using Corollary 3.1 when $\left.\left.h_{1}\right)-b_{6}\right), \alpha$) and (3.12) hold, Corollary 4.1 in the other case, we deduce that there exist $c, \lambda_{o} \in R_{+}$such that

$$
\begin{gathered}
\|u\|_{W_{s}^{2}(\Omega)} \leqslant c\left\|L_{\tau} u+\lambda \beta u\right\|_{L_{s}^{2}(\Omega)} \\
\forall u \in W_{s}^{2}(\Omega) \cap \stackrel{\circ}{W}_{s-1}^{1}(\Omega), \quad \forall \lambda \geqslant \lambda_{o}, \quad \forall \tau \in[0,1] .
\end{gathered}
$$

If we fix $\lambda \geqslant \lambda_{o}$, by Theorem 3.2 in [9], the problem

$$
u \in W_{s}^{2}(\Omega) \cap \stackrel{\circ}{W_{s-1}^{1}}(\Omega), \quad A u+\lambda \beta u=f, \quad f \in L_{s}^{2}(\Omega)
$$

is uniquely solvable.
Observing that

$$
L_{\tau}+\lambda \beta=(1-\tau)(A+\lambda \beta)+\tau(L+\lambda \beta)
$$

we obtain the result by means of the method of continuity.
Theorem 5.2: If the bypotheses $\left.\left.\left.h_{1}\right)-h_{4}\right), h_{6}\right), h_{7}$) and α) are satisfied, then for any $s \in R$ the problem

$$
\begin{equation*}
u \in W_{s}^{2}(\Omega) \cap \stackrel{\circ}{W_{s-1}^{1}}(\Omega), \quad L u=f, \quad f \in L_{s}^{2}(\Omega) \tag{5.2}
\end{equation*}
$$

is an index problem with index equal to zero.
Proof: We consider the function β defined from (2.9) with $\tau=1$.
Since β satisfies the hypotheses b_{5}) and (4.9), by Theorem 5.1 the problem (5.1) is uniquely solvable for λ large enough.

On the other hand, since $\beta \in \stackrel{\circ}{K_{2}^{t}}(\Omega)$, from Lemma 2 in [4] and (3.8) in [8] the operator

$$
u \in W_{s}^{2}(\Omega) \rightarrow \beta u \in L_{s}^{2}(\Omega)
$$

is compact.
So, from well-known results, we deduce the assertion.

$$
-77 \text { - }
$$

6. - Appendix

Let us give an example of function f with a behaviour similar to $\gamma_{i j}=a_{i j}-\alpha_{i j}$ (see Section 3) and such that $f_{x_{k}} \notin K_{1}^{q}(\Omega)$ for some $k \in\{1, \ldots, n\}$.

Let us set $\left.\Omega=R_{+} \times\right] 0,2\left[\right.$ and $\varrho(x)=\left(\frac{x_{1}}{2+x_{1}}\right)^{\tau}$ with $\tau \in[1,2[$.
We fix $\delta \in R_{+}$and consider the function $f: \Omega \rightarrow R$ defined by

$$
f(x)= \begin{cases}x_{2}\left[\left(4 n^{2}-1\right) x_{1}-2 n+1\right] \arctan \frac{1}{n^{\delta}} & x \in\left[\frac{1}{2 n+1}, \frac{1}{2 n}[\times] 0,2[\right. \\ x_{2}\left[2 n-1-(2 n-1)^{2} x_{1}\right] \arctan \frac{1}{n^{\delta}} & x \in\left[\frac{1}{2 n}, \frac{1}{2 n-1}[\times] 0,2[\right. \\ 0 & x \in[1,+\infty[\times] 0,2[\end{cases}
$$

Evidently $f \in L^{\infty}(\Omega)$ and $\lim _{|x| \rightarrow+\infty} f(x)=0$.
On the other hand we have $0 \leqslant f(x)<2 \arctan \frac{1}{n^{\delta}}$ and then $\lim _{x \rightarrow x_{0}} f(x)=0$ $\forall x_{o} \in S=\left\{x \in \partial \Omega: x_{1}=0\right\}$.

Moreover we note that $f_{x_{1}}, f_{x_{2}} \in L_{l o c}^{\infty}(\bar{\Omega} \backslash S)$ from which we deduce that $f_{x_{1}}, f_{x_{2}} \in L_{l o c}^{q}(\bar{\Omega} \backslash S)$.

Now we fix a sequence $\left(x^{n}\right)_{n \in N}, x^{n} \in \Omega$, such that

$$
x_{1}^{n}=\frac{1}{2 n-1} \quad x_{2}^{n}=1
$$

For n large enough we have

$$
\left[\frac{1}{2 n}, \frac{1}{2 n-1}\right] \times\left[1,1+\frac{1}{2} \varrho\left(x^{n}\right)\right] \subset \Omega\left(x^{n}\right)=B\left(x^{n}, \varrho\left(x^{n}\right)\right) .
$$

Then we get

$$
\begin{aligned}
& {\left[\varrho\left(x^{n}\right)\right]^{q-2} \int_{\Omega\left(x^{n}\right)}\left|f_{x_{1}}\right|^{q} d x \geqslant} \\
& \quad \geqslant \frac{1}{2}\left[\varrho\left(x^{n}\right)\right]^{q-1} \int_{1 / 2 n}^{1 /(2 n-1)}\left[(2 n-1)^{2} \arctan \frac{1}{n^{\delta}}\right]^{q} d x_{1}= \\
& \quad=\frac{1}{2}\left(\frac{1}{4 n-1}\right)^{\tau(q-1)} \frac{(2 n-1)^{2 q-1}}{2 n}\left(\arctan \frac{1}{n^{\delta}}\right)^{q}
\end{aligned}
$$

Finally for $\delta<\frac{(2-\tau)(q-1)}{q}$ we obtain

$$
\lim _{n \rightarrow+\infty}\left[\varrho\left(x^{n}\right)\right]^{q-2} \int_{\Omega\left(x^{n}\right)}\left|f_{x_{1}}\right|^{q} d x=+\infty
$$

hence $f_{x_{1}} \notin K_{1}^{q}(\Omega)$.

REFERENCES

[1] R. A. Adams, Sobolev Spaces, Academic Press, 1975.
[2] A. Alvino - G. Trombetti, Second order elliptic equations whose coefficients have their first derivatives weakly- L^{n}, Ann. Mat. Pura Appl. (4), 138 (1985), 331-340.
[3] V. Benci - D. Fortunato, Weighted Sobolev spaces and the nonlinear Dirichlet problem in unbounded domains, Ann. Mat. Pura Appl. (4), 121 (1979), 319-336.
[4] A. Canale - L. Caso - P. Di Gironimo, Weighted norm inequalities on irregular domains, Rend. Accad. Naz. Sci. XL Mem. Mat., (11) 16 (1992), 193-209.
[5] A. Canale - L. Caso - P. Di Gironimo, Variational second order elliptic equations with singular coefficients, Rend. Accad. Naz. Sci. XL Mem. Mat., (1) 17 (1993), 113-128.
[6] A. Canale - M. Longobardi - G. Manzo, Second order elliptic equations with discontinuous coefficients in unbounded domains, Rend. Accad. Naz. Sci. XL Mem. Mat., (1) 18 (1994), 41-56.
[7] L. Caso, Spazi con peso ed equazioni ellittiche del secondo ordine con dati singolari, Tesi di Dottorato di Ricerca in Matematica del consorzio Napoli-Salerno, VII ciclo.
[8] L. Caso - M. Transirico, Some remarks on a class of weight functions, Comment. Math. Univ. Carolin., 37 (1996), 469-477.
[9] L. Caso - M. Transirico, The Dirichlet problem for second order elliptic equations with singular data, Acta Math. Hungar., 76 (1-2) (1997), 1-16.
[10] F. Chiarenza - M. Franciosi, A generalization of a theorem by C. Miranda, Ann. Mat. Pura Appl. (4), 161 (1992), 285-297.
[11] F. Chiarenza - M. Frasca - P. Longo, Interior $W^{2, p}$ estimates for non divergence elliptic equations with discontinuous coefficients, Ricerche Mat., 40 (1991), 149-168.
[12] F. Chiarenza - M. Frasca - P. Longo, $W^{2, p}$-solvability of the Dirichlet problem for nondivergence elliptic equations with VMO coefficients, Trans. Amer. Math. Soc., 336 (1993), 841-853.
[13] M. Chicco, Dirichlet problem for a class of linear second order elliptic partial differential equations with discontinuous coefficients, Ann. Mat. Pura Appl. (4), 92 (1972), 13-22.
[14] D. Fortunato, Spazi di Sobolev con peso ed applicazioni ai problemi ellittici, Rend. Accad. Sc. Fis. Mat. di Napoli (4), 41 (1974), 245-289.
[15] S. Matarasso - M. Troisi, Teoremi di compattezza in domini non limitati, Boll. Un. Mat. Ital. (5), 18-B (1981), 517-537.
[16] C. Miranda, Sulle equazioni ellittiche di tipo non variazionale a coefficienti discontinui, Ann. Mat. Pura Appl. (4), 63 (1963), 353-386.
[17] R. Schianchi, Spazi di Sobolev dissimmetrici e con peso, Rend. Accad. Sc. Fis. Mat. di Napoli (4), 42 (1975), 349-388.
[18] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, New Jersey, 1970.
[19] M. Transirico - M. Troisi, Equazioni ellittiche del secondo ordine di tipo non variazionale in aperti non limitati, Ann. Mat. Pura Appl. (4), 152 (1988), 209-226.
[20] M. Transirico - M. Troist, Limitazioni a priori per una classe di operatori differenziali lineari ellittici del secondo ordine in aperti non limitati, Boll. Un. Mat. Ital. (7), 5-B (1991), 757-771.
[21] M. Troisi, Teoremi di inclusione negli spazi di Sobolev con peso, Ricerche Mat., 18 (1969), 49-74.
[22] M. Troisi, Su una classe di funzioni peso, Rend. Accad. Naz. Sci. XL Mem. Mat., (11) 10 (1986), 141-152.
[23] G. Viola, Sulle equazioni ellittiche del secondo ordine a coefficienti non regolari, Rend. Mat., 4 (1984), 617-632.
[24] W. P. Ziemer, Weakly Differentiable Functions, Springer-Verlag, 1989.

