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ABSTRACT. — We give a definition of weak Kato Measures relative to a Dirichlet form of dif-
fusion type and we prove the Harnack inequality, the local Hölder continuity an estimate on the
decay of the energy and a Wiener type criterion on the boundary for the harmonics relative to a
Schrödinger problem for the Dirichlet form with a weak Kato measure as potential.

Misure di Kato deboli e problemi di Schrödinger per una forma di Dirichlet

SUNTO. — Si definisce la classe delle misure di Kato deboli relative a una forma di Dirichlet tipo
diffusione e si provano la diseguaglianza di Harnack, la hölderianità locale, una stima di decrescita
della energia e un criterio tipo Wiener al bordo per le armoniche relative a un problema tipo Schrö-
dinger per una forma di Dirichlet con una misura di Kato debole come potenziale.

1. - INTRODUCTION

The Kato space relative to the Laplace operator has been introduced in [23] and
has been used in [2] as a suitable space for the potential in a Schrödinger equation (for
the Laplace operator) assuring in particular the continuity of solutions and the Har-
nack inequality for positive local solutions; the proofs in [2] are of probabilistic
type.

A generalization of Kato spaces to the case of uniformly elliptic operators has been
given in [11] in relation with the study of the associated Schrödinger equation; the
principal goal of [11] is an extension to the case under consideration of the results in
[2]; the proofs in [11] are analitycal. Extensions to degenerate elliptic operators con-
structed with vector fields satisfying an Hörmander condition are given in [12] and in
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[24] for the weighted case. We have also to recall the recent paper of W. Hansen [20]
(see also [15]), where the Harnack inequality has been proved in the case that the po-
tential in the Schrödinger equation is only potentially bounded; in the above paper the
operators in consideration have to satisfy a technical assumption, which holds for op-
erators on polynomial Lie groups.

The properties of Kato space relative to an uniformly elliptic operator have been
further studied in [14]. In the same paper the continuity of the local solutions of an
uniformly elliptic problem with a source term in the Kato space is also proved.

In [9] the notion of Kato spaces has been introduced for Dirichlet forms of diffu-
sion type and the properties of these spaces have been investigated. In [9] the continu-
ity of local weak solutions of the equation Lu4s has been studied, where L is the op-
erator associated with the form and s belongs to the associated Kato space, moreover
in [27] an Harnack inequality has been also proved for local positive weak solutions of
the equation Lu1um40, where the potential m is a measure in the Kato space associ-
ated with the form.

In the present paper we introduce the notion of weak Kato spaces; the new notion
coincides with the usual Kato spaces in the case of uniformly elliptic operators and of
operators on Lie groups, but is weaker than the usual one in the case of weighted uni-
formly elliptic operators, of weighted degenerate elliptic operators constructed with
vector fields satisfying an Hörmander condition and of general Dirichlet forms of dif-
fusion type. We consider weak Kato spaces of measures related to Dirichlet forms of
diffusion type and we investigate the properties of the space; moreover we prove an
Harnack inequality for local positive weak solutions of the equation Lu1um40,
where L is the operator associated with the form and m is a measure in the weak Kato
space, (this result is weaker than the result in [20] in the cases where the technical as-
sumption assumed in [20] holds) and we prove that a weak solution of Lu1um4s is
locally continuous provided m and s are in weak Kato space associated with the form;
moreover the energy measure of the form is locally in weak Kato space. The boundary
behavior of a weak solution of the previous problem is studied under the assumption
that the points of the boundary in consideration are regular points.

We now specify the class of Dirichlet forms we will consider.
Let X be a locally compact Hausdorff space and m a positive measure on X with

supp (m) 4X; we assume that we are given a strongly local (of diffusion type), regular
Dirichlet form in the Hilbert space L 2 (X , m), in the sense of M. Fukushima, [19],
whose domain is denoted by D[a]. Such a form a admits the following integral repre-
sentation a(u , v) 4�

X

a(u , v)(dx) for every u , v�D[a] where a(u , v)(dx) is a signed

Radon measure on X , uniquely associated with the functions u , v . Moreover for any
open subset V of X the restriction of a(u , v) to V depends only on the restrictions of
u and v to V . By D0 [a , V] we denote the closure of C0 (V)OD[a] in D[a]. By
Dloc [a , V] we denote the space of all m-measurable functions u , v in X , that coincide
m-a.e. on every compact subset of V with some function of D[a]. The measure a(u , v)
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is defined unambigously in V for all u , v�Dloc [a , V]. We refer to [6], [7], [19] for
the properties of a(u , v) with respect to Leibnitz, chain and troncature rules. We as-
sume that the form a has a separating core denoted by C, [6], [7] and we define a
distance associated with the form by

d(x , y) 4 sup ]f(x)2f(y) ; (f� C with a(f , f) Gm( .

We denote B(x , r) 4 ]y ; d(x , y) E r(, B(r) will be balls B(x , r) with a fixed center x .
We consider a fixed relatively compact open set X0 assume:

(H1) The distance d defines a topology on X equivalent to the initial one; moreover
the following property holds: there exists constants 0 ER0E1Q , nD0 and c0D0,
such that

0 Ec0u r

R
vn

m(B(x , R) ) Gm(B(x , r) )

for every x�X0 and every 0 E rER0 . We say that n is an estimate of the intrinsic di-
mension in X0 .

We observe that (H1 ) is verified if a duplication property holds for the balls B(x , r)
(x�X0 , 0 E rER0) that is

m(B(x , 2 r) ) Gc x
0 m(B(x , r) ) ,

where c x
0 is a positive constant independent of x , r . In this case we have nF lg2 c x

0 .
Moreover we observe that, if (H1 ) holds, we have inf

x�X0

m(B(x , R0 /2) ) D0.

(H2) For every ball B(x , r) with x�X0 , 0 E rER0 and every f�Dloc [a , B(x , kr) ]
the following scaled Poincaré inequality holds

�
B(x , r)

Nf2 fx , rN
2 m(dx) Gc1 r 2 �

B(x , kr)

a(u , u)(dx)

where fx , r is the average of f on B(x , r), c1 are constants independent of x , r and
kF1.

We observe that from the assumptions (H1 ) and (H2 ) it follows that the Sobolev
inequalities relative to n hold, [8].

We recall, [7], that for a Dirichlet form, that satifies the above assumptions and
B(x , t) ’B(x , 2 t) ’X0 , sD t , there exists a cut-off function f of B(x , s) in B(x , t)
such that,

a(f , f)(dx) G
C1

(t2 s)2
m(dx) .
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Associated with the form a we have a capacity defined by

cap (E, V)4sup { �
V

a(u, u)(dx); u�D0[a, V]OC0(V), uF1 on a neighborhood of E}
where E ’V’X0 . Functions in Dloc [a , X0 ] may be defined in V up to set of capacity
zero, so the supremum (or the oscillation) of the function means the supremum (or the
oscillation) up to sets of capacity zero.

Moreover a Green function GV (x , y) 4GV (y , x) relative to a relatively compact
open set V’’X0 can be defined and that, in the case V4B(x0 , R), B(x0 , 2kR) ’’X0

and RGR0 , the following estimate holds

GB(x0 , R) (x0 , y) B �
d(x0 , y)

R
s 2

m(B(x , s) )

ds

s
(1.1)

for every y such that d(x0 , y) GR/2 .
Finally we observe that our assumptions hold for Dirichlet forms associated to

wide classes of

(a) weighted uniformly elliptic operators

(b) weighted degenerate elliptic operators generated by vector fields satisfying
an Hörmander condition

(c) subelliptic operators
see [6], [7], [24] for more details.

2. - THE SPACES Kw (V) and Kw
loc (V).

Let V be an open set in X with diam (V) 4 R/2; then V’BR/2 , where BR/2 is a suit-
able ball with radius R/2 . We assume that B4kR’’X0 , where B4kR is a ball with the
same center as BR/2 and radius 4kR. By NmN we denote the total variation of the Radon
measure m on V .

DEFINITION 2.1: We denote by Kw (V) the set of all Radon measures m on V such
that

lim
rK0

hm (r) 40

where

hm (r) 4 sup
x� V

�
VOB(x , r)

u �
d(x , y)

40 r
s 2

m(B(x , s) )

ds

s
vNmN(dy) .

We say that hm (r) is the Kw-modulus of the measure m .
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By Kw
loc (V) we denote the set of all Radon measures m on V such that m�K(V 8 )

for every open set V 8’’V .

It is easy to see that Kw (V) and Kw
loc (V) are vector spaces.

PROPOSITION 2.2: If m�K(V); then NmN(V) E1Q .

PROOF: By the definition, there exists r0G R/2 , such that

CNmN(VOB(x , r0 ) )
r0

2

m(B(x , r0 ) )
G �

VOB(x , r0 )

u �
d(x , y)

40 r0

s 2

m(B(x , s) )

ds

s
vNmN(dy) G1

for every x�V, where C is an absolute constant. There exists x1 , x2 , R , xn�V such
that

V ’ 0
i41

n

B(xi , r0 )

hence

NmN(V) G !
i41

n

NmN(VOB(xi , r0 ) ) G

GC 21 n

sup
x41, R , n

m(B(xi , r0 ) )

r0
2

G

GC 21 n
m(B2 R )

r0
2

.

PROPOSITION 2.3: Let m be a measure in Kw (V) then

sup
x� V

�
V

u �
d(x , y)

R
s 2

m(B(x , s) )

ds

s
vNmN(dy) E1Q .

PROOF: Let m be in Kw (V). Moreover there exists 0 E r0G R/40 such that

�
VOB(x , r0 )

u �
d(x , y)

40 r0

s 2

m(B(x , s)

ds

s
vNmN(dy) E1
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for every x in V. Then

�
VOB(x , r0 )

u �
d(x , y)

R
s 2

m(B(x , s) )

ds

s
vNmN(dy) G

G �
VOB(x , r0 )

u �
d(x , y)

40 r0

s 2

m(B(x , s)

ds

s
vNmN(dy)1

1 �
VOB(x , r0 )

u �
40 r0

R
s 2

m(B(x , s) )

ds

s
vNmN(dy) G

G11C1 (r0 )NmN(V) .

Since

�
V2B(x , r0 )

u �
d(x , y)

R
s 2

m(B(x , s) )

ds

s
vNmN(dy) GC2 (r0 )NmN(V)

where C2 (r0 ) is a constant depending only on r0 . We have

�
V

u �
d(x , y)

R
s 2

m(B(x , s) )

ds

s
vNmN(dy) G11 (C1 (r0 )1C2 (r0 ) )NmN(V)

for every x� V; this concludes the proof because from Proposition 2.2.
An easy consequence of Proposition 2.3. is that a measure in Kw (V) belongs to the

space D 80 [a , V] (D 80 [a , V] denotes the dual space of D0 [a , V], see [9] for the a char-
acterization of the space D 80 [a , V]).

DEFINITION 2.4: Let m�Kw (V), we define

VmVKw (V)4 sup
x� V

�
V

u �
d(x , y)

R
s 2

m(B(x , s) )

ds

s
vNmN(dy) .

It is easy to verify that V .VKw(V) is a norm on Kw (V).

REMARK 2.1: We observe that m(B(x , s) ) is an increasing function of s then for al-
most every s we have m(¯B(x , s) ) 40. So we have that m(B(x , s) ) is continuous at a

point x for almost every s; as consequence, for a fixed 0ERER, u �
d(x , y)

R
s 2

m(B(x , s) )

ds

s
v is
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continuous with respect to x�V for y� V2]x( uniformly for y in V2B(x , s),
sD0. Then we have that

�
V

u �
d(x , y)

R
s 2

m(B(x , s) )

ds

s
vNmN(dy)

is continuous with respect to x in ¯V (we observe that for x�¯V we have
lim
sK0

NmN(VOB(x , s) ) 40). As a consequence, we have that in Definition 2.1, in

Proposition 2.2 and in Definition 2.3 we can take equivalently the supremum
on V .

Consider now g �
d(x , y)

R
s 2

m(B(x , s) )

ds

s
h; the integral is continuous in y on V2B(x , s) for

sD0 and, if g �
0

R
s 2

m(B(x , s) )

ds

s
hE1Q , the integral is continuous for y� V.

REMARK 2.2: Using the assumption (H1 ) we easily obtain

NmN(V) GC VmVKw (V)

m(BR )

R2

THEOREM 2.4: The space Kw (V) with the norm V .VKw (V) is a Banach space.

PROOF: Let (m h ) be a Cauchy sequence in Kw (V). By the Remark 2.2 we have that
Nm h N(V) is bounded and

lim
h , kK0

Nm h2m kN(V) 40 .

By the completeness of the space of all bounded Radon measures on V , there exists a
Radon measure m on V such that Nm h2mN(V) K0 as hK0.

Since (m h ) is a Cauchy sequence in Kw (V), for every eD0 there is he such
that

sup
x� V

�
V

u �
d(x , y)

R
s 2

m(B(x , s) )

ds

s
vNm h2m kN(dy) Ge

for every h , kFhe .
We recall that, since NmN�D 80 [a , V] if NmN(]x() c0 then x is a point of positive

capacity and �
0

R
s 2

m(B(x , s) )

ds

s
is finite.

Taking into account Remark 2.1 and passing to the limit as kK1Q we obtain,
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for every x� V

�
V2B(x , s)

u �
d(x , y)

R
s 2

m(B(x , s) )

ds

s
vNm h2mN(dy) Ge .(2.1)

if NmN(]x() 40 (where sD0) and

�
V

u �
d(x , y)

R
s 2

m(B(x , s) )

ds

s
vNm h2mN(dy) Ge .(2.18)

if NmN(]x() c0. Then, for rG R/40

�
V2B(x , s)

u �
d(x , y)

40 r
s 2

m(B(x , s) )

ds

s
vNmN(dy) G(2.2)

G�
V

u �
d(x , y)

40 r
s 2

m(B(x , s) )

ds

s
vNm he

N1e

if NmN(]x() 40 and

�
V

u �
d(x , y)

40 r
s 2

m(B(x , s) )

ds

s
vNmN(dy) G(2.28)

G�
V

u �
d(x , y)

40 r
s 2

m(B(x , s) )

ds

s
vNm he

N1e

if NmN(]x() c0. From (2.2) and (2.28) we obtain

�
V

u �
d(x , y)

40 r
s 2

m(B(x , s) )

ds

s
vNmN(dy) G(2.3)

G�
V

u �
d(x , y)

40 r
s 2

m(B(x , s) )

ds

s
vNm he

N1e .

By the same methods we have that (2.3) holds for V replaced by VOB(x , r); then
we obtain that m�Kw (V).
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From (2.1) (2.18) we obtain (passing to the limit in (2.1) as sK0) that
m h converges to m in Kw (V).

REMARK 2.3: The main difference between the spaces K(V) defined in [9] and
Kw (V) is that the measures in K(V) do not charge the points, but the measures in
Kw (V) may charge points of positive capacity. We recall that in the general case of
Dirichlet forms (and in particular in the case of weighted problems) we can consider
measures in D 80 [a , V] (D 80 [a , V] denotes the dual space of D0 [a , V]) which are sup-
ported by points of positive capacity and which belong to the space Kw (V) but do not
belong to the space K(V).

3. - HARNACK INEQUALITY

Let a be a Dirichlet form satisfying the assumptions given in section 1. and Let m
be a measure in Kw (V). The main goal of this section is the proof of the following
Harnack inequality:

THEOREM 3.1: Let u be a positive local solution of the Schrödinger type problem rel-
ative to the measure m and to the Dirichlet form a, i.e.

�
V

a(u , v)(dx)1�
V

uvm(dx) 40

(v�D0 [a , V] , supp (v) ’V ; u�Dloc [a , V], uD0 .

Then there exists R1D0 such that for rG min gR1 , R

4
h, B(x , 4 r) ’V we have

sup
B(x , r)

uGC inf
B(x , r)

u

where C is a structural constant.

We begin by proving the following embedding result:

PROPOSITION 3.2: Let m be in Kw (V) and u�Dloc [a , B(x , t) ], B(x , 2 t) ’X0 and
eD0, there exists R(e) D0 such that

�
B(x , t)

NuN2 f 2 NmN(dx) G

Ge �
B(x , t)

f 2 a(u , u)(dx)1
C(e)

(t2 s)2
�

B(x , t)2B(x , s)

NuN2 m(dx)

where 0 E sE tG R(e), f is the cut-off function of B(x , s) in B(x , t) defined in section
1 and R(e), C(e) are constants depending only on e .
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PROOF: We use the same methods as in [3].
We can assume, without loss of generality mF0, u�L Q (V).
Let w be the weak solution of the problem

a(w , v) 4 �
B(x , 2 t)

v m(dx)

w�D0 [a , B(x , 2 t) ] , (v�D0 [a , B(x , 2 t) ] ;
We have

�
B(x , s)

NuN2 m(dx) G �
B(x , t)

NuN2 f 2 m(dx) 4(3.1)

4 �
B(x , t)

a(w , NuN2 f 2 )(dx) G

G2 �
B(x , t)

uf 2 a(w , u)(dx)12 �
B(x , t)

u 2 fa(w , f)(dx) G

G
e

2
�

B(x , t)

f 2 a(u , u)(dx)1

1
C2

e y �
B(x , t)

u 2 a(f , f)(dx)1 �
B(x , t)

u 2 f 2 a(w , w) dxzG

G
e

2
�

B(x , t)

f 2 a(u , u)(dx)1

1
C3

e y 1

(t2 s)2
�

B(x , t)

u 2 m(dx)1 �
B(x , t)

u 2 f 2 a(w , w)(dx)z .

We now estimate the term

�
B(x , t)

u 2 f 2 a(w , w)(dx) .

We have

�
B(x , t)

u 2 f 2 a(w , w)(dx) 4

4 �
B(x , t)

a(w , wu 2 f 2 )(dx)22 �
B(x , t)

wufa(w , uf)(dx) G
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G �
B(x , t)

wu 2 f 2 m(dx)22 �
B(x , t)

wu 2 fa(w , f)(dx)2

22 �
B(x , t)

wuf 2 a(w , u)(dx) .

We recall that C5 hm (t) F sup
B(x , 8 t)

w . Then we choose R(e) such that for tG R(e) we

have hm (t) G inf e

8C3 C4 C5
2

(we assume C3 , C4 , C5F1, eE1), we obtain

�
B(x , t)

u 2 f 2 a(w , w)(dx) G
e

4C3

�
B(x , t)

u 2 f 2 m(dx)1

1
e 2

4C3

�
B(x , t)

f 2 a(u , u)(dx)1
C6

(t2 s)2
�

B(x , t)2B(x , s)

u 2 m(dx)

using in (3.1) the above estimate we obtain the result.
By an easy modification of Moser iteration method and by the Lemma 5.2 in [7]

(taking into account the Sobolev inequalities proved by (H2 ), [8]), we prove
that

PROPOSITION 3.3: For a positive subsolution of the problem (2.1) the following esti-
mate holds

sup
B(x , r)

uGC1u 1

m(B(x , 2 r) )
�

B(x , 2 r)

u q m(dx)v1/q

(3.2)

where qD0, B(x , 8kr) ’V , rG R24 R(1/2) and C1 depends on q .

We are now ready for the proof of Theorem 3.1:

PROOF OF THEOREM 3.1: Consider now the function log u , where u is a positive su-
persolution in V , i.e.

�
V

a(u , v)(dx)1�
V

uvm(dx) F0

(v�D0 [a , V], supp (v) ’V , vF0 ; u�Dloc [a , V], uD0 .

By the same methods in [7] we prove that for every positive local solution of (2.1) the
following estimate holds

(3.3) �
B(x , kr)

a( log u , log u)(dx) GC2 (11 (NmN(B(x , 2 r) )
r 2

m(B(x , r) )
)

m(B(x , r) )

r 2

where B(x , 2kr) ’V and C2 is a structural constant.
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We observe that the term m(B(x , 2 r) ) r 2

m(B(x , r) )
is bounded (we use the assump-

tion m�Kw (V)); then, using the Poincaré inequality we have

1

m(B(x , r) )
�

B(x , r)

Nlog u2 ( log u)x , r N2 m(dx) GC3 .(3.4)

As in [7] using (3.4) we prove that there exists gD0 such that

(3.5) u 1

m(B(x , r) )
�

B(x , r)

u g m(dx)v u 1

m(B(x , r) )
�

B(x , r)

u 2g m(dx)vGC4

where B(x , 2 r) ’V , rG R, and C4 depends only on C3 .
Let now u be a solution in V . The function uA 4u1s , sD0 is again a local sol-

ution, then 1/uA is a positive subsolution; then by (3.2), (3.5)

inf
B(x , r)

uA FC1u 1

m(B(x , 2 r) )
�

B(x , 2 r)

uA2g m(dx)v21/g

F

FC5u 1

m(B(x , 2 r) )
�

B(x , 2 r)

uAg m(dx)v1/g

FC6 sup
B(x , r)

uA

where C6 depends on C1 and C4 , but is independent of s . Letting sK0 we obtain the
result.

Taking into account Proposition 3.2. we can prove as in [7] the existence of a
Green function for Dirichlet problem the Schrödinger type operator associated with
the form a and the potential m , moreover as in [7] from the Harnack inequality we
have estimates on the Green function:

THEOREM 3.4: Let B(x , 4R) ’’X0 and let GB(x , R) (x , y) be the Green function for
Dirichlet problem for the Schrödinger type operator associated with the form a and the
potential m (m�Kw

loc (X0 ) ), relative to B(x , R) with singularity at x. Then GB(x , R) (x , y)
is continuous in y in B(x , R)2 ]x( and

GB(x , R) (x , y) B �
d(x , y)

R
s 2

m(B(x , s) )

ds

s
(3.5)

for every y such that d(x , y) GR/2 .

From Proposition 3.3 and Theorem 3.4 we obtain:

PROPOSITION 3.5: Let u be a subsolution in B(x , 4 r) for Dirichlet problem for the
Schrödinger type operator associated with the form a and the potential m and the source
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term s (m , s�Kw
loc (X0 ) ), where B(x , 16 r) ’’X0 and rG R2 , i.e.

�
B(x , 4 r)

a(u , v)(dx)1 �
B(x , 4 r)

uv m(dx) G �
B(x , 4 r)

v s(dx)

(v�D0 [a , B(x , 4 r) ], supp (v) ’B(x , 4 r) u�Dloc [a , B(x , 4 r) ] .

Then

sup
B(x , r)

uGC yu 1

m(B(x , 2 r) )
�

B(x , 2 r)

(u 1 )2 m(dx)v1/2

1hs (2 r)z .(3.6)

PROOF: Let uA be the solution of the problem

�
B(x , 2 r)

a(uA, v)(dx)1 �
B(x , 2 r)

uA v m(dx) 40

(v�D0 [a , B(x , 2 r) ] , u2uA �D0 [a , B(x , 2 r) ] .

Then w4u2uA is such that

�
B(x , 2 r)

a(w , v)(dx)1 �
B(x , 2 r)

wv m(dx) 4 �
B(x , 2 r)

ws(dx)

(v�D0 [B(x , 2 r), a] , u2uA �D0 [B(x , 2 r), a] .

From the estimates on the Green function in Theorem 3.4. we obtain

sup
B(x , 2 r)

NwNGC1 hs (2 r) .(3.6)

Moreover from Proposition 3.3. we obtain

sup
B(x , r)

uA GC2u 1

m(B(x , 2 r) )
�

B(x , 2 r)

uA2 m(dx)v1/2

.(3.7)

From (3.6) and (3.7) the result easily follows.

4. - CONTINUITY AND ENERGY DECAY

In the following we denote

d(r , x) ) 4
cap (B(x , r)OV , B(x , 2r) )

cap (B(x , r), B(x , 2r) )

where cap denotes the capacity associated with the form a . We begin this section
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by a result concerning the continuity and the decay of the energy for local
solutions:

THEOREM 4.1: Let u be a local solution in V for the Dirichlet problem for the
Schrödinger type operator associated with the form a and the potential m and the source
term s (m , s�Kw

loc (V) ), i.e.

�
V

a(u , v)(dx)1�
V

uv m(dx) G�
V

v s(dx)

(v�D0 [a , V], supp (v) ’V ; u�Dloc [a , V]

Then we have

�
B(x , r)

G x
B(x , q0

21 r) a(u , u)(dx) G

GC u r

R
vb

�
B(x , R)

G x
B(x , q0

21 R) a(u , u)(dx)1

1C yuR2n�
V

u 2 m(dx)1h 2
s (2q0

21 R)v h 2
m (2q0

21 R)1hs
2 (2q0

21 R)z
and

osc
B(x, r)

u 2GC yu r

R
vb

osc
B(x, R)

u 21uR0
2n�

V

u 2m(dx)1h 2
s(2q0

21R)v h 2
m(2q0

21R)1hs
2(2q0

21R)z
where B(x , 16q0

21 R) ’B(x , 4 R0 ) ’’V , q0 as in [7], and rGq0 R , R04

4min gR1 , R2 , 1

4
d(x , ¯V)h .

PROOF: Let B(x , r) be such that B(x , r) ’B(x , q0 R). Consider the problem

�
B(x , q0

21 R)

a(uA, v)(dx) 40(4.1)

(v�D0 [a , B(x , q0
21 R) ] , u2uA �D0 [a , B(x , q0

21 R) ]

The problem (4.1) has a unique solution and we have, [7],

�
B(x , r)

G x
B(x , q0

21 r) a(uA, uA)(dx) GC u r

R
vb

�
B(x , R)

G x
B(x , q0

21 R) a(uA, uA)(dx)
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and

osc
B(x , r)

uA2GC u r

R
vb

osc
B(x , R)

uA2 .

Let now be w4 uA 2u we have that w is the solution of the problem

�
B(x , q0

21 R)

a(w , v)(dx) 4 �
B(x , q0

21 R)

uvm(dx)2 �
B(x , q0

21 R)

vs(dx)(4.2)

(v�D0 [a , B(x , q0
21 R) ] , w�D0 [a , B(x , q0

21 R) ] .

We have

w(y) 4 �
B(x , q0

21 R)

G y
B(x , q0

21 R) (u m(dx)1s (dx) ) G

G g sup
B(x , q0

21 R)

NuNh �
B(y , 2q0

21 R)

G y
B(y , 8q0

21 R) m(dx)1hs (2q0
21 R) G

GC gg sup
B(x , q0

21 R)

NuNh hm (2q0
21 R)1hs (2q0

21 R)h
and

�
B(x , q0

21 R)

G x
B(x , q0

21 R) a(w , w)(dx) GC kg sup
B(x , q0

21 R)

NuN2h h 2
m (2q0

21 R)1hs
2 (2q0

21 R)l .

Then, taking into account the local L Q-estimate Proposition 3.5., we obtain

�
B(x , r)

G x
B(x , q0

21 r) a(u , u)(dx) G

GC u r

R
vb

�
B(x , R)

G x
B(x , q0

21 R) a(u , u)(dx)1

1C yuR0
2n�

V

u 2 m(dx)1h 2
s (2q0

21 R)v h 2
m (2q0

21 R)1hs
2 (2q0

21 R)z
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and

osc
B(x, r)

u 2GC yu r

R
vb

osc
B(x, R)

u 21uR0
2n�

V

u 2m(dx)1h 2
s(2q0

21R)v h 2
m(2q0

21R)1hs
2(2q0

21R)z .

From Theorem 4.1 we easily obtain:

COROLLARY 4.2: Let u be a local solution in V for the Dirichlet problem for the
Schrödinger type operator associated with the form a and the potential m and the source
term s (m , s�Kw

loc (V) ); then u is locally continuous in V .

Now we consider the boundary behavior:

THEOREM 4.3: Let u be a local solution in V for the Dirichlet problem for the
Schrödinger type operator associated with the form a , the potential m , the source term s
(m , s�Kw

loc (V) ) and the boundary data g ( g�Dloc [X0 , a]OL Q (X0 , m) ) i.e.

�
V

a(u , v)(dx)1�
V

uv m(dx) 4�
V

v s (dx)

(v�D0 [a , V] , u2g�D0 [a , V] .

Then we have

�
B(x , r)

G x
B(x , q0

21 r) a( (u2k)6 , (u2k)6 )(dx) G

GC exp u2b �
r

q0
21 R

d(r , x)
dr

r
v �

B(x , R)

G x
B(x , q0

21 R) a( (u2k)6 , (u2k)6 )(dx)1

1C yuR0
2n�

V

u 2 m(dx)1sup
¯V

g 21h 2
s (2q0

21 R)v hm
2 (2q0

21 R)1hs
2 (2q0

21 R)z
where kF sup

B(x , 2q0
21 R)O¯V

g and

osc
B(x , r)

u 2GC exp u2b �
r

q0
21 R

d(r , x)
dr

r
v osc

B(x , R)
u 21

1C yu[(R0
2n�

V

u 2m(dx)1sup
¯V

g 21hs
2(2q0

21R)v hm
2(2q0

21R)1hs
2(2q0

21R)1 osc
B(x, 2q0

21R)O¯V
g 2z

where b is a positive structural constant, x�¯V , B(x , 16q0
21 R) ’B(x , 4 R) ’’X0 , q0 as

in [4] [7], and rGq0 R , R 4 min gR1 , R2 , 1

4
d(x , ¯V)h .
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PROOF: The same methods used in the proof of Theorem 4.1 allow us to prove the
Theorem 4.3.

Consider the problem

�
B(x , q0

21 R)OV

a(uA, v)(dx) 40(4.3)

(v�D0 [a , B(x , q0
21 R)OV] , u2uA �D0 [a , B(x , q0

21 R)OV] .

The problem (4.2) has a unique solution and we have, [4] [5] (see also [7]),

�
B(x , r)OV

G x
B(x , q0

21 r)OV a( (uA 2k)1 , (uA 2k)1 )(dx) G

GC exp u2b �
r

q0
21 R

d(r , x)
dr

r
v �

B(x , R)OV

G x
B(x , q0

21 R) a( (uA 2k)1 , (uA 2k)1 )(dx)

for kF sup
B(x , 2q0

21 R)O¯V

g ,

�
B(x , r)OV

G x
B(x , q0

21 r)OV a( (uA 2k)2 , (uA 2k)2 )(dx) G

GC exp u2b �
r

q0
21 R

d(r , x)
dr

r
v �

B(x , R)OV

G x
B(x , q0

21 R) a( (uA 2k)2 , (uA 2k)2 )(dx)

for kG inf
B(x , 2q0

21 R)O¯V
g and

osc
B(x , r)OV

uA2GC exp u2b �
r

q0
21 R

d(r , x)
dr

r
v osc

B(x , R)OV
uA21 sup

B(x , R)OV
g 2 .

Let now be w4 uA 2u we have that w is the solution of the problem

(4.4) �
B(x , q0

21 R)OV

a(w , v)(dx) 4 �
B(x , q0

21 R)OV)

uvm(dx)2 �
B(x , q0

21 R)OV)

vs(dx)

(v�D0 [a , B(x , q0
21 R)OV] , w�D0 [a , B(x , q0

21 R)OV] .
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We have

Nw(y)N4 N �
B(x , q0

21 R)OV

G y
B(x , q0

21 R)OV (um(dx)1s(dx) N G

GC gg sup
B(x , q0

21 R)OV

NuNh hm (2q0
21 R)1hs (2q0

21 R)h
and

�
B(x, q0

21 R)OV

G x
B(x, q0

21R)a(w, w)(dx)GC kg sup
B(x, q0

21 R)OV

NuN2h hm
2 (2q0

21R)1hs
2 (2q0

21R)l .

Since (u2k)6 are subsolutions in B(x , 2q0
21 R), taking into account the local L Q-es-

timate in Proposition 3.5., we obtain

�
B(x , r)OV

G x
B(x , q0

21 r)OV a( (u2k)1 , (u2k)1 )(dx) G

GC exp u2b �
r

q0
21 R

d(r , x)
dr

r
v �

B(x , R)OV

G x
B(x , q0

21 R) a( (u2k)1 , (u2k)1 )(dx)1

1C yuR0
2n�

V

u 2 m(dx)1sup
¯V

g 21h 2
s (2q0

21 R)v hm
2 (2q0

21 R)1hs
2 (2q0

21 R)z

for kF sup
B(2q01 R)O¯V

g ,

�
B(x , r)OV

G x
B(x , q0

21 r)OV a( (u2k)2 , (u2k)2 )(dx) G

GC exp u2b �
r

q0
21 R

d(r , x)
dr

r
v �

B(x , R)OV

G x
B(x , q0

21 R) a( (u2k)2 , (u2k)2 )(dx)1

1C yuR0
2n�

V

u 2 m(dx)1sup
¯V

g 21hs
2 (2q0

21 R)v hm
2 (2q0

21 R)1hs
2 (2q0

21 R)z
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for kG inf
B(x , R)O¯V

g 2 and

osc
B(x , r)OV

u 2GC exp u2b �
r

q0
21 R

d(r , x)
dr

r
v osc

B(x , R)OV
u 21

1C yuR0
2n�

V

u 2m(dx)1sup
¯V

g 21hs
2 (2q0

1R)v hm
2 (2q0

21R)1hs
2 (2q0

21R)1 osc
B(x, 2q0

21 R)O¯V
g 2z .

From Theorem 4.3 we easily obtain:

COROLLARY 4.4: Let

�
0

1

d(r , x)
dr

r
41Q

then the function u considered in Theorem 4.3 is continuous at x.

An easy perturbation argument allow us to prove also the necessary part of the
Wiener Criterion, then:

THEOREM 4.5: A point x�¯V is regular for the Schrödinger type problem relative to
a and to the potential m�Kw (V) iff

�
0

1

d(r , x)
dr

r
41Q .

Then the regular points of ¯V for the Schrödinger problem are independent of the po-
tential m�Kw (V) and are the same as the ones for the Dirichlet form a .

PROOF: The Corollary 4.4. gives that if

�
0

1

d(r , x)
dr

r , x
41Q

then x is a regular point (for the Schrödinger problem).
Assume that for a regular point (for the Schrödinger problem) x0 we have

�
0

1

d(r , x0 )
dr

r
E1Q .

As observed in [4], using the same methods as in [5] [14], we can prove that there
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exists r such that for rG r

vr (x) G
1

4

q.e. in B(x0 , s)OV c for s suitable, where vr (x) is the potential with respect to the form
a of V r4V cOB(x0 , r) in B(x0 , 2 r). Consider now the solution wr of the prob-
lem

a(w , v)1�
V

wv m(dx) 40

(v�D0 [B(x0 , 2 r) ] , f(v21) �D0 [B(x0 , 2 r)2V r ]

w�D0 [B(x0 , 2 r) ] , f(w21) �D0 [B(x0 , 2 r)2V r ]

where f is the cut-off between the balls B(x0 , r) and B(x0 , 2 r).
Since x0 is regular we have that we can choose s such that

w(x) F
3

4

q.e. in B(x0 , s)OV c . Taking into account that 0 GwG1, an easy comparison argu-
ment gives that, for s suitable, we have

w(x) G
1

2

q.e. in B(x0 , s)O (B(x0 , 2 r)2V r ), then we have a contradiction and the result is
proved.
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