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A Result in Nonlinear Subelliptic Potential Theory (**)

AsstracT. — We give a sufficient condition for a positive measure to be in H =1 7(Q, X),
g>1; 2 is a bounded open set and X = (X, ..., X,,), where X;, /=1, ..., m are vector fields
satisfying an Hormander condition.

Un risultato in teoria del potenziale non lineare subellittica
Sunto. — Nella presente nota diamo una condizione sufficiente per I’ appartenenza di una

misura positiva a H ™1 7(2, X), 4> 1;  denota un aperto limitato e X;, /=1, ..., » sono
campi vettoriali soddisfacenti la condizione di Hormander.

1. - INTRODUCTION

Let 2 be a bounded open set in RY; a positive bounded Radon measure u on
belongs to H 17" (Q), 1y i =1pe(l, N], iff
p p

4R L
(1.1) ju(dmf uBlx, o) N\ de
AT o
Moreover
A=
X, p-t

(12) [utan [ [ F22200r) " 2 <y

g X | B(x, 0) | 0
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where diam (2) =R, |E| denotes the Lebesgue measure of the set E and we denote
again by u the extension of u to RN by 0 (i.e. a set E is u measurable if E N Q is 4 mea-
surable and u(E) = u(E N Q)). We refer to [1] for the proofs of (1.1) and (1.2).

If p > N we have that (1.1) holds for every bounded Radon measure on £ and the
integral in (1.2) is equivalent to u(£2), then is greater than |jull;-1., ().

The results of (1.1) and (1.2) have been generalized to vector fields defining a po-
lynomial Lie group, [16] (as a typical example we may consider the Heisenberg
group); in such a case a definition of intrinsic dimension of the Lie group is again
possible.

Let X;, i=1, ..., m be vector fields on RY satisfying the Hormander condition
and let d(x,y) be the intrinsic distance defined on RY by the vector fields,
[71[81[121[15]. Denote by Bx(x, ) the ball of center x and radius » defined by the di-
stance d(x, y). We observe that a local duplication duplication property holds for the
balls Bx(x, 7), i.e.

(1.3) |Bx(x,27) | <c¢o|Bx(x, 7)|

for xe 2 and r < R,, where ¢, > 1 and R, > 0 are constants depending on £ and we
can choose ¢; as the best constant such that (1.3) holds, [8] [15]. The inequality (1.3)
allows us to give an estimate of the intrinsic dimension of our problem by
v=logc.

We denote by H" (2, X), p=1, the closure of C*(Q) for the norm

ledlerr-v 0, 0 = (lelltri@) + [Xulle i)

and by H*? (2, X) the closure of C;” (). By H »7'(Q, X), 1y i
the dual space of Hy'?(2, X). pop
Moreover a Poincaré inequality holds for ze H"?(Byx(x, r), X), p=1,

1, we denote

(1.4) J |t —u,|Pdx < cr? f | Xot |? dx

Bx(x, V) Bx(X, 1’)

x e Q and r < R, where ¢; > 0 and R, > 0 are constants depending on 2 and #, deno-
tes the average of # on Bx(x, r), [9] [11] [12].

We recall that a variational p — capacity of a set E relative to the open set 2, Ecc Q
may be defined (generalizing the usual Newtonian definition) as

p—cap(E, Q) = inf [ j|Xv|pdx]

{veCy"(R2),v=1 in a neighbourhood of E} 5

and we refer for the properties of such a type of capacity to [6] [13] [14]. We denote
p—cap(E) =p—cap(E, RY) and we recall that, if EcQ, p—cap (E, Q) =0 iff
p—cap(E) =
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Using the same methods as in [6] Theorem 4.1 and the estimates on the cut-off
functions between balls, see [5], we obtain easily

rP

— can (B Blxo, 27)) = ————
p — cap (B(xo, ), B(xo, 27)) m(B(x,, 7))

for B(x,, 47) ¢ 2, where Q is a bounded open set and the constants may depend on
Q. A function # defined in an open set O with O € Q is quasi — continuous if for every
€ > 0 there exists an open set V with p — cap (V, ) < ¢ such that « is continuous on
E\V; a function « in H?(O, X) has a quasi-continuous q.e. representative (i.e. there
exists a quasi-continuous function # such that z = # up to sets of zero p-capacity); the
proof follows the same methods as in [10] for the case p = 2. In the following we iden-
tify # with its quasi-continuous representative.

Moreover for ue H}'?(2,X) and u Radon measure in H 17 (2, X) we
have

G ) = [aputd)

Q

where (., .) denotes the coupling between H "7 (Q, X) and ue H} ?(R, X) (the
proof follows the same methods as in [10] for the case p = 2).

We observe that in the case of vector fields we may only hope to generalize the re-
sults that hold in euclidean case for every p > 1, since we have no precise definition
for the intrinsic dimension, i.e. we have only one side information on the measure of
intrinsic balls.

Results of such a type or connected with have been given in [2] [3]; here we give a
new proof of the result founded on methods from partial differential equations wi-
thout the use of tools, as maximal functions, typical of real analysis.

We now state our result:

Tueorem 1.1: Let u be a positive bounded Radon measure on 8 such that

4R !
uBx(x,0)) \»' do "

o) 0
where R is the diameter of Q for the distance d and we denote again by u the extension
of u to RN by 0.

Moreover we have

p—1

4R 1 —_—

By(x, do |

16 b= €| [utan) [ #Bx(x, @) 17T de | T
o o\ [Bx(x, o) 0
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Remark 1.1: We observe that by a covering argument we may prove the result of
Theorem 1.1 for open sets £ that are balls By with a radius small enough; so we may
assume that By is such that for every ball in 200Bx a Poincaré inequality holds.

Remark 1.2: We remark that we may assume that 4 has compact support in Q,
otherwise an approximation result gives the result.

Remark 1.3: We observe that we may prove the result only for p € (1, v], where v
derives from the constant ¢, in (1.3) relative to a ball 2 By with 2 ¢ By. The Morrey-
Campanato inequalities give the result for p > v.

We end this section describing the methods used in the proof of the Theorem 1.1.
We take into account the observatioons of Remarks 1.1, 1.2, 1.3 and we consider the
case where R is a ball By such that a Poincaré inequality hold for every ball in 200 By,
moreover we assume that ¢ has compact support in By and p € (1, v]. In the proof we
prove at first (1.5) for measures u e H ~"?' (2, X) using an estimate given in [4], then
we end the proof by an approximation argument.

2. - Proor or THEOREM 1.1

Let By be a ball of radius R; taking into account Remark 1.1, we may assume that
16R < R, where Ry, is the same constant appearing in the duplication property and in
the Poincaré inequality relative to 16 By.

We begin by proving the following result:

Lemma 2.1: Let By(x, r) be a ball in 16 By and ue HV?(By(x, r), X); then

| Bx(x, 7) |
[{yeBx(x, r); u(y) =0} |

f |u|? dx < Cr?

Bx(x, r)

f | Xu|? dx .

BX(x,r)

Proor: From the Poincaré inequality we have

J |t —u, |Pdx < c r? f | Xu|? dx

Bx(x, r) Bx(x, r)

where #, is the average of # on By(x, 7). Then

(2.1) J |, |Pdx < ¢ r? j | Xot | dox .

{yeBx(x, r); uly) =0} By(x, r)
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From (2.1) we obtain

(2.2) u, [P <crr? ! f |Xu|? dx
[{y € Bx(x, r); uly) =0} |

Bx(x, r)
and (2.2) gives easily the result. =

CoroLLARY 2.2: Let By(x,7) be a ball in 16 By and weH} ?(By(x, r), X);
then

J' |u|? dx < J | Xot | dox .

Byx(x, r) By(x, r)

Proor: We observe that e H''?(By(x, 27), X), where we denote again by « the
extension by 0 of # to RN There exists a ball By such that BycBy(x, 27) —
— By(x, ) CBy(x, 27) C4 ByCBx(x, 67), then using the duplication property we ob-
tain that |Bx(x,27) —B(x, 7)| = C|Bx(x, )| and Lemma 2.1 gives the re-
sult. =

We prove at first (1.6) for measures ue H "7 (By, X):

Lemma 2.3: Let u be a positive bounded Radon measure in H™ "7 (Bx, X). We de-

note again by u the extension of u to RN by 0. Assume that the following condition
holds

1

4R .
fﬂ(dx)j #Bx(x, 0)) o’ e <+,
5 ;o\ [Bx(x, @) 0

Then

4R -

B =
[ — fmdx)f(”( X<x,9>)Qp) do
ST 0]

Proor: Let w be the solution of the problem

(2.4) f | Xw|?™* Xw Xvdx = vat(dx)
By By

Vve HY'?(By, X), we H} ?(By, X).

We observe that w is positive and w (extended by 0) is a subsolution of the subelliptic
p-Laplace operator relative to u in R~. Then from Theorem 1.1 in [4] we have that the
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following inequality holds q.e. in x € By (for the natural capacity associated to the
subelliptic p-Laplace operator)

w(x) <

1 4R R
7 B =
<C ;W""Z’C +f #Byx, @) 1 de |
|BX(x,4R)|B S | Bx(x, 0) | 0
(Bt o0 N dp |
<C flwl”dx +J B0 o] 2
|BX I\ B0 o
R? P (B o)\ d
C J|Xw|pdx p+j MQP a@
EX T\ B o] o
where here and in the following C denotes possibly different constants independent of

R and we take into account the duplication property and Corollary 2.2.
Then taking into account (2.4) with v = w we obtain

I\

P
f | X! dx < j wldy) < CulBy) [ =
5 | Bx

(e, 0) \7T do Re 7T
(dx) Ut e S — < Cu(By) [u(By) —— +
J“xf(wm >|9) 0 ”X(”X|BX|)

4R L
By (x, =
+lf|Xw|de+Cfﬂ(dx)f MQP d_Qg
ZBX By 0 |BX(X, Q)|

x(x, 0)) Fldg
C 4 — | ixwlrd
<J“ J(|BXXQ)|Q) o 2 lel o

1

+Cfudx)f Do) %
IBxe 0
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Then finally we have

4R -
J|Xw|descfﬂ(dx)J MQP e
5 X | Bx(x, 0) | 0

Then

i
||#||H1~ﬂ'<BX,X)$C( J’ |Xw|pdx) <

Bx

o Jrf (s

so we have the result. ™

We are now in position to end the proof of Theorem (1.1). We have to prove that if

4R

[utas | (—”(Bx(x’ 2 @P)p 2
5 o\ [Bx(x, o) 0
then u e H 12" (By, X). Taking into account Lemma 2.1, we may assume that u has
compact support in By. Assume that 200R < R, where R, is as in the duplication pro-
perty relative to 200 By.

We consider a finite covering of By by a finite number of balls By (x;, R/#), x;€ By,
such that the balls By (x;, R/2#) are disjoint and every point of By is covered by at mo-
st M balls in the covering, where M is independent of 7. We define

w(Bx(x;, R/n))

IBy(x.. R/n) | X n dx
! |Bx(x,, R/n) | Bx(x;, R/n)

“,

where dx denotes the Lebesgue measure.
We observe that for # big enough u, has compact support in By. Let 0 = R/2#,

then
R
BX(xz'> _) ‘ =
n

= > M(Bx(x,.,5))sMﬂ<BX(x,69)).
n

u(By(x;, R/n))

»(Bx(x, 0)) < —_—
ol BXTH QU ciTse) By (x, R/n) |

x;€Bx(x, 40)
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[ V(s con N
| Bx(x, o) |

Let now 9 <R/2#n,

u(Bx(x;, R/n))
n B 5 $M - B , <
u,(Bx(x, 0)) XEBXEXIZRM |BX X,,R/ﬂ)| | (X Q)|

<C g 2
x;€Bx(x, 2R/n) |BX(x,-, 6R/ﬂ) |

|Bx(x, 0) | <

u(Bx(x, 3R/n))

= e Bt o))
x;€ Bx(x, 2R/n) |BX(X,3R/7¢)| | x\X, 0 |
Then
2.6) MQP " <cC w@p =
| Bx(x, 0) | | Bx(x, 3R/n) |

From (2.5) and (2.6) we obtain

1

4R 1
[t )5

4R 1
<c| [ [ | (M(_ p

| By (x, 60) | o | |Bx(x,3R/n) |

R/2n

24R 1 3R/n 1
<c| | MBx(x, @)\ de [ KBl @) N7 do
3R/n |BX(X’ Q) | 0 R/n |BX(X> Q) |

1

24R L
<Cj o’ ! d_Q
|BX 0
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Now we estimate the norm in H ~!?'(By, X) of the measure u,. We have for # big

enough
4R L
fﬂ (dx)f ﬂn(BX(X,Q))Qp rt d_Q <
o 7\ IBx(x, @) 0
w(Bx(x;, R/n)) i Q
< CJZ —IBX(X,-, Rin) dX J Qp —
| Bx (x;, R/n) | o o
24R
<CJZ 1By (x;, R/n)) b R/wdxf #u(By (x Qp e
| Bx ( x,,R/n)| | Bx (x o
24R
By(x;, R/ u(By (
<cj2M13<x,M>d J i 0) | Tl
| Bx (x;, R/n) | | Bx (x;, 0) o

. R/ By(x;, 3 =
< CJ n)) —1 X(x,,R/n)dx f ( X(XZ Q)) Qp p @ <
|BX x,,R/n)| iy | Bx (x;, 0) | o

24R -
<CJ’2/1BXQC R f( (B (x;, 30)) p)p do _

|BX xl,R/ﬂ)l |BX xz)30)| Q
72R L
B R/ B 2] -
< CJZ IM—X ﬂ)) le(x,,R/n)dX f #( X(XZ Q)) Qp ' d_Q .
|BX(xl, R/n) | SR |Bx(xl', o) | 0

Let now be x e Byx(x;, R/#) and ¢ =3 R/n; then By(x, 0/2) ¢ Bx(x;, 0) CBx(x, 20)

and
72R L 72R L
f (mBX(x,,@))Qp)w do _ I (ﬂ(Bx(x,ZQ))Qp)PI do _
o\ Bxxi 0] e Lo\ IBx(x,02)]

_t 144R -
u(By(x,20)) =1 do u(Bx(x,0)) \r' do
C 2 14 —_— —— o? I
s J(|Bxx2Q|(Q)) <CJ( IQ)

3R/n e 6R/n

We obtain

=
N
=
—_
o~
>
S
=
~——
m|~
QL
s



then
w,Bylx, 0)) \7T do _
fﬂ” f( |Bx(x, 0) | Q) o

4R L
Bylx, £ inf f M(@V’ T,
n x€Bx(x;, R/n) |BX X, Q) | 0

6R/n

Byx, X ‘ 4B g
n | Bx |

4R _ L

By(x, = By \7

<C f,u(dx) f M(@)p do + u(By) By R?
By 6R/n | Bx(x, o) | e | Bx |

2 w(Bx (x;, R/n))
| By (x;, R/n) |

2 w(Bx (x;, R/n))
| Bx(x;, R/n) |

N

Hence the sequence u,, is bounded in H ~!?'(By, X), moreover the sequence is boun-
ded as measures sequence since u,(By) < Mu(By) at least for # big enough; then, up
to extraction of subsequences, we have that u, converges to a measures ¢ weakly in
H 47" (By, X) and weakly* in the measures. Let now g be in C(By) with compact sup-
port in By; we denotes by &(s) the modulus of uniform continuity of g. Then

R R
fgu”(dx) 22( sup g—e(—))#(Bﬂ(xi, —)
B, i \ xeBx(x;, R/n) n n

R
> fgu(dx)—Me(;)ﬂ(Bx).

Bx

\%

Let now #»— + o, we obtain

hence 0<u<¢ in the measures; then, since {eH 7 (By, X), we have
‘LLEHil’P/(Bx,X), | |
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