RITA GIULIANO ANTONINI (*)

On the Rosenblatt coefficient

 for normalized sums of real random variables (**)Abstract. - For a given sequence $\left(X_{n}\right)_{n \geqslant 1}$ of independent identically distributed real random variables, we consider the normalized sums U_{n} defined by $U_{n}=\left(X_{1}+\ldots+X_{n}\right) / \sqrt{n}$, and we give some results on $\operatorname{Cov}\left(I_{A}\left(U_{p}\right), I_{B}\left(U_{q}\right)\right)$ with p, q integers and A, B Borel sets in \mathbb{R}.

Sul coefficiente di Rosenblatt per somme normalizzate di variabili aleatorie reali

Sunto. - Per un'assegnata successione $\left(X_{n}\right)_{n \geqslant 1}$ di variabili aleatorie reali, indipendenti e identicamente distribuite, si considerano le somme normalizzate U_{n}, definite da $U_{n}=$ $=\left(X_{1}+\ldots+X_{n}\right) / \sqrt{n}$, e si dimostrano alcuni risultati riguardanti le covarianze del tipo $\operatorname{Cov}\left(I_{A}\left(U_{p}\right), I_{B}\left(U_{q}\right)\right)$, con (p, q) coppia d'interi e (A, B) coppia d'insiemi boreliani di \mathbb{R}.

0. - Introduction

Let $\left(a_{k, n}\right)_{k \geqslant 1, n \geqslant 1}$ be a matrix of real numbers. A classical problem of Probability Theory is the asymptotic behaviour, as n go to infinity, of weighted partial sums such as

$$
Z_{n}=\sum_{k=1}^{n} a_{k, n} Y_{k, n},
$$

where $\left(Y_{k, n}\right)$ is a sequence of real random variables, satisfying suitable assumptions (see for instance Stout [1], chap. 4). In the last years many authors (see for instance
(*) Indirizzo dell'Autrice: Dipartimento di Matematica, via F. Buonarroti 2, I-56127 Pisa. E-mail: giuliano@dm.unipi.it
(**) Memoria presentata il 20 aprile 2000 da Giorgio Letta, uno dei XL.

Brosamler [2], Schatte [3], Lacey-Philipp [4]) have considered the case

$$
Y_{k, n}=I_{A_{k, n}}\left(U_{k}\right) ;
$$

here $A_{k, n}$ are Borel sets in \mathbb{R}, and U_{n} denotes the random variable

$$
\left(X_{1}+\ldots+X_{n}\right) / \sqrt{n}
$$

where $\left(X_{n}\right)_{n \geqslant 1}$ is a sequence of independent identically distributed real random variables, with $\boldsymbol{E}\left[X_{1}^{2}\right]=1$ and $\boldsymbol{E}\left[X_{1}\right]=0$, defined on a probability space (Ω, \mathcal{Q}, P). This leads in a natural way to the problem of evaluating

$$
\operatorname{Cov}\left(I_{A}\left(U_{p}\right), I_{B}\left(U_{q}\right)\right),
$$

with p, q integers and A, B Borel sets in \mathbb{R}. In the present paper we give some bounds for the Rosenblatt coefficient

$$
\sup _{A, x}\left|\operatorname{Cov}\left(I_{A}\left(U_{p}\right), I_{]-\infty, x]}\left(U_{q}\right)\right)\right|
$$

(where A varies among all Borel sets in \mathbb{R} and x in \mathbb{R}), and for

$$
\sup _{A, B}\left|\operatorname{Cov}\left(I_{A}\left(U_{p}\right), I_{B}\left(U_{q}\right)\right)\right|,
$$

(where A, B vary among all Borel sets in \mathbb{R}, with B included in a fixed set of finite measure). We obtain some results (Theorems 1, 2 and 3) which can be set into the framework of the so-called almost-orthogonal random variables; for this kind of variables some interesting laws of large numbers exist (see for ex. Lacey-Philipp [4], pag. 203, Atlagh-Weber [5], pag. 52, and, for a detailed study, Weber [6], sect. 7.4).

2. - Notations and first results

We start by recalling a result on the concentration function of a sum of random variables. Let Q_{n} be the concentration function of U_{n}, namely the function defined on R_{+}by

$$
Q_{n}(\lambda)=\sup _{x} P\left\{x \leqslant U_{n} \leqslant x+\lambda\right\} .
$$

If the law μ of X_{1} is not degenerate, then there is a constant C, depending on μ only, such that, for every real number $\varepsilon>0$, the inequality

$$
Q_{n}(\varepsilon) \leqslant C(\varepsilon+1 / \sqrt{n})
$$

holds good. See Petrov [7], pag. 49 for a proof. We recall also a result on the difference of the distribution functions of two random variables Y, Z. Let ϕ_{Y} and ϕ_{Z} be
the characteristic functions of Y and Z respectively; then we have the inequality

$$
|P\{Y \leqslant x\}-P\{Z \leqslant x\}| \leqslant \frac{1}{\pi} \int_{\mathbb{R}} \frac{\left|\phi_{Y}(t)-\phi_{Z}(t)\right|}{|t|} \mathrm{d} t
$$

Without loss of generality, we assume in the sequel $p \leqslant q$.
Lemma 1: For every Borel set A in \mathbb{R} and for every Lipschitz function f, with Lipschitz constant L, we have

$$
\left|\operatorname{Cov}\left(I_{A}\left(U_{p}\right), f\left(U_{q}\right)\right)\right| \leqslant L \sqrt{2 p / q} .
$$

Proof: We can assume that the event $H=\left\{U_{p} \in A\right\}$ is not negligible. Denote by $\boldsymbol{E}_{H}[\cdot]$ the expectation with respect to the conditional probability measure $P(\cdot \mid H)$, and let $\left(X_{n}^{\prime}\right)_{n}$ be an independent copy of the sequence $\left(X_{n}\right)_{n}$. Put

$$
\begin{equation*}
V_{q}=\left(X_{1}^{\prime}+\ldots+X_{p}^{\prime}+X_{p+1}+\ldots+X_{q}\right) / \sqrt{q} . \tag{1}
\end{equation*}
$$

Then we have

$$
\boldsymbol{E}_{H}\left[f\left(V_{q}\right)\right]=\boldsymbol{E}\left[f\left(U_{q}\right)\right]
$$

hence

$$
\begin{aligned}
\left|\operatorname{Cov}\left(I_{A}\left(U_{p}\right), f\left(U_{q}\right)\right)\right| & =\left|\int_{H} f\left(U_{q}\right) \mathrm{d} P-P(H) \int f\left(U_{q}\right) \mathrm{d} P\right| \\
& =P(H)\left|\boldsymbol{E}_{H}\left[f\left(U_{q}\right)\right]-\boldsymbol{E}\left[f\left(U_{q}\right)\right]\right| \\
& =P(H)\left|\boldsymbol{E}_{H}\left[f\left(U_{q}\right)\right]-\boldsymbol{E}_{H}\left[f\left(V_{q}\right)\right]\right| \\
& \leqslant P(H) L \boldsymbol{E}_{H}\left[\left|U_{q}-V_{q}\right|\right] \\
& \leqslant L \boldsymbol{E}\left[\left|U_{q}-V_{q}\right|\right]
\end{aligned}
$$

By using the second moment, we get

$$
\begin{aligned}
\left|\operatorname{Cov}\left(I_{A}\left(U_{p}\right), f\left(U_{q}\right)\right)\right| & \leqslant L\left(\operatorname{Var}\left[U_{q}-V_{q}\right]\right)^{1 / 2} \\
& =L\left(q^{-1} \sum_{k=1}^{p} \operatorname{Var}\left[X_{k}-X_{k}^{\prime}\right]\right)^{1 / 2} \\
& =L \sqrt{2 p / q} .
\end{aligned}
$$

The lemma is thus proved.

Lemma 2: Let ε be a strictly positive real number. For every Borel set A in \mathbb{R} we bave

$$
\left|\operatorname{Cov}\left(I_{A}\left(U_{p}\right), I_{]-\infty, x]}\left(U_{q}\right)\right)\right| \leqslant \frac{2}{\varepsilon} \sqrt{\frac{p}{q}}+2 Q_{q}(\varepsilon)
$$

Proof: Let the real numbers ε and x be fixed, and denote by f_{ε} the Lipschitz function defined as

$$
f_{\varepsilon}(t)=I_{]-\infty, x]}(t)+g_{\varepsilon}(t)=I_{]-\infty, x]}(t)+\left(1+\frac{x-t}{\varepsilon}\right) I_{] x, x+\varepsilon]}(t)
$$

One verifies immediately that f_{ε} has Lipschitz constant $1 / \varepsilon$. Let H be the event $\left\{U_{p} \in A\right\}$; we can assume again that H is not negligible. If Q denotes the conditional probability law $P(\cdot \mid H)$, we have

$$
\left|\operatorname{Cov}\left(I_{A}\left(U_{p}\right), I_{]-\infty, x]}\left(U_{q}\right)\right)\right|=P(H)\left|Q\left\{U_{q} \leqslant x\right\}-P\left\{U_{q} \leqslant x\right\}\right| .
$$

Moreover

$$
\begin{aligned}
\left|Q\left\{U_{q} \leqslant x\right\}-P\left\{U_{q} \leqslant x\right\}\right| & =\left|\boldsymbol{E}^{Q}\left[\left(f_{\varepsilon}-g_{\varepsilon}\right)\left(U_{q}\right)\right]-\boldsymbol{E}^{P}\left[\left(f_{\varepsilon}-g_{\varepsilon}\right)\left(U_{q}\right)\right]\right| \\
& =\left|\boldsymbol{E}^{Q}\left[\left(f_{\varepsilon}-g_{\varepsilon}\right)\left(U_{q}\right)\right]-\boldsymbol{E}^{Q}\left[\left(f_{\varepsilon}-g_{\varepsilon}\right)\left(V_{q}\right)\right]\right| \\
& =\left|\boldsymbol{E}^{Q}\left[f_{\varepsilon}\left(U_{q}\right)-f_{\varepsilon}\left(V_{q}\right)\right]-\boldsymbol{E}^{Q}\left[g_{\varepsilon}\left(U_{q}\right)-g_{\varepsilon}\left(V_{q}\right)\right]\right|,
\end{aligned}
$$

where V_{q} are the random variables defined in (1). By arguing as in Lemma 1, we get

$$
\begin{equation*}
\left\lvert\, E^{Q}\left[\left(f_{\varepsilon}\left(U_{q}\right)-f_{\varepsilon}\left(V_{q}\right)\right] \left\lvert\, \leqslant \frac{2}{\varepsilon P(H)} \sqrt{\frac{p}{q}}\right.\right.\right. \tag{2}
\end{equation*}
$$

Since we have trivially

$$
\begin{equation*}
\left\lvert\, E^{Q}\left[\left(g_{\varepsilon}\left(U_{q}\right)-g_{\varepsilon}\left(V_{q}\right)\right] \left\lvert\, \leqslant \frac{2 Q_{q}(\varepsilon)}{P(H)}\right.\right.\right. \tag{3}
\end{equation*}
$$

from relations (2) and (3) it follows that

$$
\left|Q\left\{U_{q} \leqslant x\right\}-P\left\{U_{q} \leqslant x\right\}\right| \leqslant \frac{2}{\varepsilon P(H)} \sqrt{\frac{p}{q}}+\frac{2 Q_{q}(\varepsilon)}{P(H)}
$$

hence the statement of the lemma.

3. - The main results.

Theorem 1: There is a constant K, depending on the law of X_{1} only, such that, for every pair p, q of integers, we have

$$
\begin{equation*}
\sup _{A, x}\left|\operatorname{Cov}\left(I_{A}\left(U_{p}\right), I_{]-\infty, x]}\left(U_{q}\right)\right)\right| \leqslant K \sqrt[4]{\frac{p}{q}} . \tag{4}
\end{equation*}
$$

Proof: The statement being trivial if X_{1} is degenerate, we can assume that X_{1} is not degenerate; then, by Lemma 2 and Petrov's theorem (stated in the preceding section), we have for $\varepsilon>0$,

$$
\sup _{A, x}\left|\operatorname{Cov}\left(I_{A}\left(U_{p}\right), I_{]-\infty, x]}\left(U_{q}\right)\right)\right| \leqslant \frac{2}{\varepsilon} \sqrt{\frac{p}{q}}+2 C\left(\varepsilon+\frac{1}{\sqrt{q}}\right) .
$$

The conclusion then follows since the minimum of the function

$$
\varepsilon \mapsto(2 / \varepsilon) \sqrt{p / q}+2 C(\varepsilon+1 / \sqrt{q})
$$

is given by $4 \sqrt{C} \sqrt[4]{\frac{p}{q}}+\frac{2 C}{\sqrt{q}}$, which is obviously less than $(4 \sqrt{C}+2 C) \sqrt[4]{\frac{p}{q}}$. This proves the statement of the theorem.

Remark When the X_{n} are gaussian random variables, we have

$$
\begin{equation*}
\sup _{A, x}\left|\operatorname{Cov}\left(I_{A}\left(U_{p}\right), I_{]-\infty, x]}\left(U_{q}\right)\right)\right|=K_{0} \sqrt{\frac{p}{q}} . \tag{5}
\end{equation*}
$$

Hence we are faced with the question of what conditions on the law of X_{1} can guarantee an «optimal» relation as (5); in other words we are wondering when we are allowed to put the square root of p / q, in place of the fourth one, in relation (4). In what follows we are going to give two sufficient conditions for this to happen. We need two lemmas.

Lemma 3: Let ϕ be the characteristic function of X_{1} and l a member of $\{0,1\}$. Assume that there exists an integer r such that the function $t \mapsto\left|t^{l} \phi^{r}(t)\right|$ is integrable. Then the relation

$$
\sup _{p / q \leqslant 1 / 2} \int|t|^{l}\left|\phi\left(\frac{t}{\sqrt{q}}\right)\right|^{q-p} d t<\infty
$$

bolds good.

Proof: Let L be the real function defined by

$$
L(t)=\boldsymbol{E}\left[X_{1}^{2}\left(1 \wedge|t| \frac{\left|X_{1}\right|}{3}\right)\right]
$$

It is easily seen that L is symmetric, increasing on [$0, \infty$ [, bounded by 1 and has limit 0 in $t=0$, so that there exists a real number \bar{t} on $] 0,1[$ such that $L(\bar{t})<1 / 4$. By the inequality

$$
\left|e^{i t x}-1-i t x+\frac{1}{2} t^{2} x^{2}\right| \leqslant t^{2} x^{2}\left(1 \wedge|t| \frac{|x|}{3}\right)
$$

(Kallenberg [8], pag. 69) we get $\left|\phi\left(\frac{t}{\sqrt{n}}\right)-1+\frac{1}{2} \frac{t^{2}}{n}\right| \leqslant \frac{t^{2}}{n} L\left(\frac{t}{\sqrt{n}}\right)$, for every real
number t; it follows

$$
\left|\phi\left(\frac{t}{\sqrt{n}}\right)\right|^{n / 2} \leqslant\left[\left|1-\frac{1}{2} \frac{t^{2}}{n}\right|+\frac{t^{2}}{n} L\left(\frac{t}{\sqrt{n}}\right)\right]^{n / 2}
$$

Hence on the interval $J_{n}=[-\bar{t} \sqrt{n}, \bar{t} \sqrt{n}]$ we obtain

$$
\left|t^{l}\right|\left|f\left(\frac{t}{\sqrt{n}}\right)\right|^{n / 2} \leqslant\left|t^{l}\right|\left[1-\frac{1}{2} \frac{t^{2}}{n}+\frac{1}{4} \frac{t^{2}}{n}\right]^{n / 2} \leqslant\left|t^{l}\right| e^{-t^{2} / 8}
$$

while, on J_{n}^{c}, we have $\left|\phi\left(\frac{t}{\sqrt{n}}\right)\right| \leqslant \sup _{|u| \geqslant \bar{t}}|\phi(u)|=d<1$, where, since $|\phi|$ is integrable, the last inequality follows from a well known result on characteristic functions (see Feller [9], pag. 501). Hence, for every pair of integers p, q, with $p \leqslant q / 2$, one gets the inequalities

$$
\begin{aligned}
\int|t|^{l}\left|\phi\left(\frac{t}{\sqrt{q}}\right)\right|^{q-p} d t & \leqslant \sup _{n} \int|t|^{l}\left|\phi\left(\frac{t}{\sqrt{n}}\right)\right|^{n / 2} d t \\
& \leqslant \int|t|^{l} e^{-t^{2} / 8} d t+\sup _{n} \int_{J_{n}^{c}}|t|^{l}\left|\phi\left(\frac{t}{\sqrt{n}}\right)\right|^{n / 2} d t \\
& \leqslant C_{1}+\sup _{n} n^{\frac{l+1}{2}} d^{\frac{n}{2}-r} \int\left|u^{l} \phi(u)\right|^{r} d u
\end{aligned}
$$

where C_{1} is an absolute constant. The lemma is proved.
Lemma 4: Let p, q be two integers, with $p \leqslant q$, and assume that the event $\left\{U_{p} \in A\right\}$ is not negligible. Denote by Φ_{q} and $\widetilde{\Phi}_{q}$ the characteristic functions of U_{q} with respect to
P and $P_{\left\{U_{p} \in A\right\}} ;$ then we have

$$
\left|\operatorname{Cov}\left(I_{A}\left(U_{p}\right), I_{]-\infty, x]}\left(U_{q}\right)\right)\right| \leqslant \frac{P\left\{U_{p} \in A\right\}}{\pi} \int_{\mathbb{R}} \frac{\left|\Phi_{q}(t)-\widetilde{\Phi}_{q}(t)\right|}{|t|} d t
$$

If in addition the function $t \mapsto|t|\left|\phi^{r}(t)\right|$ is integrable, then for every bounded Borel set B and for every q greater than r, we have

$$
\left|\operatorname{Cov}\left(I_{A}\left(U_{p}\right), I_{B}\left(U_{q}\right)\right)\right| \leqslant \frac{P\left\{U_{p} \in A\right\}}{2 \pi} \operatorname{meas}(B) \int_{\mathbb{R}}\left|\Phi_{q}(t)-\widetilde{\Phi}_{q}(t)\right| d t
$$

Proof: The first statement follows from the relation

$$
\begin{aligned}
\left|\operatorname{Cov}\left(I_{A}\left(U_{p}\right), I_{]-\infty, x]}\left(U_{q}\right)\right)\right| & =P\left\{U_{p} \in A\right\}\left|P\left\{U_{q} \leqslant x\right\}-P_{\left\{U_{p} \in A\right\}}\left\{U_{q} \leqslant x\right\}\right| \\
& \leqslant \frac{P\left\{U_{p} \in A\right\}}{\pi} \int_{\mathbb{R}} \frac{\left|\Phi_{q}(t)-\widetilde{\Phi}_{q}(t)\right|}{|t|} d t
\end{aligned}
$$

by the relation on the difference of two distribution function (see section 2). As to the second statement, just note that, for q greater than r, we have

$$
\begin{aligned}
\left|\operatorname{Cov}\left(I_{A}\left(U_{p}\right), I_{]-\infty, x]}\left(U_{q}\right)\right)\right| & =P\left\{U_{p} \in A\right\}\left|P\left\{U_{q} \in B\right\}-P_{\left\{U_{p} \in A\right\}}\left\{U_{q} \in B\right\}\right| \\
& =\frac{P\left\{U_{p} \in A\right\}}{2 \pi}\left|\int_{B} d x \int_{\mathbb{R}} e^{-i t x}\left[\Phi_{q}(t)-\widetilde{\Phi}_{q}(t)\right] d t\right|
\end{aligned}
$$

This proves the lemma.
Theorem 2: Assume that there exists an integer r such that the function $t \mapsto\left|\phi^{r}(t)\right|$ is integrable. Then, for every pair of integers p, q, we bave the relation

$$
\sup _{A, x}\left|\operatorname{Cov}\left(I_{A}\left(U_{p}\right), I_{]-\infty, x]}\left(U_{q}\right)\right)\right| \leqslant K \sqrt{\frac{p}{q}},
$$

where K is a constant depending on the law of X_{1} only. Moreover, if the function $t \mapsto|t|\left|\phi^{r}(t)\right|$ is integrable too, then for every bounded Borel set B we have

$$
\operatorname{Cov}\left(I_{A}\left(U_{p}\right), I_{B}\left(U_{q}\right)\right) \leqslant K_{1} \text { meas }(B) \sqrt{\frac{p}{q}},
$$

where K_{1} is a constant depending on the law of X_{1} only.
Proof: Without loss of generality we can assume that $p \leqslant q / 2$, since for $p \geqslant q / 2$ we
have trivially

$$
\left|\operatorname{Cov}\left(I_{A}\left(U_{p}\right), I_{B}\left(U_{q}\right)\right)\right|=\sqrt{\frac{p}{q}} \sqrt{\frac{q}{p}}\left|\operatorname{Cov}\left(I_{A}\left(U_{p}\right), I_{B}\left(U_{q}\right)\right)\right| \leqslant 4 \sqrt{\frac{p}{q}}
$$

As in the proof of Lemma 1, we assume also that the event $H=\left\{U_{p} \in A\right\}$ is not negligible. Denote by Q the conditional probability measure $P(\cdot \mid H)$ and put

$$
V_{q}=\frac{X_{1}^{\prime}+\ldots+X_{p}^{\prime}+X_{p+1}+\ldots+X_{q}}{\sqrt{q}}
$$

where $\left(X_{n}^{\prime}\right)$ is an independent copy of the sequence $\left(X_{n}\right)$; then we have

$$
\begin{aligned}
\left|\Phi_{q}(t)-\widetilde{\Phi}_{q}(t)\right| & =\left|\boldsymbol{E}^{Q}\left[e^{i t U_{q}}\right]-\boldsymbol{E}^{Q}\left[e^{i t V_{q}}\right]\right| \\
& =\left|\phi\left(\frac{t}{\sqrt{q}}\right)\right|^{q-p}\left|\boldsymbol{E}^{Q}\left[e^{i t \frac{x_{1}+\ldots+x_{p}}{\sqrt{q}}}\right]-\boldsymbol{E}^{Q}\left[e^{i t \frac{X_{1}^{\prime}+\ldots+X_{p}^{\prime}}{\sqrt{q}}}\right]\right| \\
& \leqslant\left|\phi\left(\frac{t}{\sqrt{q}}\right)\right|^{q-p} \frac{2|t|}{P(H)} \sqrt{\frac{p}{q}} .
\end{aligned}
$$

Lemmas 3 and 4 achieve the conclusion.
Finally, we have a «Berry-Esseen type» result. In detail:
Theorem 3: Assume that X_{1} bas finite absolute third moment. Then we have

$$
\sup _{A, x}\left|\operatorname{Cov}\left(I_{A}\left(U_{p}\right), I_{]-\infty, x]}\left(U_{q}\right)\right)\right| \leqslant K_{2} \sqrt{\frac{p}{q}}
$$

where the constant K_{2} depends on the law of X_{1} only.
Proof: As in the proof of the preceding theorem, we can assume $p \leqslant q / 2$. Let $\left(Y_{n}\right)$ be a sequence of random variables and assume that the $\left(Y_{n}\right)$ are independent $\mathcal{N}(0,1)$ and independent on $\left(X_{n}\right)$. Put

$$
U_{q}^{\prime}=\frac{X_{1}+\ldots+X_{p}+Y_{p+1}+\ldots+Y_{q}}{\sqrt{q}}
$$

Since $\operatorname{Cov}\left(I_{A}\left(U_{p}\right), I_{]-\infty, x]}\left(U_{q}\right)\right)$ is equal to

$$
\operatorname{Cov}\left(I_{A}\left(U_{p}\right), I_{]-\infty, x]}\left(U_{q}\right)-I_{]-\infty, x]}\left(U_{q}^{\prime}\right)\right)+\mathbf{C o v}\left(I_{A}\left(U_{p}\right), I_{]-\infty, x]}\left(U_{q}^{\prime}\right)\right),
$$

it will be enough to prove that the two terms in the above sum are bounded by a number of the form $K \sqrt{\frac{p}{q}}$. As in the above theorem, denote by H the (non negligible)
event $\left\{U_{p} \in A\right\}$ and by Q the conditional probability measure $P(\cdot \mid H)$; then we have

$$
\begin{aligned}
\left|\operatorname{Cov}\left(I_{A}\left(U_{p}\right), I_{]-\infty, x]}\left(U_{q}^{\prime}\right)\right)\right| & =P(H)\left|\left(Q\left\{U_{q}^{\prime} \leqslant x\right\}-P\left\{U_{q}^{\prime} \leqslant x\right\}\right)\right| \\
& \leqslant \frac{P(H)}{\pi} \int \frac{1}{|t|}\left|\int e^{i t U_{q}^{\prime}} d Q-\int e^{i t V_{q}^{\prime}} d Q\right| d t .
\end{aligned}
$$

Here V_{q}^{\prime} denotes $\frac{X_{1}^{\prime}+\ldots+X_{p}^{\prime}+Y_{p+1}+\ldots+Y_{q}}{\sqrt{q}}$, where $\left(X_{n}^{\prime}\right)$ is a copy of $\left(X_{n}\right)$, independent on each X_{n}, Y_{n}. It follows

$$
\begin{aligned}
\left|\operatorname{Cov}\left(I_{A}\left(U_{p}\right), I_{]-\infty, x]}\left(U_{q}^{\prime}\right)\right)\right| & \leqslant \frac{P(H)}{\pi} \int e^{-\frac{t^{2}(q-p)}{2 q}} \boldsymbol{E}^{Q}\left[\left|U_{q}^{\prime}-V_{q}^{\prime}\right|\right] d t \\
& \leqslant \frac{1}{\pi} \int e^{-\frac{t^{2}(q-p)}{2 q}} \boldsymbol{E}^{P}\left[\left|U_{q}^{\prime}-V_{q}^{\prime}\right|^{2}\right]^{1 / 2} d t \\
& \leqslant \frac{1}{\pi} \int e^{-\frac{t^{2}}{2}} \boldsymbol{E}^{P}\left[\left|U_{q}^{\prime}-V_{q}^{\prime}\right|^{2}\right]^{1 / 2} d t \\
& \leqslant \boldsymbol{E}^{P}\left[\left|U_{q}^{\prime}-V_{q}^{\prime}\right|^{2}\right]^{1 / 2} \\
& \leqslant 2 \sqrt{\frac{p}{q}} .
\end{aligned}
$$

Let $a_{p, q}$ be the second term $\operatorname{Cov}\left(I_{A}\left(U_{p}\right), I_{]-\infty, x]}\left(U_{q}\right)-I_{]-\infty, x]}\left(U_{q}^{\prime}\right)\right)$; then

$$
\left|a_{p, q}\right|=\left|b_{p, q}-P\left\{U_{p} \in A\right\}\left(P\left\{U_{q} \leqslant x\right\}-P\left\{U_{q}^{\prime} \leqslant x\right\}\right)\right|,
$$

where $b_{p, q}$ denotes $P\left\{U_{p} \in A, U_{q} \leqslant x\right\}-P\left\{U_{p} \in A, U_{q}^{\prime} \leqslant x\right\}$. By the Berry-Esseen inequality, we get

$$
\begin{aligned}
\left|b_{p, q}\right| & =\int_{A}\left|F_{p, q}\left(g\left(x_{1}, \ldots, x_{p}\right)\right)-N\left(g\left(x_{1}, \ldots, x_{p}\right)\right)\right| d \mu\left(x_{1}, \ldots, x_{p}\right) \\
& \leqslant \frac{E\left[\left|X_{1}\right|^{3}\right]}{\sqrt{q-p}}
\end{aligned}
$$

where μ is the law of U_{p} under P, N the distribution function of the standard gaussian law and $g\left(x_{1}, \ldots, x_{p}\right)$ the real number $\frac{x \sqrt{q}-\left(x_{1}+\ldots+x_{p}\right)}{\sqrt{q-p}}$. By arguing analogously, we
get also

$$
\left|P\left\{U_{p} \in A\right\}\left(P\left\{U_{q} \leqslant x\right\}-P\left\{U_{q}^{\prime} \leqslant x\right\}\right)\right| \leqslant \frac{E\left[\left|X_{1}\right|^{3}\right]}{\sqrt{q-p}}
$$

From the two above relations and the inequality $p \leqslant q / 2$ it follows that

$$
\left|a_{p, q}\right| \leqslant 2 \frac{\boldsymbol{E}\left[\left|X_{1}\right|^{3}\right]}{\sqrt{q-p}} \leqslant 4 \boldsymbol{E}\left[\left|X_{1}\right|^{3}\right] \sqrt{\frac{p}{q}}
$$

This concludes the proof.
Remark: It is for the moment an open problem whether the relation in theorems 2 e 3 holds good even without any assumption on the third moment or the characteristic function of X_{1}.

Acknowledgements. I am greatly indebted to Prof. M. Weber for stimulating my interest on this topic; I am also grateful to Prof. Luca Pratelli: I would have not brought this paper to an end without his ideas and suggestions.

REFERENCES

[1] W. F. Stout, Almost sure Convergence, Academic Press, (1974).
[2] G. A. Brosamler, An almost everywhere central limit theorem, Math. Proc. Cambridge Philos. Soc., 104 (1988), 561-574.
[3] P. Schatte, On strong versions of the almost sure central limit theorem, Math. Nachr., 137 (1988), 249-256.
[4] M. T. Lacey - W. Philipp, A note on the Almost Sure Central Limit Theorem, Stat. and Prob. Letters, 9 (1990), 201-205.
[5] M. Atlagh - M. Weber, Une nouvelle loi forte des grands nombres, in Convergence in Ergodic Theory and Probability (Bergelson, March, Rosenblatt Eds.), de Gruyter (1996), 41-62.
[6] M. Weber, Entropie métrique et convergence presque partout, Collection Travaux en cours, 58, Hermann (1998).
[7] V. V. Petrov, Sums of Independent Random Variables, Springer (1975).
[8] O. Kallenberg, Foundations of Modern Probability, Springer (1998).
[9] W. Feller, An Introduction to Probability Theory and Its Applications, vol. 2, Wiley (1971).

