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On the Rosenblatt coefficient
for normalized sums of real random variables (**)

ABSTRACT. — For a given sequence (Xn )nF1 of independent identically distributed real
random variables, we consider the normalized sums Un defined by Un4 (X11R1Xn ) /kn ,
and we give some results on Cov (IA (Up ), IB (Uq ) ) with p , q integers and A , B Borel
sets in R .

Sul coefficiente di Rosenblatt
per somme normalizzate di variabili aleatorie reali

SUNTO. — P e r u n ’ a s s e g n a t a s u c c e s s i o n e (Xn )nF1 d i v a r i a b i l i a l e a t o r i e r e a l i , i n d i p e n -
denti e identicamente distribuite, si considerano le somme normalizzate Un , definite da Un4
4(X11R1Xn ) /kn , e si dimostrano alcuni risultati riguardanti le covarianze del tipo
Cov (IA (Up ), IB (Uq ) ) , con (p , q) coppia d’interi e (A , B) coppia d’insiemi boreliani di R .

0. - INTRODUCTION

Let (ak , n )kF1, nF1 be a matrix of real numbers. A classical problem of Probability
Theory is the asymptotic behaviour, as n go to infinity, of weighted partial sums such
as

Zn4 !
k41

n

ak , n Yk , n ,

where (Yk , n ) is a sequence of real random variables, satisfying suitable assumptions
(see for instance Stout [1], chap. 4). In the last years many authors (see for instance
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Brosamler [2], Schatte [3], Lacey-Philipp [4]) have considered the case

Yk , n4 IAk , n
(Uk ) ;

here Ak , n are Borel sets in R , and Un denotes the random variable

(X11R1Xn ) /kn ,

where (Xn )nF1 is a sequence of independent identically distributed real random vari-
ables, with E[X1

2 ] 41 and E[X1 ] 40, defined on a probability space (V , A, P). This
leads in a natural way to the problem of evaluating

Cov (IA (Up ), IB (Uq ) ) ,

with p , q integers and A , B Borel sets in R . In the present paper we give some bounds
for the Rosenblatt coefficient

sup
A , x

NCov (IA (Up ), I]2Q , x] (Uq ) )N ,

(where A varies among all Borel sets in R and x in R), and for

sup
A , B

NCov (IA (Up ), IB (Uq ) )N ,

(where A , B vary among all Borel sets in R , with B included in a fixed set of finite
measure). We obtain some results (Theorems 1, 2 and 3) which can be set into the
framework of the so-called almost-orthogonal random variables; for this kind of vari-
ables some interesting laws of large numbers exist (see for ex. Lacey-Philipp [4], pag.
203, Atlagh-Weber [5], pag. 52, and, for a detailed study, Weber [6], sect. 7.4).

2. - NOTATIONS AND FIRST RESULTS

We start by recalling a result on the concentration function of a sum of random
variables. Let Qn be the concentration function of Un , namely the function defined on
R1 by

Qn (l) 4 sup
x

P]xGUnGx1l( .

If the law m of X1 is not degenerate, then there is a constant C , depending on m only,
such that, for every real number eD0, the inequality

Qn (e) GC(e11/kn)

holds good. See Petrov [7], pag. 49 for a proof. We recall also a result on the diffe-
rence of the distribution functions of two random variables Y , Z . Let fY and fZ be
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the characteristic functions of Y and Z respectively; then we have the inequality

NP]YGx(2P]ZGx(NG
1

p
�

R

NfY (t)2fZ (t)N

NtN
dt .

Without loss of generality, we assume in the sequel pGq .

LEMMA 1: For every Borel set A in R and for every Lipschitz function f, with Lips-
chitz constant L, we have

NCov (IA (Up ), f (Uq ) )NGL k2p/q .

PROOF: We can assume that the event H4 ]Up�A( is not negligible. Denote by
EH [Q] the expectation with respect to the conditional probability measure P(QNH), and
let (X 8n )n be an independent copy of the sequence (Xn )n . Put

Vq4 (X 81 1R1X 8p 1Xp111R1Xq ) /kq .(1)

Then we have

EH [ f (Vq ) ] 4E[ f (Uq ) ] ,

hence

NCov (IA (Up ), f (Uq ) )N4 N�
H

f (Uq ) d P2P(H)� f (Uq ) d PN

4P(H)NEH [ f (Uq ) ]2E[ f (Uq ) ]N

4P(H)NEH [ f (Uq ) ]2EH [ f (Vq ) ]N

GP(H) LEH [NUq2Vq N]

GLE[NUq2Vq N] .

By using the second moment, we get

NCov(IA (Up ), f (Uq ) )NGL(Var [Uq2Vq ] )1/2

4L gq 21 !
k41

p

Var [Xk2X 8k ]h1/2

4Lk2p/q .

The lemma is thus proved.



— 114 —

LEMMA 2: Let e be a strictly positive real number. For every Borel set A in R we
have

NCov (IA (Up ), I]2Q , x] (Uq ) )NG
2

e o p

q
12Qq (e) .

PROOF: Let the real numbers e and x be fixed, and denote by fe the Lipschitz func-
tion defined as

fe (t) 4 I]2Q , x] (t)1ge (t) 4 I]2Q , x] (t)1 u11
x2 t

e
v I]x , x1e] (t) .

One verifies immediately that fe has Lipschitz constant 1/e . Let H be the event
]Up�A(; we can assume again that H is not negligible. If Q denotes the conditional
probability law P(QNH), we have

NCov (IA (Up ), I]2Q , x] (Uq ) )N4P(H)NQ]UqGx(2P]UqGx(N .

Moreover

NQ]UqGx(2P]UqGx(N4NEQ [ ( fe2ge )(Uq ) ]2EP [ ( fe2ge )(Uq ) ]N

4NEQ [ ( fe2ge )(Uq ) ]2EQ [ ( fe2ge )(Vq ) ]N

4NEQ [ fe (Uq )2 fe (Vq ) ]2EQ [ ge (Uq )2ge (Vq ) ]N ,

where Vq are the random variables defined in (1). By arguing as in Lemma 1, we
get

NEQ [ ( fe (Uq )2 fe (Vq ) ]NG
2

eP(H) o
p

q
.(2)

Since we have trivially

NEQ [ ( ge (Uq )2ge (Vq ) ]NG
2Qq (e)

P(H)
,(3)

from relations (2) and (3) it follows that

NQ]UqGx(2P]UqGx(NG
2

eP(H) o
p

q
1

2Qq (e)

P(H)
,

hence the statement of the lemma.
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3. - THE MAIN RESULTS.

THEOREM 1: There is a constant K , depending on the law of X1 only, such that, for
every pair p , q of integers, we have

sup
A , x

NCov (IA (Up ), I]2Q , x] (Uq ) )NGK 4o p

q
.(4)

PROOF: The statement being trivial if X1 is degenerate, we can assume that X1 is not
degenerate; then, by Lemma 2 and Petrov’s theorem (stated in the preceding section),
we have for eD0,

sup
A , x

NCov (IA (Up ), I]2Q , x] (Uq ) )NG
2

e o p

q
12C ue1

1

kq
v .

The conclusion then follows since the minimum of the function

e O (2/e) kp/q12C(e11/kq)

is given by 4 kC 4o p

q
1

2C

kq
, which is obviously less than (4 kC12C) 4o p

q
. This

proves the statement of the theorem.

REMARK When the Xn are gaussian random variables, we have

sup
A , x

NCov (IA (Up ), I]2Q , x] (Uq ) )N4K0o p

q
.(5)

Hence we are faced with the question of what conditions on the law of X1 can guaran-
tee an «optimal» relation as (5); in other words we are wondering when we are allow-
ed to put the square root of p/q , in place of the fourth one, in relation (4). In what fol-
lows we are going to give two sufficient conditions for this to happen. We need two
lemmas.

LEMMA 3: Let f be the characteristic function of X1 and l a member of ]0, 1(. As-
sume that there exists an integer r such that the function t O Nt l f r (t)N is integrable.
Then the relation

sup
p/qG1/2

�NtNlNf u t

kq
vN

q2p
dtEQ

holds good.
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PROOF: Let L be the real function defined by

L(t) 4E yX1
2u1RNtN

NX1 N

3
vz .

It is easily seen that L is symmetric, increasing on [0 , Q[, bounded by 1 and has limit
0 in t40, so that there exists a real number t on ]0 , 1[ such that L(t) E1/4 . By the
inequality

Ne itx212 itx1
1

2
t 2 x 2N G t 2 x 2u1RNtN

NxN

3
v ,

(Kallenberg [8], pag. 69) we get Nf g t

kn
h211

1

2

t 2

n N G
t 2

n
L g t

kn
h , for every real

number t ; it follows

Nf u t

kn
vN

n/2
G yN12

1

2

t 2

n N1
t 2

n
L u t

kn
vzn/2

.

Hence on the interval Jn4 [2 tkn , tkn] we obtain

Nt lNN f u t

kn
vN

n/2
GNt lNy12

1

2

t 2

n
1

1

4

t 2

n
zn/2

GNt lNe 2t 2 /8 ,

while, on Jn
c , we have Nf g t

kn
hN G sup

NuNF t

Nf(u)N4dE1, where, since NfN is inte-

grable, the last inequality follows from a well known result on characteristic functions
(see Feller [9], pag. 501). Hence, for every pair of integers p , q , with pGq/2 , one gets
the inequalities

�NtNlNf u t

kq
vN

q2p
dtG sup

n
�NtNlNf u t

kn
vN

n/2
dt

G�NtNl e 2t 2 /8 dt1sup
n
�

Jn
c

NtNlNf u t

kn
vN

n/2
dt

GC11sup
n

n
l11

2 d
n

2
2 r�Nu l f(u)Nr du ,

where C1 is an absolute constant. The lemma is proved.

LEMMA 4: Let p , q be two integers, with pGq , and assume that the event ]Up�A(

is not negligible. Denote by F q and F
A

q the characteristic functions of Uq with respect to
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P and P]Up�A(; then we have

NCov (IA (Up ), I]2Q , x] (Uq ) )NG
P]Up�A(

p
�

R

NF q (t)2F
A

q (t)N

NtN
dt .

If in addition the function t O NtNNf r (t)N is integrable, then for every bounded Borel
set B and for every q greater than r , we have

NCov (IA (Up ), IB (Uq ) )NG
P]Up�A(

2p
meas (B)�

R

NF q (t)2F
A

q (t)Ndt .

PROOF: The first statement follows from the relation

NCov (IA (Up ), I]2Q , x] (Uq ) )N4P]Up�A(NP]UqGx(2P]Up�A(]UqGx(N

G
P]Up�A(

p
�

R

NF q (t)2F
A

q (t)N

NtN
dt ,

by the relation on the difference of two distribution function (see section 2). As to the
second statement, just note that, for q greater than r , we have

NCov (IA (Up ), I]2Q , x] (Uq ) )N4P]Up�A(NP]Uq�B(2P]Up�A(]Uq�B(N

4
P]Up�A(

2p
N�

B

dx�
R

e 2itx [F q (t)2F
A

q (t) ] dtN.

This proves the lemma.

THEOREM 2: Assume that there exists an integer r such that the function
t O Nf r (t)N is integrable. Then, for every pair of integers p , q, we have the
relation

sup
A , x

NCov (IA (Up ), I]2Q , x] (Uq ) )NGKo p

q
,

where K is a constant depending on the law of X1 only. Moreover, if the function
t O NtNNf r (t)N is integrable too, then for every bounded Borel set B we have

Cov (IA (Up ), IB (Uq ) )GK1 meas (B) o p

q
,

where K1 is a constant depending on the law of X1 only.

PROOF: Without loss of generality we can assume that pGq/2 , since for pFq/2 we
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have trivially

NCov (IA (Up ), IB (Uq ) )N4o p

q o q

p
NCov (IA (Up ), IB (Uq ) )NG4 o p

q
.

As in the proof of Lemma 1, we assume also that the event H4 ]Up�A( is not negli-
gible. Denote by Q the conditional probability measure P(QNH) and put

Vq4
X 81 1R1X 8p 1Xp111R1Xq

kq
,

where (X 8n ) is an independent copy of the sequence (Xn ); then we have

NF q (t)2F
A

q (t)N4NEQ [e itUq ]2EQ [e itVq ]N

4 Nf u t

kq
vN

q2p
NEQ [e it

X11R1Xp

kq ]2EQ [e it
X 81 1R1X 8p

kq ]N

G Nf u t

kq
vN

q2p 2NtN

P(H) o
p

q
.

Lemmas 3 and 4 achieve the conclusion.

Finally, we have a «Berry-Esseen type» result. In detail:

THEOREM 3: Assume that X1 has finite absolute third moment. Then we have

sup
A , x

NCov (IA (Up ), I]2Q , x] (Uq ) )NGK2o p

q
,

where the constant K2 depends on the law of X1 only.

PROOF: As in the proof of the preceding theorem, we can assume pGq/2 . Let (Yn )
be a sequence of random variables and assume that the (Yn ) are independent 8(0 , 1 )
and independent on (Xn ). Put

U 8q 4
X11R1Xp1Yp111R1Yq

kq
.

Since Cov (IA (Up ), I]2Q , x] (Uq ) ) is equal to

Cov(IA (Up ), I]2Q , x] (Uq )2 I]2Q , x] (U 8q ) )1Cov (IA (Up ), I]2Q , x] (U 8q ) ) ,

it will be enough to prove that the two terms in the above sum are bounded by a num-

ber of the form Ko p

q
. As in the above theorem, denote by H the (non negligible)
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event ]Up�A( and by Q the conditional probability measure P(QNH); then we
have

NCov (IA (Up ), I]2Q , x] (U 8q ) )N4P(H)N(Q]U 8q Gx(2P]U 8q Gx()N

G
P(H)

p
� 1

NtN N�e itU 8q dQ2�e itV 8q dQNdt .

Here V 8q denotes
X 81 1R1X 8p 1Yp11 1R1Yq

kq
, where (X 8n ) is a copy of (Xn ), indepen-

dent on each Xn , Yn . It follows

NCov (IA (Up ), I]2Q , x] (U 8q ) )NG
P(H)

p
�e 2

t 2(q2p)

2q EQ [NU 8q 2V 8q N] dt

G
1

p
�e 2

t 2(q2p)

2q EP [NU 8q 2V 8q N2 ]1/2 dt

G
1

p
�e 2

t 2

2 EP [NU 8q 2V 8q N2 ]1/2 dt

GEP [NU 8q 2V 8q N2 ]1/2

G2 o p

q
.

Let ap , q be the second term Cov (IA (Up ), I]2Q , x] (Uq )2 I]2Q , x] (U 8q ) ) ; then

Nap , qN4Nbp , q2P]Up�A((P]UqGx(2P]U 8q Gx()N ,

where bp , q denotes P]Up�A , UqGx(2P]Up�A , U 8q Gx(. By the Berry-Esseen
inequality, we get

Nbp , qN4�
A

NFp , q ( g(x1 , R , xp ) )2N( g(x1 , R , xp ) )Ndm(x1 , R , xp )

G
E[NX1 N3 ]

kq2p
,

where m is the law of Up under P , N the distribution function of the standard gaussian

law and g(x1 , R , xp ) the real number
x kq2 (x1 1R1xp )

kq2p
. By arguing analogously, we

get also

NP]Up�A((P]UqGx(2P]U 8q Gx()NG
E[NX1 N3 ]

kq2p
.
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From the two above relations and the inequality pGq/2 it follows that

Nap , q NG2
E[NX1 N3 ]

kq2p
G4E[NX1 N3 ] o p

q
.

This concludes the proof.

REMARK: It is for the moment an open problem whether the relation in theorems 2
e 3 holds good even without any assumption on the third moment or the characteristic
function of X1 .
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