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On the Rosenblatt coefficient
for normalized sums of real random variables (**)

AsstracT. — For a given sequence (X,),s; of independent identically distributed real
random variables, we consider the normalized sums U, defined by U, = (X, + ... + X,) /7,
and we give some results on Cov (IA(UI,), IB(Uq)) with p, ¢ integers and A, B Borel
sets in R.

Sul coefficiente di Rosenblatt
per somme normalizzate di variabili aleatorie reali

Sunto. — Per un’assegnata successione (X,),s; di variabili aleatorie reali, indipen-
denti e identicamente distribuite, si considerano le somme normalizzate U,, definite da U, =
=(X,+...+X,)/\Vn, e si dimostrano alcuni risultati riguardanti le covarianze del tipo
Cov (IA(UI,), IB(U,{)), con (p, gq) coppia d’interi e (A, B) coppia d’insiemi boreliani di R.

0. - INnTRODUCTION

Let (@, ,)>1,,>1 be a matrix of real numbers. A classical problem of Probability
Theory is the asymptotic behaviour, as # go to infinity, of weighted partial sums such
as

n
Zrz = k21d/€’ n Yk, n»

where (Y} ,) is a sequence of real random variables, satisfying suitable assumptions
(see for instance Stout [1], chap. 4). In the last years many authors (see for instance
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Brosamler [2], Schatte [3], Lacey-Philipp [4]) have considered the case
Vi, =1a, ,(Up);
here A, , are Borel sets in R, and U, denotes the random variable
Xy + ...+ X,)/Vn,

where (X,),=; is a sequence of independent identically distributed real random vari-
ables, with E[X?] =1 and E[X;] = 0, defined on a probability space (2, @, P). This
leads in a natural way to the problem of evaluating

Cov (I,(U,), Iz(U,)) ,

with p, g integers and A, B Borel sets in R. In the present paper we give some bounds
for the Rosenblatt coefficient

sup |Cov (I4(U,), I, » 1 (U,))],
A, x

(where A varies among all Borel sets in R and x in R), and for

sup |Cov (I4(U,), Iz(U,))|,

(where A, B vary among all Borel sets in R, with B included in a fixed set of finite
measure). We obtain some results (Theorems 1, 2 and 3) which can be set into the
framework of the so-called almost-orthogonal random variables; for this kind of vari-
ables some interesting laws of large numbers exist (see for ex. Lacey-Philipp [4], pag.
203, Atlagh-Weber [5], pag. 52, and, for a detailed study, Weber [6], sect. 7.4).

2. - NOTATIONS AND FIRST RESULTS

We start by recalling a result on the concentration function of a sum of random
variables. Let O, be the concentration function of U,, namely the function defined on
R, by

Q,(A) =sup P{x< U, <x+1}.

If the law u of X is not degenerate, then there is a constant C, depending on u only,
such that, for every real number & > 0, the inequality

0,(e) <Cle + 1/\/n)

holds good. See Petrov [7], pag. 49 for a proof. We recall also a result on the diffe-
rence of the distribution functions of two random variables Y, Z. Let ¢y and ¢ ; be
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the characteristic functions of Y and Z respectively; then we have the inequality

— ¢, |
|£]

IP{Y<x}-P{Z<x}|< 1f [9v() dr .
n]f‘?i

Without loss of generality, we assume in the sequel p < 4.

Lemma 1: For every Borel set A in R and for every Lipschitz function f, with Lips-
chitz constant L, we have

|Cov (I,(U,), AU,))| <LV2p/q.

Proor: We can assume that the event H = {U,e A} is not negligible. Denote by
Ey[-] the expectation with respect to the conditional probability measure P(-|H), and
let (X)), be an independent copy of the sequence (X,),. Put

(1) V,=(X{+..+ X, +X, 1 +...+X,)/Vq.
Then we have
Ey[/(V,)] = ELA(U,)],

hence

|Cov (I,(U,), AU,))]| =

[#w,) dp- P [£(0,) dP‘
H

=P(H) |Ex[ AU)] —ELAU] |
=P(H) |Ex[ /(U)] = Ex[ A(V,)]]
< P(H) LE4[|U, -V, |]
<LE[|U,-V,|].

By using the second moment, we get

|Cov(I,(U,), AU

q

)| < L(Var [U, - V1)

1/2

?
=L{g ' > Var[X, — X/]
k=1

=1\/2p/q.

The lemma is thus proved.



— 114 —

Lemma 2: Let € be a strictly positive real number. For every Borel set A in R we
have

2
|Cov (I4(U,), I) - . o(U,))| < ;\/5 +2Q,(e).

q

Proor: Let the real numbers ¢ and x be fixed, and denote by /£, the Lipschitz func-
tion defined as

X —t

L) =L w g@)+g(t) =1 u o)+ (1 =

)I]x,x+£](t) .

One verifies immediately that £, has Lipschitz constant 1/¢. Let H be the event
{U, e A}; we can assume again that H is not negligible. If Q denotes the conditional
probability law P(-|H), we have

|Cov (I,(U,), I, . 1(U,))| =P(H)|Q{U,<x} - P{U,<x}| .
Moreover
|Q{U, < x} —P{U,<x}| = |E°[(f — g )(U)] = EP[ (£ — g.)(U)]|
= |EQL(£ — g)(U)] — E2L(£ — g)(V,)] |
= |E°[£(U,) — A (V)1 = E9Lg.(U,) — g.(V)1],

where V, are the random variables defined in (1). By arguing as in Lemma 1, we
get

2 P
2) |[EXL(f(U,) = £.(V)]] < 2 \/q

Since we have trivially

(3) |E20(g,(U,) — g.(V)]]

I\

from relations (2) and (3) it follows that

B 2 p  20Q,(e)
0{U, <5} P{UqSX}Isgp(H)\/;+ e

hence the statement of the lemma.
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3. - THE MAIN RESULTS.

Tueorem 1: There is a constant K, depending on the law of X, only, such that, for
every pair p, q of integers, we have

@) sup |Cov (14 (Uy), Iy o (U,))] sK4\/£.

q

Proor: The statement being trivial if X; is degenerate, we can assume that X is not
degenerate; then, by Lemma 2 and Petrov’s theorem (stated in the preceding section),
we have for ¢ >0,

2 1
Sup'COV(IA(Up),I]_m‘x](Uq))ls—\/£+2C e+ — |.
A, x € q \/5

The conclusion then follows since the minimum of the function

e (2/e) \p/g +2Cle + 1/\/q)

is given by 41/C 4\/3 + % , which is obviously less than (4 V/C +2C) 4\/5 . This
q q q

proves the statement of the theorem.

Remark When the X, are gaussian random variables, we have

(5) iUpICOV(IA(Up), I_w 1(U,))] =K0\/£,
, X q

Hence we are faced with the question of what conditions on the law of X, can guaran-
tee an «optimal» relation as (5); in other words we are wondering when we are allow-
ed to put the square root of p/g, in place of the fourth one, in relation (4). In what fol-
lows we are going to give two sufficient conditions for this to happen. We need two
lemmas.

Lemma 3: Let ¢ be the characteristic function of X, and | a member of {0, 1}. As-
sume that there exists an integer r such that the function tv— |t' ¢’ (¢)| is integrable.

Then the relation
sup | |£]'] ¢ - ‘q_pdz‘<oo
Va

plg<1/2

holds good.
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Proor: Let L be the real function defined by

X
mmu)].
3

It is easily seen that L is symmetric, increasing on [0, [, bounded by 1 and has limit
0 in # =0, so that there exists a real number ¢ on ]0, 1[ such that L(¢) < 1/4. By the
inequality

L(z) =E|X?

1/\|t|u),

<12x2

) 1
e™—1—itx+ Etzxz

x
3

(Kallenberg [8], pag. 69) we get
number ¢; it follows

I

t
%)
while, on J¢, we have | ) (% < sup |¢(u)| =d <1, where, since |¢| is inte-

|u| =17

grable, the last inequality follows from a well known result on characteristic functions
(see Feller [9], pag. 501). Hence, for every pair of integers p, g, with p < ¢/2, one gets

the inequalities
t q-P t
1t || — ‘ de<sup | |t|' || —
f \Z » ) Van

sj|t|fe*f2/gd¢+sgpf|t|f
In

¢)(%)—1+%t— SI—ZL(%),for every real
n n n n

n/2 1 l‘z
<||1-==
| 2 n

]

n/2

dt

n/2

dt

)

I+1 n
< C, +sup nTa’?_yj ! pu) | du

where C; is an absolute constant. The lemma is proved.

Lemma 4: Let p, q be two integers, with p < g, and assume that the event {U,e A}
is not negligible. Denote by @, and D, the characteristic functions of U, with respect to
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P and Py cay then we have

|Cov (I4(U,), Iy - . 1 (U,))]| dt .

_ PUe4) f | D, (1) — D, (1) |
T ||

If in addition the function t— |t||@p’(¢)| is integrable, then for every bounded Borel
set B and for every q greater than r, we have

P{U,eA}

|Cov (1,(U,), I;(U,)| < meas (B) j |, (1) — B, () |de .

R

Proor: The first statement follows from the relation

|C0V(IA(UP), I]_m,x](Uq)” :P{UPEA} |P{Uqu} _P{UPGA}{qux}|

dt,

_ MU ea} f |D,(t) — D, (1) |
T ||

by the relation on the difference of two distribution function (see section 2). As to the
second statement, just note that, for g greater than », we have

|C0V(IA(UP), I]fw,x](Uq))l :P{UPEA} |P{UqEB} _P{UPEA}{UqEB} |

P{U,eA} i ~
-2 ‘ [ax[emta,00-B, 004,

B R

This proves the lemma.

THEOREM 2: Assume that there exists an integer r such that the function
te>|@"(¢t)| is integrable. Then, for every pair of integers p,q, we have the
relation

sup |Cov (L (U,), I - . (U,)))] SK\/E,
A, x

q

where K s a constant depending on the law of X, only. Moreover, if the function
te>|t| |7 (2) | is integrable too, then for every bounded Borel set B we have

Cov (I, (U,), I;(U,)) <K, meas (B) \/3 ,
q

where Ky is a constant depending on the law of X, only.

Proor: Without loss of generality we can assume that p < 4/2, since for p = g/2 we
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have trivially

|Cov (I, (U |_"J .J |Cov (1,(U,), I (U, |<4.Jp
q

As in the proof of Lemma 1, we assume also that the event H = {U, € A} is not negli-
gible. Denote by Q the conditional probability measure P(-|H) and put

po XA XX A X,

! Va

where (X)) is an independent copy of the sequence (X,); then we have

|(pq(f) - &)q(l) | = |EQ[e"th] _ EQ[ez'th] |

/ g X[+t X,
Jof et

¢ qu4J7
S PERICEIINTS
Va P(H) N ¢q

Lemmas 3 and 4 achieve the conclusion.

Finally, we have a «Berry-Esseen type» result. In detail:

THEOREM 3: Assume that X, has finite absolute third moment. Then we have

sup |Cov (I4(U,), I1_ . 4(U,))| < Kz\/— ,
A, x
where the constant K, depends on the law of X, only.

Proor: As in the proof of the preceding theorem, we can assume p < ¢/2. Let (Y,)
be a sequence of random variables and assume that the (Y,,) are independent N (0, 1)
and independent on (X,). Put

Xi+. . +X,+Y,  +... Y,

r_ q

' Vg
Since Cov (I4(U,), I;_ . ,(U,)) is equal to
COV(IA(UP), I]—oo,x](U) I]—ao X](U )) +C0V(IA(UP), I]*Ooyx](Uq,)))

it will be enough to prove that the two terms in the above sum are bounded by a num-

ber of the form K \/ 2 As in the above theorem, denote by H the (non negligible)
q
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event {U,eA} and by Q the conditional probability measure P(-|H); then we

have

|Cov (I (U,), I - . o (U}))| = P(H) |(Q{U, < x} = P{U; < x}) |

< P jﬁ | [eriag- [emiag)d.

T

X/ 4+ 4+ X +Y,,  +...+Y , ,
! Pl 2 where (X)) is a copy of (X,,), indepen-

Here V, denotes
q
dent on each X,, Y,. It follows

P(H) _12((],)
[Cov (L (U, b v (U] < —— fe T ECL|U; - V) |1 de

1 ~ 2q-p)
<= [e =Ry - v 1
JT

1 _2
s_fe ?EP[qu/_Vq/|2]l/2dt
JT

sEP[qur _ qu |2]1/2

SZJB.
q

Let a, , be the second term Cov (I4(U,), [;_ . (U,) —=L_ . (U,)); then

4,41 = 16,y = P{U, e A}(P{U, < x} = P{U; <x}) |,
where b, , denotes P{U,e A, U,<x} —P{U,eA, U/ <x}. By the Berry-Esseen
inequality, we get

|6, 4| = f |F, ,(g(xy, ..., x,)) = N(g(xy, ..., x,)) |du(xy, ..., x,)
A

_ B
q—p
where u is the law of U, under P, N the distribution function of the standard gaussian

xVg— (o + ... +x,) .
. By arguing analogously, we
q—p

>

law and g(xq, ..., x,) the real number

get also
, E[|X, ’]
|P{U,e A}(P{U, < x} — P{U, s x})| < \/qlTp ‘
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From the two above relations and the inequality p < ¢/2 it follows that

E[|X,|’] 3 )4
la, ,| <2 ——— <4E[|X,|’]+] =
P,q /_q_p q

This concludes the proof.

Remark: It is for the moment an open problem whether the relation in theorems 2

e 3 holds good even without any assumption on the third moment or the characteristic
function of X;.
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