Rendiconti

Accademia Nazionale delle Scienze detta dei XL
Memorie di Matematica e Applicazioni

117° (1999), Vol. XXII1, fasc. 1, pagg. 197-212

L P. VAN DEN BERG - F. KOUDJETI (*)

On Binomial Expectations and Option Pricing

AssTRACT. — We show how a discrete random variable on a finite probability space en-
dowed with a binomial distribution may be close to a random variable on the continuum, in a
way which respects the expectations. As an application, we approximate the random variables
of a discrete geometric binomial process by continuous exponentials, and thus derive an option
price formula, which contains the formula of Black and Scholes as a special case.

Speranze binomiali e valutazione delle opzioni

Ruassunto. — Si espone un modo per associare a una variabile aleatoria discreta con legge
binomiale (su uno spazio probabilizzato finito) una variabile aleatoria continua con eguale spe-
ranza. Come applicazione, si approssimano le variabili aleatorie di un processo discreto bino-
miale geometrico mediante variabili aleatorie continue esponenziali, e si ottiene cosi una formu-
la per i prezzi delle opzioni, la quale contiene, come caso particolare, la formula di Black e

Scholes.

1. - INTRODUCTION

The present paper studies continuous approximations of discrete expressions in
the context of elementary probability theory. The main result, Theorem 2.1, is a sort of
extension of the De Moivre-Laplace central limit theorem, and concerns the approxi-
mation of the expectation of a random variable with respect to a binomial distribution
by an expectation with respect to the standard normal distribution.

Our study is motivated by the derivation of the Black-Scholes formula (see [4]) for
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the pricing of European call options. In [5], J. C. Cox, S. A. Ross and M. Rubinstein
presented an option pricing formula in the form of a discrete binomial expectation,
and then they showed that in the limit it converged to the Black-Scholes formula.

As a consequence of our main theorem we obtain a pricing formula for continuous
options, of which the Black-Scholes formula is a special case. Our derivation is both
more direct and more general than the derivation of Cox, Ross and Rubinstein: we re-
duce their sum formula to a Riemann-sum of the Black-Scholes integral formula.
However, our setting is still their simple discrete pricing model, and thus avoids en-
tirely the complications of limits of stochastic processes, continuous stochastic proces-
ses and measure theory. Instead, we apply nonstandard analysis, and following N. G.
Cutland, E. Kopp and W. Willinger [6], we assume that the time steps of the discrete
model are infinitesimal. With respect to their approach to option pricing, we obtained
a further simplification, by avoiding the transitions between a standard and a nonstan-
dard model, and Loeb-measure theory.

Notations and a presentation of the main result.

We start by introducing some conventions and notations, and an informal presen-
tation of the results.
Let

N\ . ;
By (A= ( _)p’(l —pN~7
7]

be the ;* binomial coefficient and put

#p=N-p
0, =VN-p(1-p)
(1.1) y = L
o

Q,={x%]/=0,1,..., N}.

dx; = %541~ %,

Notice that the x; are «normalized» with respect to the probability distribution

By, »(/): their mean is 0 and their standard deviation equals 1. For large N we have the
well-known approximation

1 e~ (G—up)la,P )2 1 -e_"f'z/zdxj.

\/Zawp V2n

BN, ? (]) ]
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It may be expected that the approximation carries over to sums:

Thus we sketched a derivation of the De Moivre-Laplace central limit theorem

Z.BN,,,<z')~N(’_””)

iSj g,

where N is the normal distribution function given by

(1.2) N(y) =

y
o ln I e ¥ 2y .
V2m_J

Our main result concerns expectations of the form

N
(1.3) E(b) = gob(xi) By, ,(4)

where b is a discrete random variable defined on the x;’s.
We show that under a suitable condition the above reasoning can be extended to
this sum, leading to the approximations

N 1 % : ) ) 2
l;)b(xi) BN,p(i) e —-\/—_— 'Zb(x,-) e X /dei"‘ \/Ey_t_;[ E(x)~e_" /zdx

2m i=0

where % is a continuous real function, closely related to 4. So, indeed we transformed
an expectation with respect to the binomial distribution into an expectation with re-
spect to the standard normal distribution. We remark that our formal nonstandard
proof will be very similar to the observations above.

Discrete arithmetic and geometric Brownian motions.

Our application concerns the approximation of the expectation of a random vari-
able with respect to a discrete geometric binomial process S(¢, x). This process will be
defined on a binomial cone . Let T>0, Ne N, and d > 0 be such that Nd¢ = T. Then
Wr. 4 is the cone given by

Am,neN, 0s<sm<ns<N
(1.4) Wra={(, x)el0, TIXR and
t=ndt, x=(—n+2m)\/dt
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Fig. 1. — A binomial cone for N=5.

We call dt the period of the cone and
(1.5) T={0,dt,2dt,..., Ndt =T}

the time line of the cone. Notice that Wr, , is the union of all trajectories of the dis-
crete arithmetic Brownian motion («Wiener walk») on the time line T. Sometimes we
simply write Wr instead of Wr . We write Wr(#) for the vertical sections of the cone;
they correspond to the values reached at time # by the sample paths of the discrete
arithmetic Brownian motion. Usually 4t is infinitesimal, and then we speak also of an
infinitesimal binomial cone. Notice that in this case the vertical step /4%, though still
infinitesimal is infinitely large with respect to the horizontal step dt. See also
Figure 1.

The process S(¢, x), called the discrete geometric Brownian motion, is defined by
induction on Wr. Let $,>0, ueR, 0>0 and 0 <p < 1. We put

S(O, O) =SO

and for teT, t<T

s S(¢+dt, x+\/dt) = S(¢, x)- ( 1+,udt+o\/_t
' S(t+ dt, x —\/dt) =S¢, x)- (1 + udt — o\/d2).

Then indeed the process is defined on Wr 4. We assume that the upper increment of
(1.6) has conditional probability p, and the lower increment has conditional probabili-
ty 1 — p, and that the increments are independent in time. Then S(¢, x) is properly de-
fined as a stochastic process, and up to elementary transformations its random vari-
ables S(#) = S(¢, -) have binomial distributions. In particular

Pr{S(T) = So(1 + pede + a\/Zt)j(l +udt—o dt)N_j} =By (/).
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Note that if p = 1/2, then u is the relative conditional expectation, or drift rate of the
process and o its relative conditional variance, or volatility.

Expectations and option pricing.

In the economic context of option pricing, the process S(¢, x) endowed with the
conditional probability p =1/2 is considered as a model describing the possible
movements in time of the price of a share of some stock; trading is allowed at the times
{0, dt, 2dt, ..., T}, the drift rate of the stock price being equal to u, and its volatility
0. Given a real-valued function f, the random variable f(S(T)) models a claim on that
share at the future time T. For instance, let K> 0. Then the claim

f8(T)) =(T)-K)*

is called the European call option with exercise date T and with striking price K. It
models the payoff of a contract giving its owner the right to buy the share § at time T
for the price K.

In fact, we described a stochastic process which is suitable for the discrete option
pricing model of Cox, Ross and Rubinstein. They argue (see also [5]) that if  is the
risk-free rate of interest, the correct price Cy, of the claim f must be the Present Value
(henceforth PV,) of the expectation of the random variable £(S(T)) in a risk-neutral
world (that is, the drift rate u of the process S must be 7). Let then

(1.7) E, /(S(T))

denote the expectation of the random variable f(S(T)) in a risk-neutral world.
Then

Recall that the present value in a risk-neutral world of an asset A equals its future
value A(T) at time T discounted at the risk-free rate of interest. That is to say

PV,(A) = A(T)/(1 + rdt)"*

If the process S(¢, x) is in a risky world, (that is, its drift rate u is different from 7) then
it is always possible to adjust its conditional probability p to some value p(r) which
will change its drift rate to the prescribed risk-free rate of interest 7€ R. Note that p(r)
must satisfy

p(r)(l + udt + GVZ‘) +(1 —p(r))(l + udt — o\/Zt) =1+rdt

(1.9) ipto, oLt
2 20
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In the remaining, the conditional probability of the process S(¢, x) is p(r), but for con-
venience, we will write it p.

The expectation (1.7) can be written in the form (1.3); indeed define the affine
transformation v,: 2,— Wr(T) by

(1.10) =2 \/T[\/ p)x+ (p = )%]

Then we have

(1.11) f8(T)) = Zf(S T, v,(%))) By, ,(1).

Due to the rapid trading at stock markets, economists prefer a market model with
a continuous time line: the Black-Scholes market, for which the option price C, be-
comes the Black-Scholes formula [4]. Now both the formulation of a Black-Scholes
market model, and a derivation of the Black-Scholes formula within such a model are
very intricate (see [9] for a survey). Instead, as argued by Cutland, Kopp and Will-
inger in [6], the Cox-Ross-Rubinstein model is a good alternative, provided the period
dt is infinitesimal: it expresses rapid trading, it has the simplicity of a discrete model,
and the option price C,, almost does not depend on the length of 4z. In fact, the differ-
ence between C, and the Black-Scholes price C, is infinitesimal under some natural
conditions on the order of magnitude of the parameters involved. Indeed, using the
approximation of v, given in Lemma 2.4, that of S(T) given in Proposition 2.5, and
that of the binomial expectation stated in the main theorem (Theorem 2.1), we prove
that

b, (7—02/2)T+a\/7“x La—x22
(112)  PV.(EA(S(T))) \/__If e o2l

The integral of the right-hand side of (1.12) is the Feynman-Kac formula
(see [9]).

There are three main differences between the work of Cutland, Kopp and Will-
inger [6] and our approach. First to estimate S(T) they use a nonstandard It5-calcu-
lus, while we use a «method of lines.» Second to relate the discrete and the continuous
they use the Loeb-measure and Loeb-spaces [16], while we use Riemann-sums, such
as sketched above, and the external numbers of [13] and [14]. Third, their setting is
Robinsonian nonstandard analysis [20], while our setting is axiomatic nonstandard
analysis IST [18]. The main difference is that in the latter approach the infinitesimals
are included within the set of real numbers R, while in the former approach they are
included in a nonstandard extension of R.
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Outline of this paper.

This paper has the following structure. In Section 2 we state and prove our main
theorem on the approximation of binomial expectations by standard normal expecta-
tions. We also show how some expectations in a somewhat more general setting may
be reduced to the main theorem, by a lemma of Girsanov type.

In Section 3 we approximate the discrete random variables of the geometric bino-
mial process S(¢, x) by continuous exponential functions, and then we state and prove
the option pricing formula of continuous or nearly continuous claims, of which the
Black-Scholes formula is a consequence.

The reader is referred to [7] or [17] for an introduction to the axiomatic nonstan-
dard analysis IST, to [1], [2] or [19] for an account of discrete stochastic processes
from a nonstandard point of view, and to [9] or [11] for the classical option pricing
theory.

To simplify our approximative and asymptotic calculations we use a sort of non-
standard O-calculus; ze. the calculus of external numbers and external intervals
of [13] and [14]. We recall here some notations: the symbol & designates the external
set of infinitesimals, the symbol £ the external set of limited numbers, the symbol @
the external set of positive appreciable numbers and the symbol ¢ the external set of
all positive infinitely large numbers.

2. - BINOMIAL EXPECTATIONS

2.1. Preliminaries.

Our main theorem relates the expectation of a discrete, nearly continuous random
variable to the expectation of a properly continuous random variable. Nonstandard
analysis makes it possible to express near-continuity of a discrete function through the
notion of S-continuity, and to describe the transition from the discrete to the continu-
ous by the notion of shadow.

If the difference between two real numbers # and v is infinitesimal, we write # = v.
Otherwise, we write #7 v. We recall the notion of S-continuity: a function /: DCR—R
is S-continuous on D if for all x, yeD

x=y = flx) =f(y)

Standard continuous functions are S-continuous (see [20]), but we will see examples
of discrete (nonstandard) functions which are S-continuous.

Grosso modo, if A is a set, the shadow or standard part of A is the standard set °A
which is most close to it. We do not state the formal definition of the shadow, which
uses the concept of Standardization [18]. Instead we refer to [7], and give some exam-
ples, which illustrate how this notion may relate the discrete and the continu-
ous.
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® Let dr> 0 be infinitesimal, then
°dt=0

® Let T be standard, and assume T = N d#, where N € N is infinitely large. The
shadow of the discrete «infinitesimal time line (1.5)» is the continuous time interval
[0, TI:

°r=1[0,T].

® Assume that 0 < p ¥ 1, and consider the set 2, of (1.1). Again, the difference

1/\/p(1 = p)N of two successive members of 2, is infinitesimal; note also that £,
contains negative and positive unlimited numbers. The shadow of 2, is the whole
continuum:

°Q,=R
® Let >0 be a standard real number, and consider the discrete function
f: T—R defined by
£(2) = (1 + rde)"*
Note that we have the Euler approximation

(1 + rdt)t/dt =",

Cleatly f is S-continuous on T. The shadow of f is the continuous function
°f:[0, T1—R given by

(2.1) Flth=e®:

As will be shown in this paper, the shadow of the random variables of the geometric
binomial process (¢, x) are also continuous exponentials.

o In general, let Dc R. A function f/: D— R is called of class §° if it is S-contin-
wous and takes limited values at limited arguments of D. The theorem of the continu-
ous shadow of Robinson (see Theorem 4.5.10 of [20], and [7]) states that such a func-
tion has a shadow

°f. °D—>R
which is standard continuous, and moreover satisfies for all limited ze°D N D
C ) =f(2).

® The last example concerns Riemann-sums. Let st a4, b, a<b. Let dx>0,
NeN be such that »—a = Ndx, and consider a function

fla,a+dx,...,a+Ndx=b}—>R.
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Assume dx=0 and f is of class S°. Then

b

N
2 (a+7dx) dx= J'("f)(y) dy.
e

a

We may extend the approximation to the «external integration» of [13] or [14]; z.e. if
fis at least defined for all 7 such that 7dx is limited, we have, in the sense of external
numbers

3 fidx) dx=[CA) dy+9
£

In fact our main theorem will be proved along these lines.

Before presenting the main theorem, we formulate some nonstandard growth con-
ditions. Recall that a function /: R—R is of exponential order at + o if there are
numbers A, K, C such that for all |x| >A

|/(x) | < Ke©.

A function £ is said to be of S-exponential order if the above numbers may be taken
standard. Expressed in terms of external numbers this becomes

flx) = L@

for all positive, infinitely large x. It is an elementary nonstandard exercise to prove the
- following property: if f: Dc R— R is of class S°, and of S-exponential order, its shad-
ow is of exponential order.

In the same spirit, a function £:]J0, «[— R is said to be of rational growth in 0 or
in + o if there are constants A > 0, K,  such that f(x) < Kx” for x = A and constants
B>0, L, s such that f(x) < Lx* for x < B. If these constants may be taken standard,
then fis said to be of S-rational growth at 0 and + . Also, if fis of class §° and of S-
rational growth, its shadow is of rational growth.

2.2. The main theorem.

Tueorem 2.1 (Main Theorem): Let N= + 0,0 Zp 5 1 and Q, be the probability

space given by (1.1) and endowed with the binomial distribution By ,. Let h: ,—R
be a random variable of class S°, and of S-exponential order in + . Then

o 1 m’o s -x2/2
22) E(b)——\/fy_r f Bl et Bt
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The proof of the theorem will be divided in two parts: an approximation of the bi-

nomial coefficients, and the transition of a Riemann-sum into the Riemann-inte-

gral.

ProposimioN 2.2: Let N=+o,05pS1, and 0<;j<N. Then

L. for all j=p, + Lo,

i 1+9 1 j_,up )
23 By .(j) = Y .
) o) Sines e"p[ 2( ”

2. forallj=p,* ¢-0,

: J—u
(2.4) BN,p(j)=exp(— % ’ 4 )
Op
Proor: A straightforward calculation yields
Byeol-bit 1) Lm, (ot PO b O
(2.5) — = ' - .
By, ,(5) L4 (5—pu, )1 - p)/o; +Lias

To show (1), note that (2.5) may be simplified to

BN,p(j+1) e [j_/"p] " £
By, »(4) o3 o

So

BN (]) p 7 £
(2.6) 1, —2 T — expedliztlaalbset0s S
BN,p([/up]) pizo £ 0; 0’2

[7—upl . .
7 e )Ll (3
= exp 2 ——2+—2 =exp|——- ol
i=0 0, a,,‘ 2 o,

2
+J].

To estimate the term By, ,([x,]), note first that by the Mass Concentration Lem-
ma [3] we have

2 BN,p(]')=l+®.

j=,u,,-l~,,(:’a‘,a



= 20h =
So

1 BN,p(j)

27) —-= O N ol g
BN,p([,up]) J=pup+ Loy BN,p([,up])

1

Op

=ap(Je‘*2/2dx+®) Eap~\/§7t(1 + ).

Now (2.6) and (2.7) imply (2.3).
To show (2), assume first that /> u, + £0,. Then (2.5) may be simplified to

BN,p(]."'l) i s £
By, ,(7) o,

Hence, using the fact that all By ,(;) are infinitesimal

, Jtu e N i R J—u
BN,p(])<BN’p([ - P}).(1+ ;—) < ;—exp £ = P
P p ?

This implies (2.4). The case where j<u,+ £0, is treated similarly.

ComMent: There are many proofs, both classical and nonstandard, of the proposi-
tion above, or closely related formulae. See for instance [3], [8], [15] or [10]. The
above proof has the advantage of being straightforward, of avoiding the use of Stir-
ling’s formula, and of estimating the tails of the binomial distribution.

Proor [of Theorem 2.1]: Using Proposition 2.2 and the additivity of external in-
tegration proved in [13] and [14], we obtain

N
E(h) = 20 By, »(7) h(x;)

1
=—— 2 (e¥7h(x)+D)dx;+ > e tlule@nl gy,
V27 i=np+ Loy i=upt$0,

To estimate the first sum we use an approximation by the Riemann-integral and to get
a (rough) estimate of the second sum, we use the well-known integral-majoration of
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decreasing series. We find

2 b(xj)-e_"fz/zdxj+®- 2 e_"‘f|dxj-

J=pp+ Lo, J=HptPo,

E(b) =

Bl
B

1
27

N

x| >e£

o

fﬂb(x)-e-xz/z b+ D+ O f e+l gy
o
°b(x)-e * 2 dx + &

1

V2m_

Comment: There are of course many alternative versions of the above theorem.
What matters, is that the mass (see [3]) of the random variable 4 with respect to the
binomial distribution is included within £, and that on this set, the sum
2By, (/) h(x;) acts as a Riemann-sum. This is for instance the case when 5 is the re-
striction to £2, of a standard Riemann integrable function which is bounded on every
standard interval. Note that for st A, and » = y;_ ., 4; we thus obtain the De Moivre-
Laplace central limit theorem
By, , (/) = N(A)

(G-mp)lo, <A

where N is given by (1.2).
Further, the main theorem is a consequence of a fundamental theorem of Loeb-
measure theory. Indeed, mutatis mutandss, the finite sequence

{h(x,) By, ,(7) /dx;|j=0,1, ..., N}

is a «lifting» of the standard Lebesgue integrable function °A(x)-e~**/ 2, and then, say,
Theorem IV.1.16 of [12] applies.

2.3. Relative normalisation.

The main theorem concerns random variables on the probability space

Q,={x1,..., xn},

Ze. the space on which the probability distribution By, , is normalised. We will consid-
er here a more general case of functions on a space which are easily transformed into
random variables on the normalised probability space Q,.

DerFiNiTiON 2.3: Let NeN and Q = {y,, ..., YN} be a finite set. The transforma-
tion v,: Q,—> 8 defined by
vplx) =y,

where v, is given by (1.10), is called a normalisation of Q with respect to the binomial
distribution By ,.
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Let f: Q=R be a function. The random variable f: 2,—R defined by
fo(x) =fv,(x)

is called the relative normalisation of f with respect to the binomial distribution
quy p .

If 2R consists of N equidistant points, the normalisation of £ is an affine trans-
formation. Next lemma gives an approximation of this transformation in case Q is (the
image of) the random variable Wr(T) of the binomial cone given by (1.4); Z.e. the case
of N equidistant points at distance 2 \dt and of mean 0.

Lemma 2.4: Let T> 0 be appreciable, dt >0 be infinitesimal, and NeN be such
that Ndt = T. Assume p=(1/2) + a \/Zt, where a. is limited. Let v, be the normalisa-
tion of Wr(T) with respect to the binomial distribution By ,. Then for all
xef2,

v,(x) =2aT + VTx

Proor: Notice that at most x = £/\/ds. Hence

v,(x) =2aT+VT(1 —402dt)x=2aT +\/Tx+ Ldt-x
=2aT+VIx+ 3.

The lemma may be seen as a very simple case of the classical Girsanov
Theorem.

Notice that under the above conditions, a real function f defined on € is of class §°
and of S-exponential order if and only if its relative normalisation f, is of class $° and
of S-exponential order.

3. - THE PRICING OF CONTINUOUS CLAIMS

We define first a continuous approximation of the random variable S(T', -) of the
discrete geometric Brownian motion S(¢, x) and second, evaluate expectations of the
form E, (f(S(T, x))), where f is a continuous or an S-continuous function («claim»).
As a corollary we obtain the Black-Scholes formula for European options.

ProposiTioN 3.1: Let T> 0 be appreciable, and W be a binomial cone. Let S(¢, x)
be the discrete geometric Brownian motion on Wr with initial value Sy > 0, drift rate p
and volatility 0. Assume that Sy and o are appreciable, and that . is limited. Then for
all limited x

S(T, x) =So_e(/t—02/2)T+ax
: "

Furthermore S(T, -) is of S-exponential order at + .
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Proor: Let N be any unlimited integer, and let dz = T/N. (For convenience, we
will suppose that N is even.) We estimate S(T, x) by going first horizontally from
5(0, 0) to S(T, 0), and then vertically from S(T, 0) to S(T, x).

For all (¢, x) on Wy

Su+zwﬂﬂ=ﬂnxyh+yﬂ+aVZ)ﬁ+yﬂ—a ﬂ)

=58(¢, %) (1 + 2u —0*+ QD) dt)
Hence
S(T, 0) =8(0,0)-(1+ (2u — 0% + &) d) V24 = §, .l ~0*/2)T

Also

5(¢, x+2 \/Eg) =S(2, %)- I_M

1 + udt — o \/dt
=S¢, %) (1+ (20 + @) V).

So

S(T, x) =S(T, 0)(1 +Q2o+Q) _\/a—t)x/(Z\/E)

Hence for all limited x

=58(T, 0)-elo+9)*,

S(T, x) =So'e(”—02/2)T+ax

and for all (T, x) on Wr

S(T, x) = £-e@

which means that S(T, -) is of S-exponential order.

The final theorem gives an infinitesimal approximation of the price C, of a claim
F(8(T)) in a Black-Scholes market, using the Cox-Ross-Rubinstein model (see formu-
lae (1.8) and (1.11) with infinitesimal trading periods.

Treorem 2.6 (Option Pricing Formula): Let T > 0 be appreciable and Wy be an in-
finitesimal binomial cone. Let S(t, x) be the discrete geometric Brownian motion on
WT with appreciable initial value Sy > 0, limited drift rate u and appreciable volatility
0% Let r be a limited risk-free rate of interest. Let f: S(T) — R be a S-continuous claim
of S-rational growth at 0 and at + ©, and let Cy= (PV, (E,A(S(T) ))) be the shadow of
its price. Then

3.1) CO f S el 02/2)T+0\/T'x) e—xz/zdx

\/2_71:

Proor: Let dt be the infinitesimal time period associated to the cone Wr. Let p :=
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= p(#) be the conditional probability which changes the drift rate of S(¢, x) from x into
r. By (1.9)

1 r—u
=—+ Vit .
B 2 20

Notice that (7 — ) /20 is limited. Hence by Proposition 3.1 and Lemma 2.4, the rela-
tive normalisation of the random variable S(T, -) with respect to the binomial distri-
bution By, , satisfies, for limited x,

$,(T, x) =S, exp ((,u 0%/2) T+ o? (
o

) T+ U\/Tx)

=Sp-exp ((r—02/2) T+ 0VTx).

Cleatly ( foS), = foS, is of class S° and of S-exponential order in * c. Hence by Theo-
rem 2.1

abde) %7
(So.e(r o /2)T+a\/7’x)_e x /de.

1
EAST) = —= |
V2rm_J
Because Cy= PV, (E,f(S(T))), formula (3.1) follows from (2.3).

We notice that the pricing formula (3.1) corresponds to the classical formula in
case fis (the restriction to S(T') of) a standard continuous function of rational growth.
In particular, we thus obtain the Black-Scholes formula for the European op-
tion.

CoroLLArY 2.7 (Black-Scholes formula): Assume the conditions of Theorem 2.6
are satisfied. Let Cy be the shadow of the price of a European call option (S(T) — K)*
with striking price K and exercise date T. Put

log ($o/K) — (r—0?/2) T
oVT ,

Xo =

Then

(32) Co ZSO' (xo + U\/T) Ke™ = N xo) ]

Notice that (3.1) and (3.2) become identities if Sy, K, 7, 0 and T are standard. The
formula (3.2) is a straightforward standard transformation of formula (3.1), which we
omit.
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