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Representation Results in the Context of Wigner Analysis

Asstuacy, — In the context of the Wigner analysis insroduced by [B-S] we study some rep-
mbm sesuls for free-Brownian martingales which have analogues in the classical Wiener
anal

Risultati di rappresentazione ncll'smbita dellanalisi di Wigner
‘Sonsiann, — Nell'smbito dellanalisi &i Wignes introdotta in [B-S] s studiano alcuni risul-
i o apprescaazione di manisgale del moto browniano libero, analoghi a quell che valgono
pel comesto dellanaki & Wienes.

1. - IsmropucTion

The analytical theory known as anafysis an Wiener space is based on the fact that
the classical (Boson) Fock space associated with an infinite dimensional Hilbert space
can be interpreted a5 the space of square inegrable random varisbles with respect to
the Wiener measure. In a recent paper (see [B-5]) it has been shown that many results
from the analysis on Wiener space have analogucs when the Boson (e. symmetric)
Fock space it replaced by the free (Le. unsymmetrized) Fock space, and the free Brow-
nian motion plays the role of the classical Brownian motion, Stochastic caleulus with
respect 10 fre noise has bren developed in (K-S, [Spl and [F] and others, inspired
by the Hudson usd Parthasarathy quantury stochastic calculus [H-P]. In this paper
we follow a different approach for a stochastic integration theory with respect to the
free Brownian motion proposed in [B-S]. The particular feature of this caleulus is that
the stochastic integrals ure defined with respeet to the free Brownian motion, and not

(*) Indiizzo dellAutore: DIMAD, Universirh di Firenze, Via €. Lombroso 617, 50134
Firenne, Traly.
(%] Memoeia presencats il 14 ottobre 1999 da Giorgio Leats, uno dei XL.
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with respect to creation and annihilation processes. Because the semicircular distribu-
tien, ot Wigner distribution, plays the role of the gaussian distribution in the.classical
theary, we will refer to this approach as Wigner aualysir.

The key point for the developmeat of the Wigner analysis i the fact that the free
Fock space modelled on L1(R., ) ean be interpreted as giving chaos decomposition of
the L% space of a free Brownian motion. In this paper we study the chaotic decompo-
sition of the L-space of 4 free Brownian motion through free multiple integrals, We
define the iterated stochastic integral in the Wigner space and we examine the rela-
tionship with the multiple integral. By using the chaotic decamposition it 1s possible
0 defin a free rodico operstor nd is adioin, which plays the roe of a frce Skoro-

TB-S. In this context from
the free Bismut-Clark-Ocone formul (see also [B-5]) und we obain a second order
free representation formula, which we will call free Taylor formula (with 1 remainder),
in analogy with the classical case. This formuls suggests @ method to obiin o Taylor
seriés expansion; in the context of Wiener anlysis this Taylor series expansion allows
0 identify the symmetric kesnels in the chaotic decomposition of a Wienet functional
shroulh the e o raied Malliavin deivativs of the funcrional islf 50 This i
due 10 he facetha i the symmetic F of the.

when the deterministic kernels are taken symmetric, wapmemnm
identification i ot trie in the free Fock decomposition because the iterated
nv:s:wwmnrlmuanMMwmnbmmemmcfdx
in

2, - NOTATIONS AND FRELIMINAKIES.

The free Fock space associated with the Hilbert space L*(R. ) s denoted by
FILAR.)) and defined by

AR = B LR,

Remark thar @ L4(R. )%= @ L3R, L
b= Nl ah 15 =1l 0}

be the left annihilation and creation operators defined on the full Fock space as fol-
lows: for any be L*(R. ) and &, ... bye L} (R.}

b)) b, 8. @b, = (b, b) 5, ... Db,
P b . @b =ah. b,

For any be L}(R, ), {5} and £5)* are bounded operators and adjoint of cach ather
on the Fock space, Denote X, =, + i Let & be the von Neumann algebra of opera:
mmﬂL‘(R }) generated by {X,, e R, }. Then (X}, , is a free Brownian mo-
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tion with respeet to the fltration (), where €, s the von Neumann algcbea of opera-
tors generated by {X,: s € ¢} This means that X, cl, for all £ 2 0 and for all 5, ¢ with
521, X, — X, s free with €1, and has semicircular disuibution with mean zero and vari-
ance 1=,

Togheter with ¢ consider alsa the opposite algebra & (tame lincar structure and
reversed order of multiplication), with the trace % (7= ), On the spaces ¢l and
a®a is given the multiplication on the dght and on the left, denote by § the follow-
ing actions:

@b lu=cub, BENBY =mBu.

Define the non commutative [ spaces wssociated ‘10 the free Brownian motion
(X,hew,s L71@), 1 £p< @, as the completion of A with respect to the nomi

¥z = o[ Y772

We introduce now the notion of free stochastic integral as in [B-5] following the clas-
Mpmndumﬁmdeﬁm.zhhwdmpimkwm,xmmm
sometry property and extend the definition to a class of square integrable processes.
The peculiarity of the non commutative case: consists in. the fact that the intcgrator
does not commute with the process to be integrated, Thercfore we have the choice of
fuultiplying the intcgoand on the left or on the right, This observation leads 1o consid-
e:-mummulrypeo‘imeymd.dﬁthweimfoduuinlhehlbwincdﬁnﬁ-
don.

Divwnos 2.1: A simple biprocess i @ piecewise constant, map 1—+U, from
R. ftto the algebraic tensor product A@AT, such that Uj=0 for ¢ large In
otber wonds there exists finitely many picceioise consiant maps t~>Af, 2B,
=1 w with valver i @ such that A} = B=0 for 1 large and, for all 120

(1) U= g&f@a:.

The simple biprocesses constimne @ vectwr space which we shall endow with
the norms

| I-.-( Iﬂ”.lh‘r-,.mdx]m for L £ps o,
s

The completion of the spuce of smple biprocesses for these norms will be denoted
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by d,. In partcular ; s the Hilbert space sssociared 10 the inner product
Uy (U Vs,

where (U, V) is the inier product in L*{ct, rY @ L, r),

Derwmox 220 A simple biprocess U #r adapred if for any ¢20 we have
Uea,@a,

We remark that if a simple biprocess is adapted, then we can choose a decomposi-
tien as in {1) where A/ and B/ belang 10 &, for mny 120,

Dessimon 2.3: Let U be a sinmple adapted biprocess with a decomporitions us in (1),
Then the stochastic integral of U ss the aperator

@ [ursEoan,xo= 5 e, - X8
£

We will denote by B the space of adapted squarc intcgrable biprocesses. Then the
stuchastic integral is extended to the space 5 using the following isometry property
for the stochastic integral.

Prcroston 24 For all adapted simple biprocesses U and V. e bave-

'[,J us ix.[l I mx.J‘] —wn,

where "[ mix,)--..[ VrldX,.

3. - MULTIPLL STOCHASTIC INTEGEAL ANG CHAOTIC BECOMPOSITION

We begin this paragraph by recalling the chaotic decomposition in the context of
‘Wicner analysis. We emphasize the role of the structure of the symmetrie Fock space,
in order to generalize the construction to the free case using the structure of the free
Fock space. It results that as for the symmetric Fock space it is a property of the free
Fock space the realization of the chaoscs by multiple integrals. For more details sboa
the classical case see [N].

Denose by X the Wiener space and let ()., be the Wiener process on R, De.
note by H, the th Hermite poyoemial. It is known that the space L*(X) ean be de-
composed into the infinite orthogonsl sum of the subspaces ©,, where €, aze the




g

dmdhmmqudi’(x)mnidbr#ﬂmmﬁ(fﬂl)a]

where b LH(R, ) with L-norm equal 0 1. €, is caled the chans of arder v, Consider
4 fnction /1, ) which is the indicator function of 4 rectangle in R, ¢
A= Ly, 8] % oo- % [ty 2,). Suppase that the rectangle A doss ot intersect uny di-
Subspace (4= 4, 1%}, Then the n-multiple 1t integral i defined by

1) = (o, = ), =)
Clearly this definition extends 10 simple on the rext-

functions f(f, ) vanishing o
angles which intessect the diagonals. Nm.h.xl-l,r:-r-(huim,?udgw
mctrized funcrion

1
Tt )= H..S;\'.,'r(""

shun doimi)

Morcover the following property holds:
B = B GPY = ml Pl s % ntllf oo -

nuspmeolmpkﬁ.m.sm-hhmm) Thercore by the above in-
equality the operator 1* can be extended to a lineas and continuous opmr&um
EHR% ) o (%) Nove that the isometry holds when /i s symmetrc Functen vanish-
ing o the rectangles which intersect the dingonals. Denote by L3 (' ) the closed sub-
space of symmetric functions of L?(R.). The map

L7 ol
gttt v,;'“[m...ma.m....«..

defines a surjective isomorphism between 17 (R% ) and €, Therefore for iny squarc
lnwlbhuMumnnMthWhﬂu!pmdwdﬂm:wmmhmﬂ
oniguely detenined if the kel funcoons / are akea 3

The following resul ihat the in terms of it-

Tusoon 3 Given £ in L(RY | and given 0. <4, <45 < ... < 1, consider the se-
quence of functions defined on the Wicner space by the following recursion
fornouls:

FACTRM f) i

5
b= [ A
‘
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a
FACATTE -ff.lx.lx 1,
£

e
A= [ foeiln ) des
o
Then all the stochastic integrali ore well defined and
1
3) :“Jﬂfn-.-.l.)&‘,‘.nirhnﬁl.

This result leads 1o an equivalent formula as for the Lebesgu integral of symmetric
funcrion f

3 e fu

where 4, uLhzmnq{H;.- L) ERL g <n<.<h)

We describe now the chaptic decomposition theory for the Wigner space follow-
ing; the same procedure as for the Wiener space and the symmetric Fock space fsee
(BESIN for fe L (RS ), we will defne the eliple mochaste legral
@) At ) el
this will give an explicit descaiption of the fsomerry berween F(L7(R. ) and L*(a1),
which is referred us chaotic

Fies it s defined the malsple integral for indicstor functons of rectangles A =
= [y, 1] % ... X [y, ] which does pot intersect the diagonals. Then the multiple in-
wegral for £= I s defined as
) TN = (X = X)X = X
and it is extended by lincarity o simple functions vanishing on the rectangles which
intersect the diagonals, Note that the increments on the right hand side of (3) do not
R TR S N7 e ipbino i bt

Tt is casily seen that if /. ¢ are simpke functions in K7, then

{00, 2 s = O, Bhtma e
Since the simple functions as ahove are dense in L3[R ), we can extend the definition
of I'(£) 10 any fuL(RY).

La f= @ /e @LURY). Then
© (I'lf“’l 1T g =0 A




’ 1-(1'-'3“1 1 e = 1 Buincecn
Therefore with any f= e{r-ls.s(r_'m.n it i associated the series of mm
integrals

I(I)-j,.l':,"")-éluff"‘lr. ..... 1) dX, ...,
and the map
I FLAR) = L)
which associates f with (/) i an isomorphism. This isomorphism yields the chaotic
decomposition of the space L*(clk any clement in L*(d) can be represented in a
unique way #s 4 series of multiple integrals
ih= % [t b sy S = @S BULIR, D).
Resnsc 3:2: It s not possible to state the analogous of (3).in the context of

the Wigner space. Consider a function = I, whese A is 4 rectangle in R, which
does not intersect the diagonals, for instance Axl-..v.]x xll..v.l with
<0y <o S o, < . We can compute the iterated integral of the following
way

. p

Jor [T 0 B 1, o F s

i @

Since L(RY ) = L7 (R, %", we can consider the indicator function of A s the bipro-
et Doy 88 Uiy (1) Lo, 1 {£2)). Then the free scochasiic integral is well
defined and we have:
.
[T 8 @ Uy 22 © . @y 1)) X, =
.
= X = X T ()8 B i)
Irerating the procedure we obiain
A
I...J’l’,,,,,,‘u.!...J'..__,,,U.)IdX.,I-‘.Iﬂfg'*(x-.'x..l---(x».-xﬂ-
5,

Because the clementary functions varishing on the rectangles which intersect the diag-
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anals arc dense in L¥(R? ), the definition can be estended to ‘any function in L¥(R1 ).
m«mﬁmmm:mwmmhmwm»mn

functions. The relation between the iterated integral and
154 ke Innznl is the following:

o] ]’,ru.,......m:“....{xﬁ- z. j Sty st DX o FX,
e iy ﬂ!‘r < .<hy

mmn{ iple i s be extended ltiplen integrals {essential-
with l@l instead of just T): et
ch’lR. L'lR"lsL’(l{'))uﬂmﬂa
t—feLARLISLIRT ).

then we denote

@IS = [t o by iy o td e K, DK, X,

shat is (1" @170 ) e LR, ; L* (@) @LH(Q)) = ;. As above it s casy to sec that
the map I" @™ gives an isometry between L2 (R, ; FLIR. ) @FAL R and
#,, therefore any biprocess U, can be writien a5

] U= 20 @IMif).

Derwnon 3.3: Let fe L (R 5 FILA (R, ) @F(L7(R,))), the process
f= B el (R, HLR N @FLIUR)
is adapred if the following bolds:
F rncleid /RN SO SR Y P T 1 R S PRy b
‘The following result conneets the notion of multiple integral in the context of the
free Fock space and that of stochastic intcgral on the Wigner space.
Prorosmon 34: For @ process J‘-ngf”"aL’(R.LﬂL‘(R.]lw‘m.m
the foilowng statemenis are equivalent;
@ f is adapred
iy (I@ D) € 3.
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Moreoter, if one of the chove conditions is satisfied, then
_[u'el':t,f.)ldx.—

..,,If"

In analopous way we extend the notion of bi-multiple integral 1o n-muliple inte-
gnl for n 22, that & we consider e LI(RY; LARTI@ .. ®L(RT)) and we

R TUT R ) A7) 4) A

(r--o...sr-num..w.. -
= fhiialns

4. = GRADIENT OPEIATOR

e s s diare vo i thé Rl o+ Wiewer
inmm-lkfhcf‘:ﬂo-nnp{mmfmdmdsl Firs defne the derivative for » clss §
of smoatl then observe ths openntor D s closable on
emm« :h:domlmuwaL‘iP}u(h!dmnufﬂmd-xAvnl}nm

spect to an approptiate noém. Tt is possible to give & churscterization of the domain of
D of Wies: o v, The i of 2 bl cpese o
the #-th chaos in the classical Wiener analysis i the following:
Provostmion 4.1: Let £ be u function i LIRS ). Then iné bave:
D,Ufu“ t :a‘,...a,,)-»[ﬂ 1dx, . d, -

We Intsoduce now the notion of gradient operaror as in [B-5] and we generalize it
10 higher order derivatives. Tt is possible to follow the same procedure as in the classi

f

cal case. Moreaver, in virwe of the i ism b the free d the
space of square inegrable functionals on the Wigner space, we can specify the action
of the gradiens operator and its domain in terms of the chaotic decomposition. Let ¥

be a function in L{() and suppose that it has o representation. nfdxlmt(!l then
we let

(10 q(fﬁz.‘,...r,m:,,,,ix,_)-
=Rt
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The domuin of D can be chiractérized in terms of the chaotic decomposition. We de-
note by D3 the domain of D The following bolds fsee (B8]

Preskron 42¢ Ler Ve L2(a) base cboos decompostion Y= . 17(f*) wth
F*eL*RY). Then i

[ 1o, vEe= E s B,
o

and ¥ belongs to D if and ouly if the sum converges ta 4 finite value.

Due 1o the nos ¥ the setting it wrns our that the derivative of an ele-
ment of (@) is a biprocess
D: Li@) =i =L} (R, L@ @ L),
The derivative opecator has been defined in (B-S] for any clement in L7(2), We need
10 extend this definition, For any element A®B belonging to L*(8) @ L¥(e1) we ex-
tend it in a canonical way:
(1 DA®B) =DARB+AGDB.
Therefore by iteration we can define the second derivarive:
D L@ — LR ; L) @ LA @) L)
Dif) =D,
For istance, let ¥ have chaotic decomposition of the form (4). Then we write the sec-
ond order derivative by applying D, to (10) with ¢ fixed:

B[, s thers o 11y @ )=

1
{ 3 [f‘:ﬁ-‘-l,-\-5.lp|“.u-s<f.|h:<‘--‘J dXyn dXy @A, ey @K X, +

Fe [t

+ & [t PRETAF. 07 7. 3
Then for sny &> 1 we define the operator
DY LA@— LR, L (@)™ )

18 D% = D{D* ). Moreaver, we can characterize the domain of D", which we will de-
note by D}, by using the chaotic decomposition.




i
Paceosmmion 4.3; Let YeL(Q) bave chaos decomposition ¥ = X T2 woteh
[=eL(RY). Then
[0 VB ity -é‘m- 1) el e DI B
L

-and Y belongs 1o D} if and only if the sunt converges to & fimte value.
“The following result bolds.
Paocosmion 44: Let YaL(a) tben D, D, Y =D, D, Y. In atber wands the fune-
tion from B2 to L3(@)RL(Q) defined by (s,, 53) =D, D, Y is symmsetric.

Proor: Because ¥ belongs to L3(@), it hus the representation ¥ = F1*(/). It s
enough to consider ¥ = I°(/*). Then we have

D,D,Y=

= B (5 1ttt e D Y 6, 0K, B, 2K,

3 [ttt e B @K, 8o B 8K,

ik
Asalogaisly
LEAS

e
[.):.: [ttt oot
+ 5 i A, @i, X, O, %)

Then interchange & in & and obuin the previous sum. =

X, dX,, @dX dX, @dX, dX +

s Baety 52

5. - REPRESENTATION. FORMULAS

Classical results in the Wien the ion of the B
misringales s stochasic regral: IF some mﬂwwpﬁnusmm& the in-
dpm«_-wéﬂod:nuﬁ!d-dmmﬂlﬂndenvmdﬂ:&mnhnm
e, This sesul is the Bismut Clark.Ocone fofmuls. Moreover thi teprescataton
,mmmhm..alummmnmhmm1mk formula (81)
Mmhumnmdmdnhzmu]uphké integrals decompoition.
hé previous paragraph we have introduced the operator D defined on the space
L‘(ﬂ)vﬂdtn'uumah As in the Wiener analysis, we can consider the adjoint of the




=
free: gradient aperator, ie. the divergence operator & which acts on the hiprocesses
&: iy~ L ().

Thaiks to the isometry (8) the action of & can be specified on the bi-multiple integrals
in the following way:

8: - LA

e ) Ny L, AR,

1t can be shown {sec (B'S1) thar the divergence operator can be seen 25 in the classical
case s # (Skorohod) stochasic intcgral. The Following resuls holds [B-S1.

Protosmon: 3.1 Ler U be an adapted biprocess e 3. Then U belongs to the do-
main of & and

[ U =40

Prooe: From the lsomorphism there exists an adapted process /= B /" such
thar U, = (1@ /. Then we have q

Jusdx.= [uoi fdx,=

ol L
= Zar@InNf ) = AUSIf)) =)

Since [ U8X, L3(61) the above equality sl shows that U belongs o the domain
ofd m

We introduce the notion of martingale in this context. Following the classical no-
tation we denote by ol| @] the conditional expectation with respeet to the closed *-
subalgebes 1 of . Since it extends 1o @ contraction on all the L? spaces, then a mip
PN, from [0, + 21 to L2(@) will be called an L%muringale with respect to the fl-
teation (d,),4 if for every 5 &1 one has T[N, [el,] = N,.

We start with the representation formula for the martingales of the frec Brownian
‘motion,
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Tueomes 5.2: Let N'= (N))ya be ¢ bounded nartingoie in L7(e1) relative 1o the
Sfltration (€1}, and such that No=0. Then there exists Y& 853 such that for amy
=0

N fraas,
.

Peoce: For any T 0 and 1<, by the martingale property we have
M= V|l
Since Ny L(@) and riNy] = Ny = 0, Ny can be represented by the muliiple integral
decompasition
Ni'ﬂflﬂzll'(f").
where f= @ £ Fix n and define
SRSy s s taeien)  max (R b Sty e Seii } S

and equal 1o 0 otherwise. Clearly they are adapted processes. Then

(e

J'Cg:(,.@,.-..‘,,,........)m_,

Brer st prir-i-tand B = 8 a0,

=)

Using the froe isomerry property we have for uny m, "

r
1Bt = Bt s g =

-,[U“;‘ _Am mcﬂ - r[(z _,x-u--‘)]’].

Since the series S1%(/*) converges to Ny in L7(@1), we have obtained that (B.)u s o
il T
Gauchy sequence in 5. Lec ¥ be the limit. Then Ny [ Y71,
Finaly ket ¥'= | _vm,s;..zm..wmmm:.k.nm

suplNyffaia < =,

0



:
[, B = Wy < =

PV 7

As in the classical case, under additional smoothness hypothesis on the function
we can compute more explicily the integrand in the reprosctation formula.

We begin with an extension of the free Bisorut-Clark-Ovone formula stated in
[B-S] 1o differentiable biprocesses, Denote by L the class of biprocesses U such that
for any ¢ fixed UeD] DU is a two parameters process belonging to
L*(RL; L(@) @ L7 (a) @7 (@), Remark that £c dom ().

Prososrion 5.3: For any biprocess Z such that Ze L3, we bave that for any 1
(12) Z=1Z1+8,(:ID,Z|a,))

(ekere 8, is uced to indicate that the integration sets with respect to the s-vani
able).

Proor It is enough ta prove the formula in the case of a biprocess Z having the
form

ER N FUHAE R E A, £ T A

We have:

DZim B [Fbicsticn ity bt 3ad O, B,

3 [l e S X, B K, DK, X,

“Then the projection of the sbove multiple integrals oo the @ measursble processes
gives that the integrals are computed respectively over the sets
8= {2 max ey, e fiogo fhoge o EPRE S | 1§

Sym {52 maxlh, ooy fuo Bo vt s Go e oovi S}




i

Finally compute &,(#{D,Z, |¢1,]). From Proposition 3.4 we have

‘ A{p_ R A A YA O
7

+§ T 81,7 4 B, DX, K, )
£

= B ittt et 1 1) KB X, K, KX+
&

05 oot o g ) AR @K, K XK K,
i
%
where the sers 3, and §; are given respectively by
§om maxlly, oo Bioss Bir i sien dan s veg Smd)
(R I SRt S R | 8
Finally the above sum is equal to
JA ) X, ...dX, @dX, .. ¥,
that is 7. In order o conclude the proof, observe that for fixesd 1, 1121 is zero, be-
cause of (6], Therefore Bismut-Clark-Ocone formula for differentisble biprocesses is
proved. &

The above result suggests a method to obtsin & Taylar formula. If we assume that
the random variable ¥ admits sccond order derivative in the sense fntroduced before,
the above procedure can be itersted. :

Treomd 54 Let ¥ be in DY Then

Y=rl¥) + [r@rD Y1 1+ | [ (eLDIY]a 1) FK LA,

Pace: 1o s enough to prove the result in the case where
P = [ it By X
Let 4> 1. Thea

zz,mr-j}_f1 [ Tomts Bty <o o} Ry B Bl e e
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Remark that D, is a biprocess. Fix  and apply Bismot-Clark Ocone formula to
DY:

(3} D,Y - r®r(D, Y] = 8,r(DiY(a,1).

where 8, is used to indicate that the integration acts with respect 1o the s-varisble.
Now apply Bismur-Clark-Ocone focmula to ¥

(19 ¥~ dd¥) = b,(elD,Y|a])
and substitute (13) in (14)

¥ = oY1 = 4,Lr @D, Y] |a)) + 6 ([0, (LD Y] D @)
Observe: that

de@dD, ¥ |a,] = r@sDY].

spplying (4) 1o the adspied process 1D} Y]], ve have
DIV = B [ty e oot s ) ol B, K,
Then
08, (:[D2 Y] a1} @] =

-g | A RRSR T A, A o
%

whese S, = (¢2 max(n, oo £y, 8, By ony £) ). Finally

a6l moivianian -5 |

(= manti .
= [Ats o 1) X, X, =Y

In order to conclude it is enough to observe that if # 22, thea r{¥] =0 and
@D, ¥] = 0 because of the orthogonality property (6).  ®

Rexans 5.5; Under further smoothness hypothesis the procedure can be iterated.
In the commutative case it is possibile to express the cocfficicnts of the multiple inte-
eral decompasition of the random variable by its iterated derivatives, This leads fo the
following result due to Stroock (8] which is essentially based on the Taylor formula
and the following relations:

s Dy [0 ) i = )




[f“(r.. e ) di e =l j.r‘"uh oo )ty

The result of Stroock is the following: let F be a random variable with chaotic
decomposition
116} F-.% [/‘-'u,, oo £) ity o,
Suppose morcover that £ bas Malliavin desivatives of all orders beloaging to L7,
Then
nl ey ) =ED;  Fl.
In the case of Wigner space such identification is no¢ possible. mbdnlﬁm

tions.
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