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V. E. LYANTSE (W. LANCE) (*)

Shadow of a Measure

— Riess representation theorem implies conversion from & hyperfnits mcasure
27, m) to & space (T, A, u) with o-additive mexsure e in the framework of Nelson's.
Sex Theory [1:3).

Ormbra di una misura
St — el s el cosddera Intenno St Thoory i Nelne, < vlencoss el e

s di rappresentazione i Ricy- Markaw, s rasforma uno: qnﬂnnmmmpﬁrﬂnllﬂi?‘i’.-)
in uno spazio misarato standard (T, A, p), con g misura o-

An essential notion of Nonstandard Analysis (NSA) is those of the shadons. Let
(X, ) be a sndard metric space. A poim ¥a X is said to be weorstandand fwrite
xe"X) iff there exists a standard y € X such that dlx, 3) =00, If such y exsts, it is
unique, is said to be the shadow of x and denoted by *x. The importance of this notion
is clear, for instance, from the followi le. Let (3, be @ standard
in X. Then it is convecgent if for aay # = = @) x, "X and the shadow %z is inde-
pendent of = 5. Tn this case forall n = % ", = lioy %3, Note tha the map £~ i
nosijective: i dlx,, x;) =0, then x, €™ X implics 5 € X and "%, ="

A point xe X\™X is said to be remote. The following remateness theorem &
known (41 Let (x,)un be such o sequence in X thar ¥p.geN peg =
= dix,. x,15500). Then , Is remote for some = . For instance, Jet X = H be a
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standard Hilbwer spice and (6, )y 30 statndand onthononmalbests of H. Then foc eack
n=% ¢ i remote in spite of bl =1. (Notc that cach finitc real number is
nearstandard.)

It is worthwhile to extend the notion of nearstandardness as follows. Let X be a
standard nommed space and fe X * (adjoint spacc).

1. Peoscsmon: Suppose |4 @ (). Then 1 is woakly nearstendard. ie. there
mm ke (X)), for which

(1) VxeX | Hx) = kx).
Such k is unique.

Prook: Let fya (“C)"' () be the map defined by ¥ xe”X k{x) = *[i{x)]. Since

lilj<c =, we have Mxhl| = |4+ bel<< 2 for standard x, therefore *[/1x)] is defined (as
shadow of & finite complex number). Obviously, for standard @}, a; €€, x,, xyeX
we have
(2 Blayxtazn) = kin) tankte),  |kGa)| <],
Recall that cach map fy (*FI”™, where E, F arc arbitrary standard sets, has a unique
extension fa"(FE), which is said to be the standard extension of £, (113]). Define k us
the standard extension of k. Transfec prnciple (') and (2) imply that & is a linear con-
timuous functional on X, that i k & X *. For stundurd x we have £(x) = b (x) = 1x), ic.
(1} holds. Uniquencss of  is evident:  standard function which equals zero at stan-
dard poins is identically sero, W

2. Restaas: mﬁmmdkduuixdthmuudlnb:dnmdlmds
weak sense) and will if i the strong
sense, ie. [ = H-uﬂormkc'(x‘}.m e sl s o
is the same as & in (1), ="l

3, Roawoc EﬁdlchlmlnmnlwmdmlofX" with the same

can
uniquely defined by ¥ /€¥(X*) ilx) = {°x). For instance, if X'=H is a sundard
Flilbert space, x &, and <o, then the shadow x of x i uniquely defined by
conditions: "xe“H and ¥ ye“H (x]y) = ("x|3).

Now consider an interesting special case. In what follows (7', &) denotes a stan-
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1) Transber prineiple is- ¥*x plx) = = ¥ ) et propcy ) 0 bt i s
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dard compact metric space, A the algebra of borclian subsets £¢7. By definitin &
dﬂ#m?uualdﬁnwﬁmfmmd:ﬁ:nimﬂwﬂwlusmﬂ Each charge ¢
gencrates 4 linear function, ce CIT) of continuous functions xe T
fwith norm [l -m‘xﬂ'!“ I,;m -_[...r: Note that il = vary ¢ ).

4. Treopse: I vary o< =, then ¢ is weakly nearstandard, i.c. there exists u unique
standard charge * such that

@ Va0 [£dt) = [Ede.
i i

Puocr: Define VEe O(T) H§) 1= [m Then le (C01))* and ] = varye< =,

Ty proposition 11 his the shadew *(« (CUT))*. By Ricsz-Markov representation theo:
rem °F s of the form (N1 = jadt'r: for some o-additive charge ° on A. Transfe:

T
principle (in the form 3x plx) = 3“x plx)) and uniqueness of % imply that * iz
standard. &

5. Rioai: Obviously, theorem 4 can be generalized to the case of locally compict
{7, d). Theorem 4 prompts a method to transform # hyperfinite measure space to a
standard measure space. The reader is invited to compare this construction with use of
he Loch measure [3:8). Lex us cxplain that a byperfinite mearure space i o teiple
(T, 2", m) where Tis u set such that card T N\*N and it an additive function
with positive values on the lgebrs 27 of all internal) subsers E¢ T. 1F w, denotes the:
value {1} of m at one-poin set {t}, then YE& 2" mE:= T m,

& Tioeeac Let o hyperfinite set T be a subset of 7 where (T, J) s & standard
compact metric space. Any additive measure m defined on 27 such that wT'<<
generates on the algebra A of borelian subsess of T a scandard o-additive measure
which s uniquely determined by

“ VERICLT [ utde) =* ) .

Paoor: The measure s on 27 induces the méasute 7 on A by the formula: ¥ & € 4
ik = m(& N T). This i is trivially o-additive. Indeed, let & €41 be a disjunctive union
&= U ., & e Ooly firite quantity of £, NT s not campy. Thersfore for some

nh.NVn’.kn! =0, Since i3 T = mT<< o, by theorem 4 there exists a unique stan-

1% vag¢ denotes the vasiation of ¢ on the set &
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dﬂdnm»dﬁmdwl!mﬂnhull)bnﬁl Since for £2 0 the right side in (4) is
20, this charge is u measure,

7. Exmeme: Let 7:= [~1, +11cR and T be some hyperfinite subset of T, For
each & T denate by ¢ + dt the member of T which follows immediately after £ in the
scnse of <, Define VE@2 mE = B diwheredsi= (14 df) — £, Then (T, 27, m}isa
hyperfinite measure space. Suppose that the first £ equals —1, the last 7+ df equals
+1, and WreT di =0. Then the standard messure space (T, A, ) generated by
(T, 27, m) according to theorem 6 is ([=1, +11, A, &) where « Is the standard
Lebesgue measure. This is clear from (4).

8. Exaurie: Let T= [~1, +1] and ¢ be some positive infinitcsimal number, For
any borclian SCT put m3 = (26) G —e, +£]) where p is. the standard
Lebesgue meusure 00 7. The shadow of p (i the weak scme; see theorem 4]
is-the Diruc messure coneenteared at 0, Tndeed, ¥£&"Cl-1. +11

_I';a('.u)-'(ij'ﬂrm)-ewl: (3. W
] %)

5. Exawie: Let H be s standard (scparable or not) Hilbere space aad A e B(H)
a stndard selfadjoint opesatoe. Desote by Hy a subspace of H such thar “He H,
and dim Hya N, (The existence of such H follows, from the idealization principle
of IST [1,4,91) Let P be the orthoprojector H—»Hy. Denate by A mm«im
of PAP 10 Hq. Since A" is an operator in a finite-dimensionsl

orthoprojector in Hy. Now for any xe*H there arises a hyperfinite measare
space (T, 27, m).wimf-nld ) and

) YEeX mE=mE= 3T (Pix|x).

A
Suppose that [d|<< o, Then [lor} = mT = [F < =. According ro theorem
(T, 27, m) generates 1 standurd measuce space (T, A, i) with

measure =g} such that 7= [~ AL + 4]} and A is the
sexs BCT. Juse the sandard  is uniquely determined by

ve.-m)'[m =t x|




We claim that
) YxaH Vied pb=(P8x|3),
where {Pi8)}s.4 b5 the specral family of A (compase with [7]).
Proos: T is easy 1o see that for any standerd polynomial pid) and any e 8 we
have p(A’) x=plA}x; note that ¥xa"H Px=x. Thus for xe*H (pld) x|x) =
=gl ) x|x) = B NP xls) = [m. Since the first and the last members of this

i e tacand, they e cqual, By transer principl, the exqualiy (A x[9 =
-Im holds for all (optionally standard) p and x. This proves our asser-
Ilol:. -
want (0 give some somplementary information abour the measure u de-

ﬁu:dl:,:q) o

Let © be an embedding 27— A such that ¥r, se T ¢ s = Q¢ Or =0 where
Qri= (¢}, V2" OFi= U O, and QT = T {os mmors genenlly T coincides with
the standardization *(QT) of the set OT: sce [10] where (T, A, ©) is named the stan-
dard filling of the (hyper)finite set ). Then each o-additive measure v defined on A
induces some additive measure n on 27 which is given by

m VEe2" kE=vQE.
10, Tuwomse: Suppose that the measure v is standard and
1) VieT damQi=0, 2) .miew,
where m, = m{¢}, m, 1= vOr mmuhcwammdby-(ne ()} is abso-
lutely continuous.relative to the measure v.
For proof we nead the following
11, Leowwa: Pt for $eC(T), ra T,
1
® XElN) = E@I“‘"
Then ¥ i contimsous a5 a map Ly(T, vl —Ly(T, nl.
Puoor. By Bunyakowski-Cauchy inequality | N816) |7 < (1/m,) [ [£[%dv. There:
o
fore Wilhir. = T INEO P Z [ 180 b <l @
@
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Proor or mizoms 10: For § " CIT) the condition diam Qr = 0 implies X£(s) =
= 811 Since mT< @, we have 3, §(4) = 3 NE(1) . Onoe more by Bunyahowski:
Cauchy inequality and by lemma 11,
-,
E;rx;ulu.l :uTE;-; N8 P, =
=7 Wkl 0% 7 Bl

whece i T max (m, ) <. Since VER"CUT) T 8101 m, [ 5, we see
that X T

I[Eﬂ‘nl&l’u-r..-

for some standard y, > 0. By transfer this ineguality holds for all (optionally standard)
£aClT). nummmnbcmmg»jmmml,:r ¥)°, By Riesr
representarion theorem (for Hilbert spaces

Jsdu= [enav
i

for some 17 & Ly 7, »). Taking irto account that €7 is dense fn L(T, u) and L, (T, v}
we replace here § by characteristical function , of an wrbitrary S5 A, We ge

Yied ut= juzdu

xhere ut o e ot t be:the Redon Ny dectonive of 1 b st
w0y,
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