Rendiconti

Accademia Nazionale delle Scienze detts dei XL
Memorte di Matemarics ¢ Applicazionf

117° (1999), Vol. XXTII, fasc. 1, page. 8399

ANTONELLA FURIOLI MARTINOLLI (*}

Analytic Continuation of the Solutions
of Linear Partial Differential Equations (**)(***)

S, — We ghe fo 1 s o et ocu paril iffenil s, e thc-
sems of analyric continuation of the solud T
anbounded, multiply connected inu
ulnnh:mbﬂ.::mmmﬂnmlkm ‘of anslyeciy of the cocfficients and the known
terms. The thearems obtained extend a result by G Johnsson ([111) related to the scalar case;
the proofs ulize the =globalising methods due 1o L Himander and the chassicl method of
the majorsnt fancrons.

Prolungamento analitico delle soluzioni di equarioni differenziali lineari
& derivate parziali

Ronsstvion — $i danno, per una casse di equazion differenziali  derivate pasiali lineack
veroeiali, alcuni teoremi di prolungamentn. analitico delle solurioai, che possono essere poli-
dwnel\wlpt \modhmmmmuommmmdm&mmu

ki n cx ottiene il
hmm[mmﬂmdﬂm mnk-nécjnl\_m
(ll!]lrdlwdemmlw:k i wilizana un
L Himmandet ¢ il classico metodo delle funsioni magpiorani.
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Set, moreover:
o< fiyasem. Ro= 1 (sl <al. = pl<8).

S =ly: lr=F|<h) Ga=5i00). 5,460 ={ry<ip~F|<é}.
$=un asbitrary set in the y-plane, open and conneered of any finite connection

) =the set of the holomorphic funcions in an open simply. connected st
ACR %0y

©XB) =the set of the holomatphic (not necessarily univalued) functions in an open
mukiply conneered ser BC R, %

d(C, D)= distance of the set €, D in. the y-pline.

b} The present paper follows to previous studics ([31,.., (1)) on the anslyric con-
mumdlbewlununuf-ymlwﬂlfblﬂu linear equations in the analytic

Wulmdymll(hs:pmmremlnhmmm (4] and (5] which fur-
nished only the starting point

mnmmmmm»bmmanmmumsh_
equation:
[{81] LEx"AY st Blxopzt iz l=lxlazl)
assuming the matrix of coelficients Aly) bolomorpbic in 2. the matnix of coofficients
Bix, 3} aud the known ferm fx, y) bolomorphic in Ry % 2.
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wbpmmlt.hmlh:ﬂbnmpwpeﬂrkrz(: r)klhwdafnﬂnmw-f
which is bolomorphic {and mecessarsly an the simply connected st
«Mllr)G-Q-ExedmdmmdM lﬁtnnndﬂhnndun[&eaxeﬁi
cicars and the known terms are lixed) and cousider an arbitrary bownded open et
oeWe; mmwrm”mamq-:n @) such tbat the integral bnincs
2lx, y) com e anslytically continued on the whole of Rug: X @'

~ Subsequendly, in (7], we obtain (again for (1.1)) & further resuls: ssyneme she
airix Aly) bolomorpbic in an open set 338, Blx, y) and fix, y) bolomorphic in
B, % 02; we can then associste uch  niensber alf2") to every bounded open set 2' 552
{imstead of T € ) provided that the boundary 382" lwith exclusion, at most, of a finite
number of isolated poinis) i af dliss C".
A simple example (with a polar singularity on 30} shows that this result does not

bold, in genensl, if Aly) is boloworphic only i D (cir. [6] Osservazione 1

PR30

1t follows that the simgularitics of the matrix Aly) influence the set of analyticity of
the solution more strongly then the singularitics of Bix, ) and flx, ), preciscly we
cannot spproach the singularities of A(y} how muich we want, while we can indefinite-
Iy appraach the singularitics of Bl. ) and fix, y).

The authors of (7] attribute this result 1o the fact that the charscreristics depend
anly on the leading matrix A(y), but they did pot explain the cssential role of these

istici:
Successively, in [8] and [9] we generalized the first type of resulss (0'c 2) 1o the
maore equation;

“
U2 2+ T xdle o), tulep) g v k) =

I3
= Ex.r,s.u.yl Tt Ex‘bﬁk,}!z‘ r=Izla=1, .. M)

asmuoming the matrix of coefficients ¢, 1), ulx. ) vix, ), (s y) Ble,y)h  f=
=1,2, ...N} and the kwon teres flx, 3) in Ry X

A subsequeas improvement has been obained by G ]dmmin[ll]lmlhrdu
ence to (6], [7], [8]) for a scalar equation (M=1) of m-order of analogous

i sihor e o e sffceoe: oo 0 s demii: ok
tians ar mear as we wan! 1o the singular points of the leading cocffiients: be assume
mm,,famqwmuz: that the coefficients and. the kioion term are bolomar-
péirnﬂ.)f.ﬂmrdmmf loading cocfficients A Lx, 3) and (¥, ¥) are bounded

:m.'mmuummammtyhu every branch of a solution from the sim-
ply-conneeted set Ry Si(5) 1o the whole of Ragry % 9, W' ¢ Q instead of B 2)
provided that the boundary 8Q* satishes some bypotbeses of regularity (cfr. [11]




— 86—
“Th. 4.4, previously printed in Pre-prints of the Dep. of Math. of the Royal Institute of
teenalogy - Stockholm 1989).

.Oh-\'squf.bvﬂzuuwkﬁmh[b] the bypathesis of boundedness cannaot be

In [10] we extonded, u Grst, these resulcs 2o the following vectorial equation
(em (] ma1)

o T
aH T oe F A, ’]W

S = Lol &
+|}2.x‘1r "u,;}m +...+m2.'k.11"{x‘y| P +
+200x, a4 flx, )

Subsequently we examined for (1.3) the case where rhe coofficients. and the known
term are bolomarpbic in R, x @ with © opes, multiphy conkectid of iy finte contiecs
diom order, which coniains the exterior part of a circle {y:0<f< |y =y*| <+
+a=)

doeffcients; midvecter, dné mm;we.g.xom

infinitesimal when |v]—+ % of a sufficiently bigh onder. There exists, the,

¥R'CR, apen, bounded or ambounded sct, o mumber i) & (0, @l mch that
A, yllola‘. xa).

o In the present paper we extend, at first, the patements of [10) to the

equation:
2

(1) A - |§;.’ i, ’)rﬁ""‘—‘ +

Fal 8z
ax'oy i oy o+

A 2+ flx, ) (2= (z) m21).
Eqnm(uludﬁnmﬁmlulhrwmq‘ denisatives of order
< are completely arbiteary: the factor x* for the codfficients of the. derivatioes
a;miam (lths-}wémmr appear only for the leading eveffi-
The -new. prook is-daore; inple tut) the: previouss we.

the sglabalizing
ued:udlldumﬂmmdsmdpnﬂwul;mﬂldby]vbﬂmm[ll]l and the
classical method of the majorant functions in different ways.

+ 3 a0 St By
e jiy=e
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subaquenny we consider the equation

i A e

i Ll m‘ap' m

) &
43.41" ey y)—m - Mﬁ A u")ax'a,*‘lﬂ +
A Nz flayy) a=lz] I=1 M m 1)
((15) is different from (1.4) only for the leading cocfficients) with cofficients and
nonin teri Bolomorpbie in Ry % 2 dind e prove that coery branch of u solution: bolt
morphic in Ra xamnmw&mmmdn %0 (a5 in the
casc of the lincar ordinary
Ohserve that we previously obtained this last result in the case N= =1 in [5],
18], [711.
We cnunciate, in conclusion, the following theorems.
Trrsnin T: Ascume thet, in equations (14) the wafficients and the known term
satisfy the following conditions:

{L6) AP ) fh=1,2, ., fix ) e DR, X Q)

a7 Ax, ) are bounded in R, % Q.

Then, if 2(x. s) e OLR, x 5305)) (5 & 2 is fined and. corrispondingly, the univalucd
branches of the coefficients and the knewn terms are fixed. #1415, 30)) is an ani- |
vaued branch of a solution of (13), taken an arbitesry bowrded gpen set Q' CQ with I
30" of dlars €' {with the exclusion, at most, of a finite number of isolased poins)

there exitts & wumber (2"} € (0, ) such th <1, y) can be anaiytically comtinned on

the wobole of Ruwn X 9",

Tusowise I Assaane that, in equation (14), :l.ﬁl-m’(HIM
Morcover {et y* ¢ @ be such that @35y, .n(y*)

i e saa
LRy O A T

o
L) = A ly =yt -
A0 y) (;—;-rt)-:-“""’ P for k| =2

| T S M )y — g )
Afx ) = nlku)(y »*r



Then, of 2x, 7)€ O(R, x $55) (7 2 is fixed and univabued
branches of the cocfficicnts and the known terms are fixed, B % d, aﬂl)nulm-
valued branch of a solution of (1,4), faken an axbitrary open, bownded or wrhounded set
9.0 with 59" of clost C' (with the exclusion at most, of 1 finite number of isolated
poinns) there exitts 4 suitable namber aif2') @ (0, a] such that x(x, y) can be analyi-
cally continued e the tobole of g X 2.

Tacossu T Assume that, in the equation (15) tbe coefficients and the known
sernts watify cbe follousing, condicion:

U8 A, 3) =AE) e independen of x and A5(3) & BUQ)
19 Ay (b=t m— 1) fix, 3 € OR, 0 x 0).

e a1 R, 53 (70 s, gy e il
branches of the coefficiznts and of the known terms are fived, B  diF, 32)) s an uni-
S Tt 5 % slacom o (191 505 ) il e ATy s o b o
ofRuxQ
The following cxumple shows that some hypotheses of the enunciated thearems
canacn be completely eliminated
~
=i “has the solution (i, 3) = /(1 —xlog ¥)
dx 1) =x
in she poins (1108 ) ¥y 6, 01 the consideed cquadon i of type

(14) with m =1 and A{"(x, y) = xfy.

e have ot 3of |1/l y| =0 63201 then i fllows tht the bypodhes of

the Theotem 1 of boundness of 2{(x, y) cannot be eliminated.

We have that ol [1log y] = 0 (> 0F;that if fellows tha the hyposhesis of
the Theorem 1 of botindess of 27 and, moreover the hypothesis of the Theorem 1T that
#{'(x, y) must be infinitesimal of second order for y— % cannot be iminated.

Finally z(x, y) ¢ O(R. x5, 2(0)); Mnﬂoﬂlﬂmlhllb:h;pﬂl.bﬂldlhcfhe—
orem 111 that A1"(x, y) must be independent of x cannot be climinated.

We can apply to the equation considered only the Theorem I with @ =5, (0}
(7>0) and 2GS, (0) (1,8 0% i @) = nf {1/log3] we e thut
2%, y) € DRory X Q7).

The Cauchy problem

2. - Proows o Tueowews 1, 11, 11

a) Lt us recall, for the reader’s convenience, the following definirions and state-
ments which refer to the equation (1.4) for N=M=1.

Denmion 1 A vector Ni&, 1) € CF, N (0, 01 ds waid 10 be characteristic with
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respest 1o (14) at the point (g, 30) € O if NG T) suloes the charociemishic oqua-

@ v B dapie m gt =0,

Desiniticn 2 Let S be a sunface in © defined oy the oquation §lx, y) = 0, with
analytic ki

S &5 said to be charecteristic with respect to (14} at & point (xe 3o) if
Nlgala, 0, @, (%s y,n-ca 0) it 4 vector characteristic with respect to (1.4) at tbe
potirt Uz, 30); S is susd t0 be mom-characteristic with respect to (14} at the point (xq, ys)
of Nig (% %), (%, 3o} does mat solee (2.1); that fuplics N = (0, 0),

“This et definicion can be extended, formally in the same w0 the case of 4 sur-
face § defined by an equation yix, y) =0, with real y, of class €',

Dirmstmions 3 ('): The suface SCC* dafined by an equation wix, 1 =0 soith real
W, of class C*, is said to be characterissc lor Zermer characteristic) at a puint (%o, ya), if
the vector Ny, (xs. 3o, ¥, (5. 30)) = (0, 0) solber (2.1

Dereanos 4. Let Vo C Let H be a dosed balfspace in C* and b the carvespond
wmmmmnm.,qm
ol o of V at (o, 53) & 3V, N, (0, yo, s defiied ar the closure
J.'éem{N,. Ny is the comples: mormal of b = 3H such that (x,, yo) & and for a suit-
abie open neighbourbood 2y of (s Ya) VNVR2yCHN 2y},
Theorem of Zemer (') Assance that:
— the cuefficients and the fnown termeof (14) are blomarphic in the spen et
Rox g
- dx, ¥) &5 o solution bolomarphic in an opew vet VER, % 82:
- e, 1} €3V (R, x B
~ GV s of class C1 and nomcharscrerizic at {sa, o).
Then atx,3) can be analyticolly continned. to 4 suiteble neighborbood of
(S
When the boundary is non-smooth we can wilize the following theorem of
local-continuatian.
Theorem of Bany-Shapirat’) Assanse dhat
1) Cle. [12] pp, 349350

@ Chr. [12) Th. 947, p. 350,
) Chr. [5] Th 42,
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~ the coefficients and the known termi of (1L4) ave balamorphic in o neighbour-
bood of an open convex cone I'cC? with vertex (x0, yohi

= zlx, y} 5 & solutson of (1.4), bolomorpbic in I';
the complex normal cone of I at {ky, w) does not include characteristic

Then xix, y} cant be analytically continued to @ swirable neighbourbood of
{3 30}

the the in § 1 we can the solutions of (1.4)
md(lJ)dﬁn-lm&mﬂyWﬂhmmbndme
it is therefore sufficient to prove all the theorems for m = 2.

b) Proor or Treorest 1s ) We sssume firsdy o 32, N =M = 1 and we refer, for
the symbols, to (1.4) in this case we can easily prove the following lemma whidh is
fundamental for both the Theorems T and 11

Losow: Astume that:
~ tlx, ¥} be a branch of any integral which is bolomorphic (and wecessarily uni-
valued) in the simply comnected set Ry % 3G} cRa % Q,
- yeS50,
~ D<p=dly, i),

Then 2ix, y) is analyrically continuable i R.wx {A‘aG!us,m] with suitable
alf) e (0, ] independent of y and dependent orly of

To prove the Lemma we can obviously suppose that 3 =0 {the translation which
move (0, y) into (0, 0) does not change the type of equation); consequently we will
prove (by the following propositions 1) 2) 31 4) 5)) that <(x. y) & CXR, x Sy.) fwih ar-
bitrary 7 such that 5,.€ 53051 is anaiically continuable 10 Rogg % S with arbitary
such that Syc 2 and suiable alf) & (0, a] dependent oy of 1.

Lot K>mox (WA T [k= Lo} (x, ) eR X D) and et
NG, 1) % (0,0) be a characteristic vector with respect 1o (L4) @t the point
(s o) € Ry % 2 soe bowe thew: |1/ < mK|so] (9.

[ndeed tf (£, v) % (0, 0) is characteristic, we bave § m 0 (§ =0 impiies, &y 2.1),
that © =0); duiding (2.1) by 1517 and settimg n=1f|§|, we bave

7= iwoll"(ao M(\Et)”"‘.n'

%) Cir. (1] Lemma 4.1




For |n] = mK|xy| we bave

| et m{ - ) w4 | skl 1l

%- uq-weum of Rowchd) if 7, /=1, ..am) are sofasians |, | < K] |
2) The ser
Vo= {x, ) € x| <ae b, 0  [y] <5} be (0, )

?MW,mMmuanﬂmmlmmm
=0,

e ™H8 gre-mKb
Fig 1.
[The Fig. 1, Mmmhmmﬂv.mm.:)m‘)mh
&V} coasists, for || # 0, of two parts; the first one bas equat

Wl =ae =V~ 3| =0 (0<|y| 8.




= T

1F (s, 90} # (x5, 0) belongs to this part the normal N(&, 7) satifies:the - condi-
tion:

|%|_1 ¥, {%, Yol L_l e =08 ( — Ry [ 36 |)) e

Va0, 30 =xiflal

m«lamav,n non-characteristic a8 (x5, %).
The second part of 3V, consists of the points (%, %) with x| =& and
|3%5] € e,
1f (35, 3;) belongs to this part und |3 < e~ the normal vector (¢, 1) will be
of the type (0, 1) and therefore does not sutshy (2.1); i, on the contrary || =
=t ™™ und {8y, ) is e vector limir of (£, ) normal o the surface || = ae
at the points (x, 3) when (. y) = (s, ) then

?.; | = mKase™8 = K2, | 5

ﬂ-eulmmms{;'.rlddnmdmnewW,uln;\,lmmd’ﬂm
I |>|x,fe.|--rx|r.|-wm-eewu

e |<qw¢,| lbemnwlhywplmmﬂrnmlé' ) an
unu-m'fwh condition the nomal cone us we can see for the straight
mmdmmmmm:.mahummm“
{xa, 3ol

3) There exists 5> 0 such that =z, y) is bolomorphic in Vi
[Indeed z(x, y) & AR, X 5;-)].

4 Tammu@.m-m‘mﬂblhl-# 1] e = e =, e
cun apply the Zerner theorem or Mwma;mwmq‘m
g1 of bousidary it is poscible ro analyrcally contimuc

5) Let = { |yt 2%, y) & amalytically comtimueble w0 Vi, }; ot results Sup] = f.
Undeed if b sbsurdo, Sup] < then the boundacy Ve contains, st most, one
= Sup) 10 which i s not posible to.apply sy of the two theorems

i is not ).

We conclude therefore that . 7 £ Ry X ) where al) = e~ depends
anly on # (and obviously on ).

f2) By the connection of G we obtain that WS,(y) & @ there exists 4 suitable
alf) 10, al such that xix, y) is analyically contisuable w0 Ryiz % 53(3) and unival-




ey -
ued in an open simply connected set of the type

Ry % {Sp-aln = PUS Balyp U U5y gl =1}

Let now 2" 1" ¢ 2 open. bounded and simply connecred: by the compactness of 13"
nmm'ﬂ'w‘ﬁahﬂhmkrdmi.iy:-ndlhnwewbum-xmnu: |
() & (0, a] such that x(x, y) & R, X ') and necessarly univalued.
1§ 9" ¢ T Q is connected of a finite connection prder we can cover ° with a fi- |
nite number of simply connected sets 24 (k= 1, ...) such that @;c Dic ; than we
have a suitable al£2°) € (0, @) such that 20, y) € ORugr, % ") but non necessarily
univalued
Finally let £2°¢2 open bounded and. connceed with 86, 352) = 0: we can
prove the thesis of Theorem 1 utllising the hypotheses on 30
By these -ewnwn:wa.bwnds!enumm!wmw‘.h
@°c TR ¢ sch thar ©' — Q" can be covered by discs contained in 2° with
center § & 27, of equal suitable radius §; we have that 20, ¥) & analytically continu-
able 1o Rz % 0 (¢ Q).
Consider now u disc with center § € 27, we can prove thit there exists a suitable
alB) & (0, a] such that z(x, y) is analytically continuable to Rugp X (27U 5,G)) (by
proposition analogous fo 1) 2) 3) 4) 31 at the same time we can prove that a(8) does
not. depend on 7 and thea that z(x, ) €0 (Ruge) o yn ¥ 2°).

) The proof for equation (14) with 722, ey M = 1 is identical to the case
N=1 afer the proof of Lemma (it affient 10 st R,=
x| <a).

o prowe the Lemma we suppose (08 for N = 1) y = 0, 2(x, y) & ©1R, % 54 (wih
arbitrary B wdnhls, €530 ); we will cbtain that x(x, y) is analytically continuable
w&.‘,,x.i. arbitary  such that 5y€ 0 and suitable a(f) (0, @) dependent

of f.
By the hypotheses made if follows that the serics

Mt =, 5 et
T S O D L i-g E
1ok} SRS N o 2 _.m_li g

converges in R, x 53 and analogowsly for the other cocfficients and known term;
'uh.x‘y' converges in R, % 5y and satisfies the following




(1,4
%(X.D}-:gta:' b0, Loim—=1.

It s suffcient to construct 8 miajorant probleas with soluiion convergent In Ry, % 5y
o prave the thesis.
If we et

s J)-L'_w{,_mFJJH,J]: 'y
analogoudy 4162, 3), .. A%(x, ), 20T O ) e i comider e ol
lowing Cauchy problem, which s
vz
e =y, ”, 2 x‘m +

et
HAm —
. r)ME. oo

(xm-‘z\:.qr‘ =01, ...m~1),

ot AV, ) 2 Flx, )
5_,:

Obscrve now that setting % =x; = ... = xy = ¢ in (2.3) the function ZL1, £...1, y} =
-zta,,:Tam«m:ma.uvmbhmﬁummdmcmru
N=M=1

N+ [k]-1
__3_,(, "’ui( + || - ),.u a‘mﬁ_m A

AT, )'.?"(N*F"E 1)6?”:9;'.'2 oAV, ) 24 B, y)

g,u.n:-lg:n[wz_‘k,.\}# (B=0,1, .. —1)




S

where A, A0, A, F e defined sialarly to 2 and M+I:I-1)Eﬂ=
number of N-ples {k;, ky, ... Jey} such that & +ky + ... +ky= k]
i e

@3 ztx.y:-"f Zx'y", soludon of (23),

) Hogr= t..] #y7,  solusion of (24),

It ..-{m-f

there exists (by the previous proaf for N'=1) (@) & (0, a] such that (2.6 and conse-
quently (25) converges in Ry % 8 {infact Y < a(f) and 7 < (2:6) converges ab-
Mmduummqsams  hence the serics (2.3) converges absolute-
T e uniforsaly in Ry x 33 with ' da 5] <) then theseres 25) con-

verges In M!J,dma(ﬂ)hﬁmd@mdmy
Ba) Tmr=2, N1, M= 1 the proof is formally the same after the proof of the
Lemma.

To prove the Lemma we suppose {as for M=1} y=0, the wector
20, 3) & OR, % §.) twith arbitrary §* such that §,-¢ 5505 and we will prove that
o€, )s-dmd,mm:mh;xj‘mhmmﬁmﬂ-lj,cﬂuﬂ.
suitable alff) & (0, a] depending only of 5.

Consider now the matsices 4™ (x, y) = [Af™4 5 (x, )] (, =1, ...M) with
A Bie, y) = 2 A Eaty® and set

A= 3 § Yex |1H.‘"'-‘}- e AR, % 83

o (Rt

analogously we will define 4%, . A%, 31, Fix, p).
We can then sssociste to the Cauchy problem:

(u) with 2= 5]
—(x m-[!:c,, |x] =1, M, b=0,..m~1),




==

the following masjotunt Cauchy problem:

Lo .l
%f- -A'-'(=.y)|§lz' '
1
i ¥
A ) P R
et 1
ik Bomb s 1
ot [0 !,
1 1 v 1 1

%TX.D}SO'(xI l (b=0,1,. m=-1)

1
where g?(x) -E{,_i,“‘-‘.ii})c‘ (h=0, .cm~ 1),
It s easy to verify that the solution of this majorait Cauchy problem is a vector

having all the rows equal to the function Z(x, y) which is solution of the following
scalar Cauchy problem for an equation of type (14)

az 7 3 B
> -MIA (x.)lmzlr" peres i f

e
n +A" M, y ._ﬁ,.;'_?_w-ﬁ

i AT, g 2}‘ Flx, y) |

2
%(..m-pﬂw $=0,1, cm=1).
The hypotheses stated for the sealar cquation (L4) hold for (27) then the thesis
precedently proved, holds too.

‘Thercfore 2(x, 7) and the vectors ZLx. y) and xlx, 3) are holomarphic in Ry % S5
with () € (0, u] independent of 3.
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Proot of Thizoms Tl We suppose s 32, N3 1, M 1 and we sefer to cqua-

assuming (X, ¥) =X, ¥ ) (and analogously for the cocflicients and known
term) transform (1.4) in the vector equation:

gy T XA ) +

—z-
P ZE

gyt e g
o

a1z
1) g

— )t A
f"‘if P A u{,m_'WIT

+ANX, I ZX, ¥)+ AX, V).
If we set (2.8) in normal form, the coefficients, sign excluded, are equal 10 |
XEAP G, DY (Jh] =1, om), AR DY (=0, =1,
W 1L 1)

by the hypotheses the leading coefficients are holomorphic, and then bounded, in
R, % 5y while the other cocfficients and the known teem are, generally, holomorphic
in Ro% L8 = {0}].

Let now 2 € 2 b the open set considered; if G is bounded the thesis follovs by
the Th, T applicd to (14).

une suulmmded-zgl.ﬂ'-n‘uﬂ,whgmﬂ.c{ﬂnj, >} has boundary
of class €', with exclusion, at most, of a finite number of

The Th. I, spplied to (14}, g‘os&emoenhnmnb«cﬁﬂ)e{o a) such
that dx.y?i&'ﬁ«ni,xﬂii.

of variables

The chasge considered transforms 5 42 (0) t S, by Tho 1
applied to (2.8) Z(X, Y} is analytically continuable to Rauyg X 1515 ~ {0}] and then,
assuming a(@") = min (a(27), al1/8)) s(x,3) will be analytically continuable to
Rua % 2"

b) Paoos o Tascm TT; We previously proved the thesis for s = N= 1, M1
(Cte. 5] pg. 137, Teorema 1, [6) pg. 30, Teorema 3, [7] pg. 11, Teorema 1)
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For the general casc it is sufficient to prove the thesis for m32, N=M=1, be.
cause we can reconduct all the other cases 1o this one by the method of the majorant
functions as we did for Theorem L. We refer 10 (1.4) and to an arbitrary bounded open
set Q'c T e we can prove the following lemma,

Loww: Awume that

—ﬂ(x,j)uae-ndaf-uymhy-l 11 bolomorphic (and necessarily smival-
wed) in the stply-connected set R % Si5,¢ Ru % 07

- yeS@:

- 0=<pg<dly, 22’}

then 2ix, y) s analytically comtinnable to R % Syiy).

Tndeed the propositions 1) 2) 3) 4) 3) of b,) hald Va< R and a(f) = e~
WHIKbmn[VMHy (k=1,...m)} is independent of a; then Sup a(f) = + =
0<a<+=),

With a finite number of continuations, we obtain that z(x, y) is

holomorphic (not
necessarily univalued) en the whale of R % Q" and finally, for the arbitrariness of Q'
on the whole of R. X 2.
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