

### Rendiconti Accademia Nazionale delle Scienze detta dei XL Memorie di Matematica e Applicazioni 116° (1998), Vol. XXII, fasc. 1, pagg. 51-70

#### **EDOARDO VESENTINI (\*)**

# On the Banach-Stone Theorem, II (\*\*)

To the memory of A.W.

SUMMARY. — Given the Banach spaces C(M) and C(N) of all complex-valued continuous functions on two compact Hausdorff spaces M and N, the classical Banach-Stone theorem characterizing the linear isometries of C(M) onto C(N) has been recently extended to linear isometries of C(M) into C(N). The present paper is devoted to a further extension of the Banach-Stone theorem to the case in which M and N are locally compact, paracompact spaces, C(M) and C(N) being endowed with the compact-open topology. Locally equicontinuous semigroups of linear isometries of C(M) into C(N) are also investigated.

### Sul teorema di Banach-Stone, II

RIASSUNTO. — Dati due spazi compatti di Hausdorff M e N, e gli spazi di Banach C(M) e C(N) delle funzioni continue, a valori complessi, su M e su N, una Nota recente estende ad isometrie lineari di C(M) in C(N) un classico teorema di Banach-Stone caratterizzante le isometrie surgettive. Questo lavoro extende ulteriormente il teorema di Banach-Stone al caso in cui M e N siano spazi localmente compatti e paracompatti, investigando inoltre semigruppi localmente equicontinui di isometrie lineari di C(M) in C(N).

According to the Banach-Stone theorem, two compact Hausdorff spaces M and N are homeomorphic if there is an isometry A of the space C(M) of all continuous functions on M onto the space C(N), both spaces being endowed with the metric topology of uniform convergence. If such an isometry  $A \in \mathcal{L}(C(M), C(N))$  exists, there are a homeomorphism  $\psi \colon N \to M$  and a function  $\alpha \in C(N)$ , with  $|\alpha(y)| = 1$  at all  $y \in N$ , such that

$$(Af)(y) = \alpha(y) \cdot f(\psi(y)) , \quad \forall f \in C(M)$$

and for all  $y \in N$ .

(\*) Indirizzo dell'Autore: Politecnico di Torino, Dipartimento di Matematica, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.

(\*\*) Memoria presentata il 9 ottobre 1998 da Edoardo Vesentini, uno dei XL.

The question how to describe non-surjective linear isometries  $A: C(M) \to C(N)$  was investigated by W. Holsztyński, [4], who proved that, if  $A \in \mathcal{L}(C(M), C(N))$  is such an isometry, there exist a closed set  $N_0 \subset N$ , a surjective, continuous map  $\psi: N_0 \to N$ , a function  $\alpha \in C(N)$ , with  $\|\alpha\| = 1$  and  $|\alpha(y)| = 1$  at all  $y \in N_0$ , such that (1) holds for all  $y \in N_0$ .

Under which conditions is  $N_0 = N$ ?

Let B(M), B(N) be the open unit balls of C(M), C(N), and let  $\Gamma(\overline{B(M)})$ ,  $\Gamma(\overline{B(N)})$  be the sets of all extreme points of their closures  $\overline{B(M)}$ ,  $\overline{B(N)}$ . Let  $A \in \mathcal{L}(C(M), C(N))$ . According to [14], if, and only if,

## $A\Gamma(\overline{B(M)}) \subset \Gamma(\overline{B(N)})$ ,

there exist a continuous map  $\psi: N \to M$  and a function  $\alpha \in C(N)$ , with  $|\alpha(y)| = 1$  at all  $y \in N$ , such that (1) holds for all  $y \in N$ . This equation implies that A is injective if, and only if,  $\psi$  is surjective, if, and only if, A is an isometry.

A key point in the proof is the fact that  $\Gamma(\overline{B(M)})$  and  $\Gamma(\overline{B(N)})$  coincide with the sets  $\Theta(M)$  and  $\Theta(N)$  of all complex-valued continuous functions whose values have modulus one at all points of M and N respectively.

Thus, the linear isometries  $A: C(M) \rightarrow C(N)$  are characterized by the fact that they are injective and satisfy the condition

(2) 
$$A\Theta(M) \subset \Theta(N)$$
.

This shows, incidentally, that any linear map  $A \in \mathcal{L}(C(M), C(N))$  satisfying (2) is an isometry for all equivalent norms on C(M) and C(N) for which

$$\Gamma(\overline{B(M)}) \supset \Theta(M), \qquad \Gamma(\overline{B(N)}) \subset \Theta(N).$$

But, more in general, the fact that  $\Theta(M)$  and  $\Theta(N)$  depend only on the topology of M and N offers the possibility of extending these results to a wider context than the one in which M and N are assumed to be compact.

In this article, the characterization (1) of all continuous, linear, injective maps  $A: C(M) \rightarrow C(N)$  satisfying (2) will be carried out to the case in which M and N are locally compact Hausdorff spaces, and C(M) and C(N) are endowed with the locally convex topology of uniform convergence on compact sets.

Assuming furthermore that the locally compact Hausdorff spaces M and N are exhausted by increasing sequences of compacts sets - and, by consequence, C(M) and C(N) are Fréchet spaces - we will investigate a holomorphic function F mapping injectively an open, convex, balanced neighbourhood V of 0 in C(M) into an open, convex neighbourhood W of 0 in C(N). It will be shown that, if  $\Theta(M)$  is contained in the set  $\Gamma(\overline{V})$  of all complex extreme points of the closure  $\overline{V}$  of V, if F(0) = 0 and if a suitable extension of F maps  $\Theta(M)$  into  $\Gamma(\overline{W})$ , then F is the restriction to V of a continuous linear map  $C(M) \to C(N)$ .

Assuming M = N and connected, we will consider a continuous semigroup

 $T: R_+ \to \mathcal{L}(C(M))$  all whose elements are injective and map  $\Theta(M)$  into  $\Theta(N)$ . The semigroup T turns out to be locally equicontinuous and to define a continuous cocycle  $\alpha: R_+ \to \Theta(M)$  and a continuous semiflow  $\phi: R_+ \times M \to M$ . It will be shown that the main results established in [15] in the case in which M is compact (and therefore T is strongly continuous) still hold in the more general context in which M is locally compact and paracompact. It will be shown also that, if T is not trivial, it cannot be the restriction to  $R_+$  of a holomorphic map of a neighbourhood of  $R_+$  into  $\mathcal{L}(C(M))$ .

1. Let M be a locally compact, Hausdorff space, and let C(M) be the complex vector space of all complex-valued continuous functions on M, endowed with the locally convex topology of uniform convergence on all compact sets of M.

If K is a compact set in M, the function  $p_K: M \to \mathbb{R}_+$  defined on  $f \in C(M)$  by

$$p_K(f) = \sup \{ |f(x)| : x \in K \},\,$$

is a continuous seminorm on C(M). When K varies among all compact subsets of M, the family  $\{p_K\}$  defines the topology of C(M).

Let

$$B_K = \{ f \in C(M) : p_K(f) < 1 \}$$

be the open unit ball of  $p_K$ , and let  $\Gamma_K(M)$  be the set of all (complex = real) extreme points of the closure  $\overline{B_K(M)}$  of  $B_K(M)$ .

According to [14], if  $u \in \Gamma_K(M)$ , then |u(x)| = 1 at all  $x \in K$ . If  $K \neq M$ ,  $M \setminus K$  is open and non-empty. For any  $v \in C(M) \setminus \{0\}$  with Supp  $v \in M \setminus K$ ,

$$p_K(u + \xi v) = 1$$
,  $\forall \xi \in C$ .

Hence,  $\Gamma_K(M) = \emptyset$ , and, as a consequence, the following lemma holds.

Lemma 1: If M is not compact, for any non-empty compact set  $K \subset M$   $\Gamma_K(M)$  is empty.

Let

$$\Theta(M) = \left\{ f \in C(M) \colon \left| f(x) \right| = 1 \,, \; \; \forall x \in M \right\} \,.$$

For every continuous linear form  $\lambda$  on C(M) there is regular complex Borel measure  $\mu$  with compact support in M, such that

$$\langle f, \lambda \rangle = \int f(x) \ d\mu(x) := (f, \mu)$$

for all  $f \in C(M)$ , [5].

Let  $\Delta = \{ \xi \in C : |\xi| < 1 \}$ . Proceeding as in [14], one proves

Lemma 2: If the compactly supported, regular, complex Borel measure  $\mu$  on M is such that  $|(u, \mu)| = 1$  for all  $u \in \Theta(M)$ , there are a point  $x \in M$  and a constant  $a \in \partial \Delta$  such that

$$\mu = a\delta_x,$$

where  $\delta_x$  is the measure with mass 1 concentrated at the point x; i.e.,

$$(f, \mu) = af(x), \quad \forall f \in C(M).$$

Let N be a locally compact Hausdorff space and let  $A \in \mathcal{L}(C(M), C(N))$ . Let C(M)' and C(N)' be the strong duals of C(M) and C(N) and let  $A' \in \mathcal{L}(C(N)', C(M)')$  be the adjoint of A.

LEMMA 3: If, and only if,

$$(4) A\Theta(M) \subset \Theta(N),$$

for every  $y \in N$  there exist  $x \in M$  and  $a \in \partial \Delta$  such that

$$A' \delta_{y} = a \delta_{x}.$$

PROOF: For every  $y \in N$ , the map  $f \mapsto (Af)(y) = (Af, \delta_y)$  of C(M) into C is a continuous linear form on C(M). Hence [5], there is a compactly supported, regular, complex Borel measure  $\mu$  on M such that

$$(f, A'\delta_{\gamma}) = (f, \mu)$$

for all  $f \in C(M)$ . If (4) holds, then

$$|(u, \mu)| = |(Au)(y)| = 1$$
,  $\forall u \in \Theta(M)$ .

By Lemma 2,  $\mu$  is expressed by (3) for some  $x \in M$  and  $a \in \partial \Delta$ . Hence (5) holds.

Viceversa, if this latter equation is satisfied, for any  $u \in \Theta(M)$ 

$$|(Au)(y)| = |(u, A'\delta_y)| = |a(u, \delta_x)| = |u(x)| = 1.$$

As a consequence, the following theorem holds, extending Theorem 1 of [14].

Theorem 1: If, and only if, (4) holds, there exist a function  $\alpha \in \Theta(N)$  and a continuous map  $\psi: N \rightarrow M$  such that

(6) 
$$Af = \alpha \cdot (f \circ \psi), \quad \forall f \in C(M).$$

If (4) holds,  $\alpha$  and  $\psi$  are unique.

If  $H \subset N$  is compact, then

$$p_{H}(Af) = \sup \{ |(Af)(y)| : y \in H \} = \sup \{ |f(\psi(y))| : y \in N \}$$
$$= \sup \{ |f(x)| : x \in \psi(H) \} = p_{\psi(H)}(f)$$

for all  $f \in C(M)$ .

If Af = 0 for some  $f \in C(M)$ , then  $f(\psi(N)) = \{0\}$ . Thus, if  $\psi(N)$  is dense in M, A is injective.

Viceversa, if  $\overline{\psi(N)} \neq M$ , there is some  $f \in C(M) \setminus \{0\}$ , with Supp  $f \in M \setminus \overline{\psi(N)}$ . Therefore

$$(Af)(y) = f(\psi(y)) = 0$$
,  $\forall y \in N$ ,

proving thereby

Lemma 4: If (4) holds, A is injective if, and only if,  $\psi(N)$  is dense in M.

If  $A \in \mathcal{L}(C(M), C(N))$  is bijective, and if

(7) 
$$A\Theta(M) = \Theta(N),$$

there exist  $\varpi \in \Theta(M)$  and a continuous map  $\varphi: M \to N$ , with  $\overline{\varphi(M)} = N$ , such that

$$A^{-1}g = \boldsymbol{\varpi} \cdot (g \circ \varphi), \quad \forall g \in C(N).$$

For all  $f \in C(M)$ ,

$$f = A^{-1} \circ Af = \varpi \cdot (\alpha \circ \varphi) \cdot (f \circ \psi \circ \varphi).$$

Choosing f = 1, then

$$\varpi = \frac{1}{\alpha \circ \varphi},$$

and therefore

$$f = f \circ \psi \circ \varphi$$

for all  $f \in C(M)$ . That is equivalent to  $\psi \circ \varphi =$  identity on M, showing that  $\psi$  is surjective and  $\varphi$  is injective. A similar argument applied to  $A \circ A^{-1}$  shows that  $\varphi$  is also surjective, and in conclusion, that  $\psi$  and  $\varphi$  are homeomorphisms and  $\varphi = \psi^{-1}$ . Hence the following theorem holds.

THEOREM 2: If  $A \in \mathcal{L}(C(M), C(N))$  is bijective, and if (7) is satisfied, then (6) holds and  $\psi$  is a homeomorphism of N onto M.

2. Let the locally compact, Hausdorff space M be such that there exists a sequence  $\{K_n: n=0, 1, \ldots\}$  of compact sets  $K_n \subset M$  for which  $K_n \subset K_{n+1}$  and every compact subset K of M is contained in some  $K_n$ .

The function  $d_M: C(M) \times C(M) \rightarrow \mathbb{R}_+$  defined on  $f, g \in C(M)$  by

$$d_M(f, g) = \sum_{n=0}^{+\infty} \frac{1}{2^n} \frac{p_{K_n}(f-g)}{1 + p_{K_n}(f-g)} = d_M(0, f-g),$$

is a complete distance inducing on C(M) the topology of uniform convergence on compact sets of M, with respect to which C(M) is a Fréchet space. Since

$$\frac{p_{K_n}(f-g)}{1+p_{K_n}(f-g)} < 1 ,$$

then

$$d_M(f, g) < 2$$
,  $\forall f, g \in C(M)$ .

If  $u \in \Theta(M)$ ,

$$d_M(0, u) = \sum_{n=0}^{+\infty} \frac{1}{2^n} \frac{p_{K_n}(u)}{1 + p_{K_n}(u)} = \sum_{n=0}^{+\infty} \frac{1}{2^n} \cdot \frac{1}{2} = 1$$

If  $g \in C(M) \setminus \{0\}$ , there is some  $x_0 \in M$  at which  $g(x_0) \neq 0$ . Let  $n_0 \geq 0$  be defined by the conditions:  $x_0 \in K_{n_0}$  and  $g_{|K_n} = 0$  whenever  $n < n_0$ . Let  $\zeta \in \Delta \setminus \{0\}$  be such that  $|u(x_0) + \zeta g(x_0)| > 1$ . Then

$$p_{K_n}(u+\zeta g) \geq p_{K_{n_0}}(u+\zeta g) > 1$$

for all  $n \ge n_0$ , and

$$p_{K_n}(u + \zeta g) = p_{K_n}(u) = 1$$

whenever  $n < n_0$ .

Hence

$$d_{M}(0, u + \zeta g) = \sum_{n=0}^{n_{0}-1} \frac{1}{2^{n}} \frac{p_{K_{n}}(u)}{1 + p_{K_{n}}(u)} + \sum_{n=n_{0}}^{+\infty} \frac{1}{2^{n}} \frac{p_{K_{n}}(u + \zeta g)}{1 + p_{K_{n}}(u + \zeta g)} >$$

$$> \sum_{n=0}^{n_0-1} \frac{1}{2^n} \frac{p_{K_n}(u)}{1 + p_{K_n}(u)} + \sum_{n=n_0}^{+\infty} \frac{1}{2^n} \frac{p_{K_n}(u)}{1 + p_{K_n}(u)} = \sum_{n=0}^{+\infty} \frac{1}{2^n} \frac{p_{K_n}(u)}{1 + p_{K_n}(u)} = d_M(0, u) = 1.$$

That shows that all  $u \in \Theta(M)$  are (complex = real) extreme points of the closure  $\overline{B(M)}$  of the open unit ball

$$B(M) = \{ f \in C(M) : d_M(0, f) < 1 \}.$$

If  $|f(x)| \ge 1$  at all  $x \in M$  and  $|f(x_0)| > 1$  for some point  $x_0 \in K_{n_0} \subset M$ , then

$$\frac{p_{K_n}(f)}{1 + p_{K_n}(f)} \ge \frac{p_{K_{n_0}}(f)}{1 + p_{K_{n_0}}(f)} > \frac{1}{2}$$

for all  $n \ge n_0$ , and therefore  $d_M(0, f) > 1$ . Hence, if a function  $f \in C(M)$  is such that  $f \in \overline{B(M)}$  but  $f \notin \Theta(M)$ , there exists some point  $x_0 \in M$  at which  $|f(x_0)| < 1$ . Let U be an open neighbourhood of  $x_0$  in M and let  $\varepsilon \in (0, 1)$  be such that  $|f(x)| < 1 - \varepsilon$  at all  $x \in U$ . If  $g \in C(M) \setminus \{0\}$  has compact support contained in U, and is such that  $|g(x)| < \varepsilon$  for all  $x \in M$ , then

$$|f(x)| + |g(x)| \le 1$$
,  $\forall x \in M$ .

Hence  $p_{K_n}(f + \zeta g) \le 1$  for all  $\zeta \in \Delta$  and n = 0, 1, ..., and therefore

$$d_M(f+\zeta g) \leq 1$$
,  $\forall \zeta \in \Delta$ .

In conclusion, the following lemma holds.

LEMMA 5:  $\Theta(M)$  is the set of all complex extreme points of  $\overline{B(M)}$ .

LEMMA 6: For any continuous seminorm q on C(M) there are a compact set  $K \subset M$  and a positive constant c such that

$$q(f) \leq cp_K(f)$$
,  $\forall f \in C(M)$ .

Proof: The lemma will be established by showing that K and c exist such that

$$p_K(f) \leq 1 \implies q(f) \leq c.$$

Suppose that, for every n = 1, 2, ... there exists a function  $f_n \in C(M)$  for which

$$p_{K_n}(f_n) \le 1$$
 and  $q(f_n) \ge n$ .

For m > 0,

$$p_{K_n}(f_{n+m}) \le p_{K_{n+m}}(f_{n+m}) \le 1$$

and

$$q(f_{n+m}) \ge n+m > n.$$

Hence  $f_n$  can be replaced by  $f_{n+m}$ , so that

$$f_{n+m} - f_n = 0 \quad \text{on } K_n.$$

Then,

$$\begin{split} d_M(f_n,f_{n+m}) &= \sum_{\nu=0}^n \frac{1}{2^{\nu}} \, \frac{p_{K_{\nu}}(f_{n+m}-f_n)}{1+p_{K_{\nu}}(f_{n+m}-f_n)} + \sum_{\nu=n+1}^{+\infty} \frac{1}{2^{\nu}} \, \frac{p_{K_{\nu}}(f_{n+m}-f_n)}{1+p_{K_{\nu}}(f_{n+m}-f_n)} = \\ &= \frac{1}{2^{n+1}} \, \sum_{\nu=n+1}^{+\infty} \frac{1}{2^{\nu-n-1}} \, \frac{p_{K_{\nu}}(f_{n+m}-f_n)}{1+p_{K_{\nu}}(f_{n+m}-f_n)} \leqslant \frac{1}{2^{n+1}} 2 = \frac{1}{2^n} \, , \end{split}$$

showing that  $\{f_n\}$  is a Cauchy sequence. Letting  $f = \lim_{n \to +\infty} f_n$ , then

$$\lim_{n \to +\infty} q(f_n) = q(f),$$

contraddicting the fact that  $q(f_n) \ge n$ .

Assume now that the locally compact, Hausdorff space N satisfies the same hypotheses stated for M at the beginning of this section. Let  $\{L_n: n=0, 1, \ldots\}$  be a sequence of compact sets  $L_n \subset N$  such that  $L_n \subset L_{n+1}$  and that every compact subset of N is contained in some  $L_n$ . Let  $d_N$  be the distance on C(N) defined on b,  $k \in C(N)$  by

$$d_N(b,k) = \sum_{n=0}^{+\infty} \frac{1}{2^n} \, \frac{p_{L_n}(b-k)}{1 + p_{L_n}(b-k)} = d_N(0, b-k) \, .$$

By Lemma 5,  $\Theta(N)$  is the set of all complex extreme points of the closure  $\overline{B(N)}$  of the open unit ball B(N) of C(N) for the distance  $d_N$ . Hence if  $A \in \mathcal{L}(C(M), C(N))$  maps the set of all complex extreme points of  $\overline{B(N)}$ , the results of n.1 hold for A.

3. Under the same hypotheses on M and N introduced in n. 2, let  $V \subset M$  and  $W \subset N$  be an open, convex, balanced neighbourhood of 0 in C(M) and an open convex neighbourhood of 0 in C(N). Denoting by  $\Gamma(\overline{V})$  and  $\Gamma(\overline{W})$  the sets of all complex extreme points of  $\overline{V}$  and of  $\overline{W}$ , the following proposition will now be established.

PROPOSITION 1: Let  $F: V \to C(N)$  be a holomorphic (i.e. Gateaux analytic and continuous (1)) map such that:  $F(V) \subset \overline{W}$  and F(0) = 0.

If  $\Theta(M) \subset \overline{V}$  and, for any  $u \in \Theta(M)$  there is some  $\varrho \in \Delta \setminus \{0\}$  such that

$$\frac{1}{\varrho}F(\varrho u)\in\Gamma(\overline{W})\,,$$

then F is the restriction to V of a continuous linear map  $C(M) \rightarrow C(N)$ .

(1) For all notions concerning holomorphic functions on Fréchet spaces, see, e.g., [10] or [9].

PROOF: There is sequence  $\{a_n: n=1, 2, ...\}$  in C(N), depending on u, for which

$$\frac{1}{\xi}F(\xi u) = a_1 + \xi a_2 + \xi^2 a_3 + \dots$$

for all  $\zeta \in \Delta \setminus \{0\}$ .

By the strong maximum principle for holomorphic functions with values in locally convex spaces, [13],

$$(8) a_2 = a_3 = \dots = 0,$$

*i.e.*,  $F(\zeta u) = \zeta a_1$ , or also

$$F(\zeta u) = \zeta dF(0) u$$

for all  $\zeta \in \Delta$  and all  $u \in \Theta(M)$ .

There exist a sequence  $\{P_n: n=1, 2, ...\}$  of homogeneous polynomials  $P_n: C(M) \to C(N)$  of degree n, such that

$$F(f) = \sum_{n=1}^{+\infty} P_n(f), \quad \forall f \in V.$$

If  $\lambda \in C(M)'$ , the scalar-valued holomorphic function  $f \mapsto \langle F(f), \lambda \rangle$  is expressed by

$$\langle F(f), \lambda \rangle = \sum_{n=1}^{+\infty} \langle P_n(f), \lambda \rangle,$$

and the polynomials  $f \mapsto \langle P_n(f), \lambda \rangle$  are continuous.

Let  $f \in V$  be such that |f(x)| < 1 at all  $x \in M$ . For  $\zeta \in \overline{\Delta}$  and  $u \in \Theta(M)$ , let  $g_{\zeta} \in C(M)$  be defined by

$$g_{\zeta} = \frac{\zeta u + f}{1 + \zeta \overline{f} u} ,$$

where  $\overline{f}: x \mapsto \overline{f(x)}$ . If  $\zeta \in \partial \Delta$ ,

$$g_{\xi} = \frac{\xi u + f}{\xi u (\xi u + f)},$$

showing that  $g_{\zeta} \in \Theta(M)$  if  $\zeta \in \partial \Delta$ . Thus, by (8),

(10) 
$$\langle P_n(g_{\zeta}), \lambda \rangle = 0, \quad \forall \zeta \in \partial \Delta, \quad \forall n > 1.$$

It will be shown now that (10) holds for all  $\zeta \in \overline{\Delta}$ .

If  $\xi \in \Delta$ , the Cauchy integral formula yields

$$\langle P_n(g_{\zeta}), \lambda \rangle = \frac{1}{2\pi i} \int_{\partial A} \frac{1}{\tau^{n+1}} \langle F(\tau g_{\zeta}), \lambda \rangle d\tau,$$

when  $\partial \Delta$  is oriented counterclockwise.

Let l be an oriented closed path in  $\Delta$ . Since  $\zeta \mapsto \langle F(\tau g_{\zeta}), \lambda \rangle$  is holomorphic in  $\Delta$ , Fubini's theorem and Cauchy's integral theorem yield

$$\begin{split} \int_{l} \langle P_{n}(g_{\zeta}), \, \lambda \rangle \, d\zeta &= \, \frac{1}{2 \, \pi i} \int_{l} \left( \int_{\partial \mathcal{A}} \, \frac{1}{\tau^{n+1}} \langle F(\tau g_{\zeta}), \, \lambda \rangle \, d\tau \right) d\zeta = \\ &= \, \frac{1}{2 \, \pi i} \int_{\partial \mathcal{A}} \, \frac{1}{\tau^{n+1}} \left( \int_{l} \langle F(\tau g_{\zeta}), \, \lambda \rangle \, d\zeta \right) d\tau = 0 \; . \end{split}$$

Hence, by Morera's theorem,  $\zeta \mapsto \langle P_n(g_{\zeta}), \lambda \rangle$  is holomorphic in  $\Delta$ . In view of (10),

$$\langle P_n(g_{\xi}), \lambda \rangle = 0$$
,  $\forall \xi \in \overline{\Delta}$ ,  $\forall n > 1$ .

For  $\xi = 0$ , (9) yields then

(11) 
$$\langle P_n f, \lambda \rangle = 0$$
 for  $n = 2, 3, ...$ 

and for all bounded functions  $f \in C(M)$ . Since bounded continuous functions are dense in C(M) and  $f \mapsto \langle P_n f, \lambda \rangle$  is continuous, then (11) holds for all  $f \in C(M)$  and all  $\lambda \in C(M)'$ . Hence,

$$P_n = 0$$
,  $\forall f \in C(M)$ ,  $n = 2, 3, \dots$ 

As a consequence, the following theorem holds, which can be seen as a Fréchet space-version of the Schwarz lemma (2).

Theorem 3: If the holomorphic map  $F: B(M) \to C(N)$  is such that:  $F(B(M)) \subset \overline{B(N)}, \ F(0) = 0$  and, for every  $u \in \Theta(M)$  there is some  $\varrho \in \Delta \setminus \{0\}$ 

$$\frac{1}{\rho}F(\varrho u)\in\Theta(N)\,,$$

then F is the restriction to B(M) of a continuous linear map  $C(M) \rightarrow C(N)$ .

COROLLARY 1: The same conclusion holds if F is a holomorphic map of a neighbourhood of  $B(M) \cup \Theta(M)$  in C(M), and if moreover F(0) = 0,  $F(B(M)) \subset \overline{B(N)}$  and  $F(\Theta(M)) \subset \Theta(N)$ .

(2) See [3] for a similar result in the case of  $J^*$ -algebras.

4. Let M be connected and satisfy the hypotheses stated at the beginning of n. 2, and let  $T: \mathbb{R}_+ \to \mathcal{L}(C(M))$  be a semigroup such that T(t) is injective and

(12) 
$$T(t) \Theta(M) \subset \Theta(M), \quad \forall t \in \mathbb{R}_+.$$

By Theorem 1, there exist a unique  $\alpha_t \in \Theta(M)$  and a unique continuous map  $\phi_t \colon M \to M$ , with  $\overline{\phi_t(M)} = M$ , such that

(13) 
$$T(t) f = \alpha_t \cdot (f \circ \phi_t), \quad \forall f \in C(M), \quad \forall t \in R_+.$$

The fact that T is a semigroup implies that  $\alpha_0 = 1$ ,  $\phi_0 = identity$  and

$$\alpha_{t_1+t_2}\cdot (f\circ\phi_{t_1+t_2})=\alpha_{t_1}\cdot (\alpha_{t_2}\circ\phi_{t_1})\cdot (f\circ\phi_{t_2}\circ\phi_{t_1})$$

for all  $t_1, t_2 \in \mathbb{R}_+$  and all  $f \in C(M)$ . Hence,

(14) 
$$\alpha_{t_1+t_2} = \alpha_{t_1} \cdot (\alpha_{t_2} \circ \phi_{t_1})$$

and

(15) 
$$\phi_{t_1+t_2} = \phi_{t_1} \circ \phi_{t_2}$$

for all  $t_1, t_2 \in \mathbb{R}_+$ .

Suppose moreover that the semigroup T is continuous:

(16) 
$$\lim_{t \to t_0} T(t) f = T(t_0) f,$$

uniformly on compact sets in M, i.e.

(17) 
$$\lim_{t \to t_0} p_H(T(t) \ f - T(t_0) \ f) = 0$$

for all  $f \in C(M)$ , all  $t_0 \ge 0$  and every compact set  $H \subset M$ . Because, by (13),  $\alpha_t = T(t)(1)$ , then, by (17),

$$\lim_{t \to t_0} p_H(\alpha_t - \alpha_{t_0}) = 0$$

for all  $t_0 \in \mathbb{R}_+$  and every compact set  $H \in M$ . Thus  $t \mapsto \alpha_t$  is a continuous cocycle.

Since

$$\begin{split} p_{H}(f \circ \phi_{t} - f \circ \phi_{t_{0}}) &= \sup \big\{ \left| \alpha_{t}(x) \left( f(\phi_{t}(x)) - f(\phi_{t_{0}}(x)) \right) \right| \colon x \in H \big\} \leqslant \\ &\leq \sup \big\{ \left| \left( T(t) \ f \right)(x) - \left( T(t_{0}) \ f \right)(x) \right| \colon x \in H \big\} + \\ &+ \sup \big\{ \left| \alpha_{t}(x) - \alpha_{t_{0}}(x) \right| \left| f(\phi_{t_{0}}(x)) \right| \colon x \in H \big\} \leqslant \\ &\leq p_{H}\left( T(t) \ f - T(t_{0}) \ f \right) + p_{H}(\alpha_{t} - \alpha_{t_{0}}) \ p_{H}\left( f \circ \phi_{t_{0}} \right), \end{split}$$

(17) and (18) yield

$$\lim_{t\to t_0} p_H(f\circ\phi_t - f\circ\phi_{t_0}) = 0$$

for all  $t_0 \in \mathbb{R}_+$ ,  $f \in C(M)$  and every compact set  $H \subset M$ . Thus, setting

$$S(t) f = f \circ \phi_t, \qquad (19)$$

the above arguments yield the «only if» part of the following lemma.

Lemma 7: The semigroup  $S: \mathbb{R}_+ \to \mathcal{L}(C(M))$  is continuous if, and only if, the semi-flow  $\phi: \mathbb{R}_+ \times M \to M$  is continuous.

PROOF: If  $\phi$  is continuous, for any s > 0 and any compact set  $H \subset M$ , K := continuous = co

$$\sup\left\{\left.\left|f(\phi_{t}(x))\right|:x\in H\right\}\leqslant \sup\left\{\left.\left|f(y)\right|:y\in K\right\}\right\},$$

i.e.,

(20) 
$$p_H(S(t) f) \leq p_K(f), \quad \forall f \in C(M), \quad \forall t \in [0, s]. \quad \blacksquare$$

A continuous semigroup T acting on a locally convex space  $\mathcal{E}$  is said to be locally equicontinuous (3) if, for every  $\mathcal{E} > 0$  and every continuous seminorm  $\mathcal{E}$  on  $\mathcal{E}$  there is a continuous seminorm  $\mathcal{E}$  on  $\mathcal{E}$  such that

(21) 
$$p(T(t) f) \leq q(f), \quad \forall f \in \mathcal{E}, \quad \forall t \in [0, s].$$

If s may be chosen equal to  $+\infty$ , T is said to be equicontinuous, (see [12] and also [16]).

Since C(M) is a barreled space, [16], every continuous semigroup  $R_+ \to \mathcal{L}(C(M))$  is locally equicontinuous ([6], Proposition 1.1). Hence (21) and Lemma 6 yield

LEMMA 8: If the continuous semigroup  $T: \mathbb{R}_+ \to \mathcal{L}(C(M))$  satisfies (12), for every compact set  $H \subset M$  and every s > 0 there exist a compact set  $K \subset M$  and a constant c > 0 such that

(22) 
$$p_H(T(t) f) \leq cp_K(f), \quad \forall f \in C(M), \quad \forall t \in [0, s].$$

Hence

(23) 
$$p_{H}(f \circ \phi_{t}) = \sup \{ |f(\phi_{t}(x))| : x \in H \} = \sup \{ |\alpha_{t}(x)| f(\phi_{t}(x))| : x \in H \} = \sup \{ |T(t)| f(x)| : x \in H \} = p_{H}(T(t)|f) \le cp_{K}(f), \forall f \in C(M), \forall t \in [0, s], \}$$

(3) For the theory of locally equicontinuous semigroups, see, e.g., [6], [7], [11].

and therefore

$$\sup \left\{ |f(x)| : x \in \bigcup_{t \in [0, s]} \phi_t(H) \right\} \le c \sup \left\{ |f(x)| : x \in K \right\}$$

for all  $f \in C(M)$ .

If  $\phi_t(H) \not\in K$  for some  $t \in [0, s]$ , there is  $x \in \phi_t(H)$  such that  $x \notin K$ . Since  $\phi_t(H)$  is closed, there is an open neighbourhood U of x disjoint from K. Thus there exists a function  $f \in C(M)$  for which

$$|f(x)| > cp_K(f).$$

This contradiction proves

Lemma 9: If the continuous semigroup satisfies (12), for every s > 0 and every compact set  $H \subset M$  there is a compact set  $K \subset M$  such that

$$\bigcup_{t\in[0,\,s]}\phi_t(H)\subset K.$$

PROPOSITION 2: If the continuous semigroup  $T: \mathbb{R}_+ \to \mathcal{L}(C(M))$  satisfies (12), the semiflow  $\phi: \mathbb{R}_+ \times M \to M$  is continuous.

PROOF: For  $t_0 \in R_+$ ,  $x_0 \in M$ ,  $f \in C(M)$  and  $\varepsilon > 0$ , let H be a compact neighbourhood of  $x_0$  in M such that

$$\left|f(\phi_{t_0}(x))-f(\phi_{t_0}(x_0))\right|<\frac{\varepsilon}{2}\,,\qquad \forall x\in K\;.$$

The fact that T is continuous, and therefore S is continuous, hence locally equicontinuous, implies that there is  $\delta > 0$  such that, if  $t \in \mathbb{R}_+$  and  $|t - t_0| \leq \delta$ , then

$$p_H(f\circ\phi_t-f\circ\phi_{t_0})<\frac{\varepsilon}{2}.$$

Since

$$\big| f(\phi_{t}(x)) - f(\phi_{t_{0}}(x_{0})) \big| \leq \big| f(\phi_{t}(x)) - f(\phi_{t_{0}}(x)) \big| + \big| f(\phi_{t_{0}}(x)) - f(\phi_{t_{0}}(x_{0})) \big| \leq |f(\phi_{t}(x)) - f(\phi_{t_{0}}(x_{0})) - f(\phi_{t_{0}}(x_{0})) | \leq |f(\phi_{t_{0}}(x_{0})) - f(\phi$$

$$\leq p_H(S(t) f - S(t_0) f) + |f(\phi_{t_0}(x)) - f(\phi_{t_0}(x_0))| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon,$$

the map  $(t, x) \mapsto f(\phi_t(x))$  is continuous on  $R_+ \times M$  for every choice of  $f \in C(M)$ . That shows that the semiflow  $\phi$  is continuous.

Remark: The fact that, if the semiflow  $\phi$  is continuous, the semigroup S is locally equincontinuous follows directly from (20), without appealing to [6].

Let  $T: \mathbb{R} \to \mathcal{L}(C(M))$  be a group which is continuous, *i.e.* such that (17) holds for all  $t_0 \in \mathbb{R}$  and all  $f \in C(M)$ .

If

(24) 
$$T(t) \Theta(M) = \Theta(M), \quad \forall t \in \mathbb{R},$$

then T is expressed, for all  $f \in C(M)$  and all  $t \in R$ , by (13), where  $\alpha_t \in \Theta(M)$  and  $\phi_t$  is a homeomorphism of M; (15), holding now for all  $t_1, t_2 \in R$  together with (14), shows that  $(t, x) \mapsto \phi_t(x)$  is a flow on M.

Let  $S: \mathbb{R} \to \mathcal{L}(C(M))$  be the group defined by (19) for all  $t \in \mathbb{R}$ . Proposition 0 applied to the semigroups  $\mathbb{R}_+ \to \mathcal{L}(C(M))$  defined by:  $t \mapsto T(t)$ ,  $t \mapsto T(-t)$ ,  $t \mapsto S(t)$  and  $t \mapsto S(-t)$ , yields

Theorem 4: If the continuous group T satisfies (24), the flow  $\phi: \mathbb{R} \times M \to M$  is continuous.

If the flow  $\phi$  is continuous, the group S is continuous.

That implies that, for every continuous seminorm p on C(M) and for all s > 0, a continuous seminorm q on C(M) exists satisfying (21) for all  $f \in C(M)$  and all  $t \in [-s, s]$ .

If T is continuous and, for every compact set  $H \subset M$  there exists a compact set  $K \subset M$  such that  $\phi_t(H) \subset K$  for all  $t \in R$ , then T is equicontinuous, *i.e.* s may be chosen equal to  $+\infty$ .

5. Let  $T: \mathbb{R}_+ \to \mathcal{L}(C(M))$  be a continuous semigroup satisfying (12), and expressed therefore by (13) for all  $t \in \mathbb{R}_+$ .

The infinitesimal generator of T is a linear closed operator  $X: \mathcal{O}(X) \subset C(M) \to C(M)$ , whose domain  $\mathcal{O}(X)$  is dense in C(M). The infinitesimal generator of the continuous semigroup S expressed by (19) is a derivation  $D: \mathcal{O}(D) \subset C(M) \to C(M)$ . In particular,  $1 \in \mathcal{O}(D)$ .

For t > 0 and  $f \in C(M)$ ,

(25) 
$$\frac{1}{t} (T(t) f - f)(x) = \frac{\alpha_t(x) - 1}{t} (S(t) f)(x) + \frac{1}{t} (S(t) f - f)(x).$$

Letting  $t\downarrow 0$  and arguing as in the proof of Theorem 2 of [15], one shows that, if  $\mathcal{O}(X)\cap\mathcal{O}(D)$  contains a function  $f\in C(M)$  such that  $f(x)\neq 0$  at all points  $x\in M$  - in particular, if  $1\in\mathcal{O}(X)$  - then  $\mathcal{O}(X)=\mathcal{O}(D)$  and  $t\mapsto\alpha_t(x)$  is a function  $R_+\to\partial\Delta$  of class  $C^1$  for all  $x\in M$ . Letting

$$(26) i\beta(x) := \dot{\alpha}_t(x)_{|t=0},$$

then  $\beta \in C_R(M)$  and (25) yields

$$(27) X = i\beta I + D.$$

Since, by (14),

$$T(r) \alpha_t = \alpha_r \cdot (\alpha_t \circ \phi_r) = \alpha_{t+r},$$

then:

LEMMA 10: The function  $t \mapsto \alpha_t(x)$  is of class  $C^1$  on  $R_+$  for all  $x \in M$  if, and only if,  $\alpha_t \in \mathcal{O}(X)$  for all  $t \in R_+$ .

As a consequence of the above observations, the following lemma holds.

LEMMA 11: There exists  $\beta \in C_R(M)$  for which (27) holds if, and only if,

$$\mathcal{O}(X)\cap\mathcal{O}(D)\cap\Theta(M)\neq\emptyset\;.$$

In which case,  $\mathcal{O}(X) = \mathcal{O}(D)$ .

Now, let D be the infinitesimal generator of a continuous semigroup S expressed by (19), and, for a given function  $\beta \in C_R(M)$ , let  $X: \mathcal{O}(D) \to C(M)$  be the continuous perturbation of D expressed by (27). For any  $x \in M$ , the integral

$$\alpha_t(x) := e^{i\int_0^t \beta(\phi_r(x)) dr}$$

solves the differential equation (26) with initial condition  $\alpha_0(x) = 1$ , and thus defines a  $C^1$  cocycle. The continuous semigroup defined by (13) satisfies (12) and is generated by X.

The problem arises now to characterize the continuous perturbations of D which generate semigroups T satisfying (12).

Let  $E \in \mathcal{L}(C(M))$ , let  $X: \mathcal{O}(D) \to C(M)$  be defined by

$$X = E + D$$
,

and let  $T: \mathbb{R}_+ \to \mathcal{L}(C(M))$  be the locally equicontinuous semigroup generated by X, [2].

Since  $1 \in \mathcal{O}(X)$ , if T satisfies (12) there exist a function  $\gamma \in C_{\mathbb{R}}(M)$  and a derivation

$$D_0: \mathcal{O}(D_0) = \mathcal{O}(X) = \mathcal{O}(D) \rightarrow C(M)$$

such that

$$X=i\gamma I+D_0.$$

The derivation  $D - D_0 = i\gamma I - E$  is a continuous operator on C(M), and therefore vanishes (see, e.g., [15]). Thus,  $E = i\gamma I$ , and the following theorem holds.

THEOREM 5: If X generates a continuous semigroup T satisfying (12), all continuous

perturbations of X generating semigroups  $R: \mathbb{R}_+ \to \mathcal{L}(C(M))$  such that

$$R(t) \Theta(M) \subset \Theta(M)$$
,  $\forall t \in \mathbb{R}_+$ ,

are given by  $i\beta I + X$ , for any choice of  $\beta \in C_R(M)$ .

6. Under the same hypotheses on M and N stated in n. 2, let U be a non-empty domain in C and let  $F: U \to \mathcal{L}(C(M), C(N))$  be a holomorphic map such that

(28) 
$$F(w) \ \overline{B(M)} \subset \overline{B(N)}, \quad \forall w \in U.$$

and

(29) 
$$F(w) \Theta(M) \subset \Theta(N), \quad \forall w \in U.$$

Let r > 0 be such that  $\Delta(w, r) = \{z \in C : |z - w| < r\} \subset U$ , and let

$$F(z) = F_0 + (z - w) F_1 + (z - w)^2 F_2 + \dots$$

be the power-series expansion of F in  $\Delta(w, r)$ , with  $F_n \in \mathcal{L}(C(M), C(N))$  for  $n = 0, 1, 2, \ldots$  By the strong maximum principle for holomorphic functions with values in locally convex spaces, [13], if  $u \in \Theta(M)$ , and therefore F(z)  $u \in \Theta(N)$ , then  $F_n u = 0$  for  $n = 1, 2, \ldots, i.e.$ ,

$$\langle u, F'_n \delta_y \rangle = \langle F_n u, \delta_y \rangle = (F_n u)(y) = 0$$

for all  $y \in N$  and n = 1, 2, ...

For  $n \ge 1$ , the continuous linear form  $F_n' \delta_y$  is represented by a regular, complex, compactly supported, Borel measure  $\mu_n$  on M. If  $\sigma \in C_R(M)$  and  $t \in R$ , then  $u = e^{it\sigma} \in \Theta(M)$ . Hence  $\langle u, \mu_n \rangle = 0$ , that is

$$\sum_{\nu=0}^{+\infty} \frac{(it)^{\nu}}{\nu!} \langle \sigma^{\nu}, \mu_{n} \rangle = 0$$

for all  $t \in \mathbb{R}$ . Thus  $\langle \sigma, \mu_n \rangle = 0$  for all  $\sigma \in C_{\mathbb{R}}(M)$ , and therefore  $F_n' \delta_y = 0$ , or also  $(F_n f)(y) = 0$  for all  $f \in C(M)$  and all  $y \in N$ . In conclusion  $F_n = 0$  for n = 1, 2, 3, ..., and the following theorem holds.

THEOREM 6: If the holomorphic map  $F: U \to \mathcal{L}(C(M), C(N))$  satisfies (28) and (29), F is constant.

COROLLARY 2: For any domain  $U \subset C$  containing  $\mathbb{R}_+^*$ , there is no non-trivial semi-group  $T \colon \mathbb{R}_+ \to \mathcal{L}(C(M))$  whose restriction to  $\mathbb{R}_+^*$  is the restriction to  $\mathbb{R}_+^*$  of a holomorphic map  $F \colon U \to \mathcal{L}(C(M))$  satisfying (28) and (29).

7. Theorem 4 of [15] will now be extended to the case in which M is a connected, n-dimensional (paracompact) complete Riemannian manifold of class  $C^{\infty}$ . Let  $\langle , \rangle$  be the Riemannian metric and let v be a  $C^{\infty}$  vector field on M for which there exists a po-

sitive constant k such that

(30) 
$$\langle v(x), v(x) \rangle \leq k^2, \quad \forall x \in M.$$

Given  $x_0 \in M$ , let  $\xi$  be the  $C^{\infty}$  integral curve of v with initial condition  $x_0$ ; *i.e.* 

$$\dot{\xi}(t) = v(\xi(t)), \quad \forall t \in [0, a]$$

for some a > 0, and  $\xi(0) = x_0$ .

The set

 $C_{+}(x_{0}) = \{t \in \mathbb{R}_{+} : \exists \xi : [0, t] \to M \text{ of class } C^{1},$ 

with 
$$\dot{\xi}(r) = \nu(\xi(r))$$
,  $\forall r \in [0, t]$  and  $\xi(0) = x_0$ 

is open and non-empty.

LEMMA 12: The set  $C_+(x_0)$  is closed.

PROOF: Let  $t_0 \in \overline{C_+(x_0)}$  and let  $\{t_v\}$  be an increasing sequence in  $C_+(x_0)$  such that  $t_v \uparrow t_0$ . If  $\xi_v$  is the integral curve on  $[0, t_v]$  of v, with initial condition  $x_0$ , then

$$\nu_1 < \nu_2 \implies \xi_{\nu_2 \mid [0, t_{\nu_1}]} = \xi_{\nu_1}.$$

That defines an integral curve  $\xi$ :  $[0, t_0) \rightarrow M$  of v with initial condition  $x_0$  such that  $\xi_{[0, t_v]} = \xi_v$ .

Let  $d: M \times M \rightarrow R_+$  be the distance defined by the Riemannian metric of M.

a) It will be shown that  $\{\xi_{\nu}(t_{\nu})\}$  is a Cauchy sequence for d. If  $\nu_1 < \nu_2$ ,

$$d(\xi_{\nu_1}(t_{\nu_1}), \, \xi_{\nu_2}(t_{\nu_2})) \leq \int\limits_{t_{\nu_1}}^{t_{\nu_2}} (\langle \dot{\xi}(t), \dot{\xi}(t) \rangle_{\xi(t)})^{1/2} \, dt =$$

$$= \int\limits_{t_{\nu_1}}^{t_{\nu_2}} \left( \left\langle v(\xi(t)), v(\xi(t)) \right\rangle_{\xi(t)} \right)^{1/2} dt \leq k \int\limits_{t_{\nu_1}}^{t_{\nu_2}} dt \leq k (t_{\nu_2} - t_{\nu_1}).$$

Since  $\{t_{\nu}\}$  is a Cauchy sequence  $\{\xi_{\nu}(t_{\nu})\}$  is a Cauchy sequence.

b) Let  $y_0 = \lim_{\nu \to +\infty} \xi_{\nu}(t_{\nu})$ . For any  $\varepsilon > 0$  there exists an index  $\nu_0 \ge 1$  such that, whenever  $\nu \ge \nu_0$ ,

$$t_{\nu} \in (t_0 - \varepsilon, t_0)$$
 and  $d(\xi_{t_{\nu}}, y_0) < \varepsilon$ .

Let  $t \in (t_0 - \varepsilon, t_0)$  and let  $\nu > \nu_0$  be such that  $t < t_{\nu} < t_0$ . Then

$$d(\xi(t), y_0) \le d(\xi(t), \xi_{\nu}(t)) + d(\xi_{\nu}(t), \xi_{\nu}(t_{\nu})) + d(\xi_{\nu}(t_{\nu}), y_0) < 0$$

$$< \int_{t}^{t_{\nu}} (\langle \dot{\xi}_{\nu}(r), \dot{\xi}_{\nu}(r) \rangle_{\xi_{\nu}(r)})^{1/2} dr + \varepsilon \leq k(t_{\nu} - t) + \varepsilon < (k+1) \varepsilon.$$

c) Letting  $\xi(t_0) = y_0$ , the map  $\xi: [0, t_0] \to M$  is continuous. The proof will be complete once we show that  $\xi: [0, t_0] \to M$  is an integral curve of v.

By b) there exist an open coordinate neighbourhood U of  $y_0$ , with local coordinates  $r_1, \ldots, r_n$ , and an index  $v_1 \ge v_0$  such that

$$\xi(t) \in U$$
,  $\forall t \ge t_{\nu_1}$ .

The neighbourhood U can be chosen so small that there exists a positive constant c such that, denoting with  $\eta_1, \ldots, \eta_n$  the components, with respect to  $r_1, \ldots, r_n$ , of a tangent vector  $\eta$  to M at a point  $x \in U$  and setting

$$|\eta|^2 = \eta_1^2 + \ldots + \eta_n^2$$

then

$$\frac{1}{c^2} |\eta|^2 \leq \langle \eta, \eta \rangle_x \leq c^2 |\eta|^2, \quad \forall x \in U.$$

Since

$$\xi(t_0) - \xi_{\nu_1}(t_{\nu_1}) - \int\limits_{t_{\nu_1}}^{t_0} v(\xi(r)) dr = \xi(t_0) - \xi(t) + \xi_{\nu_1}(t) - \xi_{\nu_1}(t_{\nu_1}) - \xi_{\nu_1}(t_{\nu_1})$$

$$-\int_{t_{\nu_1}}^t v(\xi(r)) dr - \int_t^{t_0} v(\xi(r)) dr = \xi(t_0) - \xi(t) - \int_t^{t_0} v(\xi(r)) dr,$$

then

$$\left| \, \xi(t_0) - \xi_{\nu_1}(t_{\nu_1}) - \int\limits_{t_{\nu_1}}^{t_0} \! v(\xi(r)) \, dr \, \right| \leq |\, \xi(t_0) - \xi(t) \, | \, + \int\limits_{t}^{t_0} \! |\, v(\xi(r)) \, | \, dr \leq$$

$$\leq |\xi(t_0) - \xi(t)| + c \int_{t_0}^{t_0} (\langle v(\xi(r)), v(\xi(r)) \rangle)^{1/2} dr \leq |\xi(t_0) - \xi(t)| + ck(t - t_0) \to 0$$

as  $t \uparrow t_0$ . Hence

$$\xi(t_0) = \xi_{\nu_1}(t_{\nu_1}) - \int_{t_{\nu_1}}^{t_0} v(\xi(r)) dr,$$

and therefore  $t_0 \in C_+(x_0)$ .

In conclusion, the following theorem holds.

THEOREM 7: If the  $C^{\infty}$  Riemannian manifold M is connected and complete, and if v is a  $C^{\infty}$  vector field on M for which (30) holds, there is a  $C^{\infty}$  flow  $\phi: \mathbb{R} \times M \to M$  such that

$$\frac{d}{dt}\phi(t, x) = v(\phi(t, x))$$

and

$$\phi(0, x) = x$$

for all  $t \in \mathbb{R}$  ans all  $x \in M$ .

At this point, since Lemmas 6 and 7 and Corollary 1 of [15] do not require the hypothesis that M is compact, proceeding as in [15] one proves

THEOREM 8: If the locally equicontinuous group  $T: \mathbb{R} \to \mathcal{L}(C(M))$  is such that  $T(t) \Theta(M) \subset \Theta(M)$  and  $T(t) C^{\infty}(M) \subset C^{\infty}(M)$  for all  $t \in \mathbb{R}$ , the infinitesimal generator X of T is given by (27), where D is a  $C^{\infty}$  vector field on M and  $\beta \in C_{\mathbb{R}}^{\infty}(M)$ .

Viceversa, let  $D: \mathcal{O}(D) \subset C(M) \to C(M)$  be a closed operator such that  $C^{\infty}(M) \subset \mathcal{O}(D)$  and that  $D_{|\mathcal{O}(D)|}$  is a derivation defined by a  $C^{\infty}$  vector field v on M satisfying (30). Let  $t \mapsto \alpha_t$  be a continuous cocycle associated to the flow defined by D, such that  $\alpha_t \in C^{\infty}(M) \cap \Theta(M)$  for all  $t \in \mathbb{R}$ , and let  $\beta \in C^{\infty}_{\mathbb{R}}(M)$  be given by (26).

Then the operator  $X: \mathcal{O}(D) \to C(M)$  defined by (27) is the infinitesimal generator of a locally equicontinuous group  $T: \mathbb{R} \to \mathcal{L}(C(M))$  such that  $T(t) \Theta(M) \subset \Theta(M)$  and  $T(t) C^{\infty}(M) \subset C^{\infty}(M)$  for all  $t \in \mathbb{R}$ .

#### REFERENCES

- [1] E. Behrends, M-structure and the Banach-Stone theorem, Lecture Notes in Mathematics, Springer-Verlag, Berlin/Heidelberg/New York, n. 736 (1979).
- [2] B. Dembart, On the theory of semigroups of operators in locally convex spaces, J. Functional Analysis, 16 (1974), 123-160.
- [3] L. A. Harris, Bounded symmetric homogeneous domains in infinite dimensional spaces, Lecture Notes in Mathematics, n. 364, Springer-Verlag, Berlin/Heidelberg/New York (1973), 13-40.
- [4] W. Holsztyński, Continuous mappings induced by isometries of spaces of continuous functions, Studia Math., 26 (1966), 133-136.
- [5] J. L. Kelley I. Namioka, Linear Topological Spaces, Van Nostrand, Princeton (1963).
- [6] H. Komatsu, Semigroups of operators in locally convex spaces, J. Math. Soc. Japan, 16 (1964), 230-261.
- [7] T. Kōmura, Semigroups of operators in locally convex spaces, J. Functional Analysis, 2 (1968), 258-296.

- [8] R. NAGEL (ed.), One-parameter Semigroups of Positive Operators, Lecture Notes in Mathematics, n. 1184, Springer-Verlag, Berlin/Heidelberg/New York/Tokyo (1980).
- [9] Ph. Noverraz, Fonctions plurisousharmoniques et analytiques dans les espaces vectoriels topologiques, Ann. Inst. Fourier (Grenoble), 19 (1969), 419-493.
- [10] Ph. Noverraz, Pseudo-convexité, convexité polynomiale et domaines d'holomorphie en dimension infinie, North Holland/American Elsevier, Amsterdam/London/New York (1973).
- [11] S. Ouchi, Semigroups of operators in locally convex spaces, J. Math. Soc. Japan, 25 (1973), 265-273.
- [12] L. Schwartz, Lectures on Mixed Problems in Partial Differential Equations and Representations of Semigroups, Tata Institute of Fundamental Research, Bombay (1958).
- [13] E. Vesentini, Complex geodesics, Compositio Math., 44 (1981), 375-394.
- [14] E. VESENTINI, On the Banach-Stone theorem, Advances in Math., 112 (1995), 135-146.
- [15] E. Vesentini, Semiflows and semigroups, Rend. Mat. Acc. Lincei, (9) 7 (1996), 75-82.
- [16] K. Yosida, Functional Analysis, Springer-Verlag, Berlin/Heidelberg/New York (1968).