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Summary. — Given the Banach spaces C(M) and C(N) of all complex-valued continuous
functions on two compact Hausdorff spaces M and N, the classical Banach-Stone theorem char-
acterizing the linear isometries of C(M) onto C(N) has been recently extended to linear isome-
tries of C(M) énto C(N). The present paper is devoted to a further extension of the Banach-
Stone theorem to the case in which M and N are locally compact, paracompact spaces, C(M) and
C(N) being endowed with the compact-open topology. Locally equicontinuous semigroups of
linear isometries of C(M) into C(N) are also investigated.

Sul teorema di Banach-Stone, II

Riassunto. — Dati due spazi compatti di Hausdorff M e N, e gli spazi di Banach C(M) e
C(N) delle funzioni continue, a valori complessi, su M e su N, una Nota recente estende ad iso-
metrie lineari di C(M) in C(N) un classico teorema di Banach-Stone caratterizzante le isometrie
surgettive. Questo lavoro extende ulteriormente il teorema di Banach-Stone al caso in cui M e N
siano spazi localmente compatti e paracompatti, investigando inoltre semigruppi localmente
equicontinui di isometrie lineari di C(M) in C(N).

According to the Banach-Stone theorem, two compact Hausdorff spaces M and N
are homeomorphic if there is an isometry A of the space C(M) of all continuous fun-
ctions on M onto the space C(N), both spaces being endowed with the metric topolo-
gy of uniform convergence. If such an isometry A € £(C(M), C(N)) exists, there are a
homeomorphism y: N—M and a function a e C(N), with |a(y)|=1 at all yeN,
such that

(1) (AN ) = aly)-fly(y)), VfeCM)
and for all yeN.
(*) Indirizzo dell’Autore: Politecnico di Torino, Dipartimento di Matematica, Corso Du-

ca degli Abruzzi 24, 10129 Torino, Italy.
(**) Memoria presentata il 9 ottobre 1998 da Edoardo Vesentini, uno dei XL.
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The question how to describe non-surjective linear isometries A: C(M) — C(N)
was investigated by W. Holsztynski, [4], who proved that, if A e 2(C(M), C(N)) is
such an isometry, there exist a closed set NoCN, a surjective, continuous map
¥: No—N, a function a € C(N), with [la]| = 1 and |a(y) | =1 at all y e Ny, such that
(1) holds for all ye Nj.

Under which conditions is N, = N?

Let B(M), B(N) be the open unit balls of C(M), C(N), and let I'(B(M)), I'(B(N))
be the sets of all extreme points of their closures B(M), B(N). Let A e £(C(M), C(N)).

According to [14], if, and only if,

AI(B(M)) cI(B(N)),

there exist a continuous map y: N—M and a function a € C(N), with |a(y) | =1 at
all y e N, such that (1) holds for all y e N. This equation implies that A is injective if,
and only if, y is surjective, if, and only if, A is an isometry.

A key point in the proof is the fact that I'(B(M)) and I'(B(N)) coincide with the
sets @(M) and O(N) of all complex-valued continuous functions whose values have
modulus one at all points of M and N respectively.

Thus, the linear isometries A: C(M) — C(N) are characterized by the fact that they
are injective and satisfy the condition

) AGM)c O(N).

This shows, incidentally, that any linear map A € £(C(M), C(N)) satisfying (2
an isometry for all equivalent norms on C(M) and C(N) for which

I(B(M))>eM), I(B(N))c@O(N).

But, more in general, the fact that ®(M) and ©(N) depend only on the topology of
M and N offers the possibility of extending these results to a wider context than the
one in which M and N are assumed to be compact.

In this article, the characterization (1) of all continuous, linear, injective maps
A: C(M) — C(N) satisfying (2) will be carried out to the case in which M and N are lo-
cally compact Hausdorff spaces, and C(M) and C(N) are endowed with the locally
convex topology of uniform convergence on compact sets.

Assuming furthermore that the locally compact Hausdorff spaces M and N are
exhausted by increasing sequences of compacts sets - and, by consequence, C(M) and
C(N) are Fréchet spaces - we will investigate a holomorphic function F mapping injec-
tively an open, convex, balanced neighbourhood V of 0 in C(M) into an open, convex
neighbourhood W of 0 in C(N). It will be shown that, if ®(M) is contained in the set
(V) of all complex extreme points of the closure V of V, if F(0) = 0 and if a suitable
extension of F maps @(M) into I'(W), then F is the restriction to V of a continuous li-
near map C(M)— C(N).

Assuming M =N and connected, we will consider a continuous semigroup
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T: R, — £(C(M)) all whose elements are injective and map @(M) into @(N). The se-
migroup T turns out to be locally equicontinuous and to define a continuous cocycle
a: R, — ©O(M) and a continuous semiflow ¢: R, X M— M. It will be shown that the
main results established in [15] in the case in which M is compact (and therefore T is
strongly continuous) still hold in the more general context in which M is locally com-
pact and paracompact. It will be shown also that, if T is not trivial, it cannot be the re-
striction to R, of a holomorphic map of a neighbourhood of R, into £(C(M)).

1. Let M be a locally compact, Hausdorff space, and let C(M) be the complex
vector space of all complex-valued continuous functions on M, endowed with the lo-
cally convex topology of uniform convergence on all compact sets of M.

If K is a compact set in M, the function px: M—R, defined on fe C(M) by

px(f) =sup {|f(x)|: xeK},

is a continuous seminorm on C(M). When K varies among all compact subsets of M,
the family {px} defines the topology of C(M).
Let

By ={feCM): px(f) <1}

be the open unit ball of pk, and let I'x(M) be the set of all (complex =real) extreme
points of the closure Bx(M) of Bx(M).

According to [14], if ue I'x(M), then |u(x)|=1 at all xe K. If K= M, M\K is
open and non-empty. For any ve C(M)\{0} with Supprc M\K,

pxlu+8v)y=1, ViecC.

Hence, I'x(M) =@, and, as a consequence, the following lemma holds.

Lemma 1: If M is not compact, for any non-empty compact set KCM I'y(M) is
empty.

Let

OM) = {feCM): |f(x)| =1, VxeM}.

For every continuous linear form A on C(M) there is regular complex Borel measu-
re u with compact support in M, such that

(f, ) = [£00) dulx): = (f, )

for all fe C(M), [5].
Let 4={¢eC: |{| <1}. Proceeding as in [14], one proves
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Lemma 2: If the compactly supported, regular, complex Borel measure u on M is
such that |(u, u)| =1 for all ue OM), there are a point x € M and a constant a € 84
such that

3) H=ad,,
where 8, is the measure with mass 1 concentrated at the point x; i.e.,
(f, w) =af(x), VfeCM).

Let N be a locally compact Hausdorff space and let A e £(C(M), C(N)). Let
C(M)’ and C(N)' be the strong duals of C(M) and C(N) and let A’ € £(C(N)’, C(M)")
be the adjoint of A.

Lemma 3: If, and only if,

(4) AOM)c O(N),
for every ye N there exist xe M and a€ 34 such that
6)) A'd,=dd,.

Proor: For every y € N, the map f+> (Af)(y) = (Af, 0,) of C(M) into C is a conti-
nuous linear form on C(M). Hence [5], there is a compactly supported, regular, com-
plex Borel measure 4 on M such that

(f,A'd,) =(f, )
for all fe C(M). If (4) holds, then
[(u, p) | = |(Au)(y) | =1, VueOM).

By Lemma 2, u is expressed by (3) for some xeM and 2e€3d4. Hence (5)
holds.
Viceversa, if this latter equation is satisfied, for any » e @(M)

(AW)(y) | = |(u, A'6,) | = |a(u, 8,) | = |u(x)|=1. =

As a consequence, the following theorem holds, extending Theorem 1 of
[14].

TueoreMm 1: If and only if, (4) holds, there exist a function a € O(N) and a conti-
nuous map Y: N—M such that

(6) Af=a-(foy), VfeCM).
If (4) holds, a and  are unique.
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If HcN is compact, then
pu(Af) = sup {|(Af)(y) |: ye H} = sup {|f(¥(»))|: ye N}
= sup { |f(x) | : xe p(H)} = pyr (f)

for all fe C(M).
If Af = 0 for some fe C(M), then f(w(N)) = {0}. Thus, if 4(N) is dense in M, A is
injective.
Viceversa, if $(N) =M, there is some fe C(M)\{0}, with Supp fc M\p(N).
Therefore
(Af)(y) =fy(»)) =0, VyeN,

proving thereby
Lemma 4: If (4) holds, A is injective if, and only if, Y(N) is dense in M.

If Ae £(C(M), C(N)) is bijective, and if
@ AO(M) = @(N),

there exist we @(M) and a continuous map @: M—N, with (M) =N, such
that

A'g=w (gog), VgeCl(N).
For all fe C(M),
f=A"toAf=w-(ac@) (foypog).
Choosing = 1, then

1
o= ,
ao@
and therefore
f=foyop

for all fe C(M). That is equivalent to v o ¢ = identity on M, showing that v is surjecti-
ve and @ is injective. A similar argument applied to Ao A ~! shows that ¢ is also sur-
jective, and in conclusion, that 9 and @ are homeomorphisms and ¢ =y ~1, Hence
the following theorem holds.

Tueorem 2: If A e £(C(M), C(N)) is bijective, and if () is satisfied, then (6) holds
and Y is a homeomorphism of N onto M.
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2. Let the locally compact, Hausdorff space M be such that there exists a sequen-
ce {K,: #=0,1, ...} of compact sets K, c M for which K,cK, . and every compact

subset K of M is contained in some K,.
The function dy: C(M) X C(M) =R, defined on £, ge C(M) by

1 px,(f—2)
lf )= 2 — s =dy (0, f~g),
is a complete distance inducing on C(M) the topology of uniform convergence on

compact sets of M, with respect to which C(M) is a Fréchet space. Since

px,(f— 2

<1,
1+pg,(f—2)

then
du(f, g) <2, Vf, geCM).
If ue O(M),
S 1 pg S1 01
dy (0, u) = _"— e A
oA §="2 1+ px, () z2 2

If ge C(M)\{0}, there is some x € M at which g(x,) = 0. Let 7 = 0 be defined by
the conditions: x, € K,, and gx, =0 whenever # <#,. Let {€4\{0} be such that
| #(xo) + Cg(xo) | > 1. Then

px,(u+8g) = py, (u+ Tg) > 1
for all #» = #,, and |
px,(u+8g) =pg, (u) =1

whenever 7 < n,.
Hence
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That shows that all e @(M) are (complex =real) extreme points of the closure
B(M) of the open unit ball

={feC(M) dM(O, f)<1}'
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If |f(x)| =1 atall xeM and |f(xo) | > 1 for some point xoe K, CM, then

PK,,(f) =~ PK,,o(f) 1

= >
L+pg,(f)  Ll4pg () 2

for all # = #,, and therefore dy(0, f) > 1. Hence, if a function fe C(M) is such that
fe B(M) but f¢ ©(M), there exists some point x,e M at which |f(x,) | < 1. Let U be
an open neighbourhood of x, in M and let £ € (0, 1) be such that |f(x) | <1 —¢atall
xeU. If geC(M)\{0} has compact support contained in U, and is such that
|g(x) | <& for all xeM, then

|Fe) | + |gx)| <1, VxeM.

Hence pg (f+&g) <1 for all ed and #=0, 1, ..., and therefore
du(f+%g) <1, Vied.

In conclusion, the following lemma holds.

Lemma 5: O(M) is the set of all complex extreme points of B(M).

LemMma 6: For any continuous seminorm q on C(M) there are a compact set Kc M
and a positive constant ¢ such that

9(f)saox(f), VfeCM).

Proor: The lemma will be established by showing that K and c¢ exist such that
pr(f) <1 = g(f) <c.

Suppose that, for every n=1,2, ... there exists a function f,eC(M) for
which

pk,(f) <1 and g(f)=n.
For m >0,
Pr,(fosm) SPkyun(fram) €1
and
I fosm) Znt+tm>n.

Hence f, can be replaced by £, ,,, so that
fn +m _fn =0 on Kn .
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Then,

pK,,(fn+m—f;1) + & 1 pK,,(f;z+m—f;1)

51
ulfes fuem) = Z 2 1tpgform—f) 250412 1400 forn—1)

1 I 1 px,fosm— 1) 5 12 1

Iy 2n+1 V2T 44 2v—n—1 1+PK fn+m f;1 2n+1 Vi i

)

showing that {f,} is a Cauchy sequence. Letting f= 11111 £,, then
9(f,) =q(f),

n— + o

contraddicting the fact that ¢(£,) =#». =

Assume now that the locally compact, Hausdorff space N satisfies the same hypo-
theses stated for M at the beginning of this section. Let {L,: #=0, 1, ...} be a se-

quence of compact sets L, C N such that L,c L, , ; and that every compact subset of N
is contained in some L,. Let dy be the distance on C(N) defined on 4, ke C(N) by

1o L)
dlh, )= 3 21, (b —K)

L e B =dy(0,h—£k).
27 1+pL(/9 k)

By Lemma 5, @(N) is the set of all complex extreme points of the closure B(N) of
the open unit ball B(N) of C(N) for the distance dy. Hence if A e £(C(M), C(N))
maps the set of all complex extreme points of B(M) into the set of all complex extreme
points of B(N), the results of n.1 hold for A.

3. Under the same hypotheses on M and N introduced in n. 2, let VcM and
W N be an open, convex, balanced neighbourhood of 0 in C(M) and an open convex
neighbourhood of 0 in C(N). Denoting by I'(V) and I'(W) the sets of all complex
extreme points of V and of W, the following proposition will now be establi-
shed.

ProrositionN 1: Let F: V— C(N) be a holomorphic (i.e. Gateaux analytic and conts-
nuous (1)) map such that: F(V)c W and F(0) = 0.
If ©M)CV and, for any ue O(M) there is some 0 e A\{0} such that

éF(Q“’ cI(W),

then F is the restriction to V of a continuous linear map C(M)— C(N).

(!) For all notions concerning holomorphic functions on Fréchet spaces, see, e.g., [10] or [9].
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Proor: There is sequence {a,: #=1,2,...} in C(N), depending on #, for
which

%F(Cu) =a1+Ca2+ C2ﬂ3 ST

for all LeA\{0}.
By the strong maximum principle for holomorphic functions with values in locally
convex spaces, [13],

(8) apRa=8=0,
ie., F(u) = La;, or also

F(Eu) = §dF(0) u
for all {e4 and all xe OM).

There exist a sequence {P,:#»=1,2,...} of homogeneous polynomials
P,: C(M) —C(N) of degree 7, such that

F(f) = glP,,(f), VfeV.

If Ae C(M)', the scalar-valued holomorphic function f+>(F(f), A) is expressed
by

+ o

EP, B = S (P, A,

and the polynomials f—(P,(f), 1) are continuous. :
Let feV be such that |f(x)|<1 at all xeM. For {e 4 and ue OM), let

g€ C(M) be defined by

Cutf
9 B ;
0 & 1+&fu
where f: x— f(x). If £edd,
_ bt/
& W n

showing that g.e @(M) if {edA. Thus, by (8),
(10) (P,(g), Ay=0, Vtedd, Vn>1.

It will be shown now that (10) holds for all e 4.
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If e A, the Cauchy integral formula yields

1 1
P,(g), A)= — | ——(F ,Aydr,
(Pu(ge), 1) Zm.aA t"“< (tg), A) dv

when 94 is oriented counterclockwise.
Let / be an oriented closed path in 4. Since {+~> (F(zg;), A) is holomorphic in 4,
Fubini’s theorem and Cauchy’s integral theorem yield

T
o4

1 1
lj(P,,(g;), Ay de = Z—MII(I —(Flrg,), l)dr) dt =

1

1
2mi J ¢l
a4

( J’(F(ng), i) d@) dt=0.
I

Hence, by Morera’s theorem, £+ (P,(g;), A) is holomorphic in A. In view of (10),
(P,(g), A)=0, Vted, Vn>1.
For £=0, (9) yields then
(11) (P,f,A)=0 form=2,3,..

and for all bounded functions e C(M). Since bounded continuous functions are den-
se in C(M) and f—(P, f, A) is continuous, then (11) holds for all fe C(M) and all
AeC(M)'. Hence,

P,=0, VYfeCM), n=2,3,... =

As a consequence, the following theorem holds, which can be seen as a Fréchet
space-version of the Schwarz lemma (%).

Tueorem 3: If the bholomorphic map F: B(M)—C(N) is such that:
F(B(M))c B(N), F(0) =0 and, for every ue @(M) there is some o e A\{0}

lF(Qu) € O(N),
Q

then F is the restriction to BIM) of a continuous linear map C(M)—> C(N).

CoroLLary 1: The same conclusion bolds if F is a holomorphic map of a neighbou-
rhood of BIM)U @(M) in C(M), and if moreover F(0) =0, F(B(M))c B(N) and
F(O(M))c O(N).

(®) See [3] for a similar result in the case of ]*-algebras.
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4. Let M be connected and satisfy the hypotheses stated at the beginning of n. 2,
and let T: R, — £(C(M)) be a semigroup such that T(z) is injective and

(12) T(t) @M)c @(M), VteR,.

By Theorem 1, there exist a unique a,e @(M) and a unique continuous map
¢, M—M, with ¢,(M) =M, such that

(13) T(t) f=a, (fog,), VfeCM), VteR,.
The fact that T is a semigroup implies that a,= 1, ¢, = identity and
s (fodyi,) =a,(a,o00,) (fop,o0,)
for all ¢, ,eR, and all fe C(M). Hence,

(14) az,+t2=ael'(a12°¢tl)
and
(15) ¢t1+t2=¢t1 °¢tz

for all ¢, ,eR,.
Suppose moreover that the semigroup T is continuous:

(16) lim T(z) f=T(%) f,

t—4
uniformly on compact sets in M, ze.

(17) lim py (T(2) f— T(%,) ) =0

t— 4

for all fe C(M), all 4 =0 and every compact set Hc M.
Because, by (13), a,= T(z)(1), then, by (17),

(18) t]JIItl pula,—a,) =0
>l
for all t{yeR, and every compact set HcM. Thus t—>a, is a continuous co-
cycle.
Since

pu(fodp,—fod,) = sup{|a,(x) (f(p,(x)) — fl¢,(x)|: xe H} <
< sup { |(T() ) = (Ttry) )0 |: xeH} +
+sup { |a,(x) — @, (x) | |Ag,(x)|: xeH} <

< py (T(2) f_ T(z) f) +PH(at = ato)PH(fO(pto) >



.
(17) and (18) yield
i OPH(f°¢t_f°¢to) =0

=
for all zpe R, fe C(M) and every compact set Hc M. Thus, setting
(19) 5(2) f=fo s,
the above arguments yield the «only if»> part of the following lemma.

Lemma 7: The semigroup S: R, — £(C(M)) is continuous if, and only if. the semi-
flow ¢: R, X M—M is continuous.

Proor: If ¢ is continuous, for any s>0 and any compact set HcM, K :=
:=¢([0, s]1 X H) is compact in M. Hence, for any fe C(M) and all e [0, s],

sup{|f(¢:(x))| : er} ssup{|f(y)]|: yeK},
ze.,
(20) pu(S() ) <pe(f), VfeCM), Vrel0,s]. m

A continuous semigroup T acting on a locally convex space § is said to be locally
equicontinuous () if, for every s > 0 and every continuous seminorm pon &thereis a
continuous seminorm ¢ on & such that

(21) p(T(:) flsq(f), Vfes, Vtelo,s].

If s may be chosen equal to + %, T'is said to be equicontinuous, (see [12] and also
[16]).

Since C(M) is a barreled space, [16], every continuous semigroup R, — £(C(M))
is locally equicontinuous ([6], Proposition 1.1). Hence (21) and Lemma 6 yield

Lemma 8: If the continuous semigroup T: R, — £(C(M)) satisfies (12), for every
compact set HC M and every s > 0 there exist a compact set Kc M and a constant ¢> 0
such that

(22) pu(T(8) f)<epx(f), VYfeCM), Vielo,s].
Hence
(23)  pu(fop,) =sup{|f(¢.(x))|: xeH} = sup {|a,(x) Ap,(x))]|: xeH} =
= sup {|(T() A(x) | : xeH} = p(T(¢) f) < cpk(f), Vfe CM), Vrelo, s,

() For the theory of locally equicontinuous semigroups, see, e.g., [6], [7], [11].
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and therefore

sup[ |f(x)]:xe U ¢,(H)] <csup{|f(x)]|: xeK}

te[0,s]

for all fe C(M).
If ¢,(H) ¢K for some ¢e [0, s, there is x € ¢,(H) such that x ¢ K. Since ¢,(H) is
closed, there is an open neighbourhood U of x disjoint from K. Thus there exists a

function fe C(M) for which
|[/(x) | > cpr(f).

This contradiction proves

LemMa 9: If the continuous semigroup satisfies (12), for every s > 0 and every com-
pact set HCM there is a compact set KCM such that

U ¢,(HcK.

tef0, 51 °

ProposITION 2: If the continuous semigroup T: R, — L(C(M)) satisfies (12), the
semiflow ¢: Ry X M—M is continuous.

Proor: For tyeR,, xpeM, fe C(M) and £>0, let H be a compact neighbour-
hood of x, in M such that

(9, () = fl, (x0))| < g VxeK.

The fact that T is continuous, and therefore S is continuous, hence locally equicon-
tinuous, implies that there is d > 0 such that, if feR, and |#—# | <9, then

PH(f°¢t_f°¢t0| < ';'
Since

1A (@:(x) = F(@ 1, (%)) | < |F9,(x) = F(@,,(x)) | + | F(@,(x)) = (@5 (%0)) | <

=g,

<pu(S(t) £=S(t0) £) + [, (%) = f@ (%)) | < § il

the map (¢, x) —> f(¢,(x)) is continuous on R, X M for every choice of fe C(M). That
shows that the semiflow ¢ is continuous. ®

Remark: The fact that, if the semiflow ¢ is continuous, the semigroup § is locally
equincontinuous follows directly from (20), without appealing to [6].
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Let T: R— £(C(M)) be a group which is continuous, ze. such that (17) holds for
all zyeR and all fe C(M).
If

(24) T(t) ©M) = O(M), V:teR,

then T is expressed, for all fe C(M) and all ze R, by (13), where a,€ ©(M) and ¢, is a
homeomorphism of M; (15), holding now for all #, £, € R together with (14), shows
that (¢, x) = ¢,(x) is a flow on M.

Let S: R— £(C(M)) be the group defined by (19) for all ¢ e R. Proposition 0 ap-
plied to the semigroups R, — £(C(M)) defined by: ¢+ T(¢), ¢+ T(—t), t—> S(¢) and
t—>S(—1¢), yields

THeOREM 4: If the comtinuous group T satisfies (24), the flow ¢: R X M—M is
continuous.
If the flow ¢ is continuous, the group S is continuous.

That implies that, for every continuous seminorm p on C(M) and for all s> 0, a
continuous seminorm g on C(M) exists satisfying (21) for all fe C(M) and all
tel[-s, sl

If T is continuous and, for every compact set HCM there exists a compact set
Kc M such that ¢,(H) cK for all te R, then T is equicontinuous, ze. s may be chosen
equal to + o,

5. Let T: R, —£(C(M)) be a continuous semigroup satisfying (12), and expres-
sed therefore by (13) for all zeR, .

The infinitesimal generator of T is a linear closed operator X: M(X) c C(M) —
— C(M), whose domain M(X) is dense in C(M). The infinitesimal generator of the conti-
nuous semigroup S expressed by (19) is a derivation D: (D) c C(M) — C(M). In par-
ticular, 1 € (D).

For >0 and fe C(M)),

(x)—1

25) ;(m) F ) = & o (500) )30 + %(sm F=P).

Letting ¢ |, 0 and arguing as in the proof of Theorem 2 of [15], one shows that, if
®(X) N (D) contains a function fe C(M) such that f(x) # 0 at all points xe M - in
particular, if 1 € D(X) - then M(X) = D(D) and ¢+~ a,(x) is a function R, — 34 of
class C! for all xe M. Letting
(26) zﬂ(x):= dt(x)|t=O)
then e Cx(M) and (25) yields
(27) X=4I+D.
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Since, by (14),
T(r) a,=a, (at o ¢r) =Qygps
then:

Lemma 10: The function t—> a,(x) is of class C* on R, for all xe M if, and only if,
a,eD(X) for all teR, .

As a consequence of the above observations, the following lemma holds.

LemMa 11: There exists e Cgx(M) for which (27) holds if, and only if,
AX)N@BD)NOM) =0 .

In which case, ®(X) = @(D).

Now, let D be the infinitesimal generator of a continuous semigroup S expressed
by (19), and, for a given function 8 € Cx(M), let X: (D) — C(M) be the continuous
perturbation of D expressed by (27). For any x € M, the integral

i[Blg, () dr
=€

a,(x):

solves the differential equation (26) with initial condition @ (x) = 1, and thus defines
a C* cocycle. The continuous semigroup defined by (13) satisfies (12) and is generated
by X.

The problem arises now to characterize the continuous perturbations of D which
generate semigroups T satisfying (12).

Let Ee £(C(M)), let X: ®(D) — C(M) be defined by

X=E+D,

and let T: R, = £(C(M)) be the locally equicontinuous semigroup generated by
X, [2].

Since 1e®(X), if T satisfies (12) there exist a function y € Cx(M) and a
derivation

Dy: @W(D,) = B(X) = B(D) — C(M)
such that
X = l'yI + Do.

The derivation D — Dy = 7yI — E is a continuous operator on C(M), and therefore
vanishes (see, e.g., [15]). Thus, E =#yl, and the following theorem holds.

TueoreM 5: If X generates a continuous semigroup T satisfying (12), all continuous
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perturbations of X generating semigroups R: R, — £(C(M)) such that

R(t) @(M)cO(M), VteR,,
are given by iBl + X, for any choice of e Cr(M).

6. Under the same hypotheses on M and N stated in n. 2, let U be a non-empty
domain in C and let F: U— £(C(M), C(N)) be a holomorphic map such that

(28) F(w) B(M)cB(N), VwelU.
and
(29) Flw) ®M)cO(N), Vwel.

Let #> 0 be such that A(w, r) = {zeC: |z—w| <r}cU, and let
F(Z)=Fo+(Z_W)F1+(Z_ZU)2F2+...

be the power-series expansion of F in A(w, ), with F,e £(C(M), C(N)) for n=
=0, 1, 2, .... By the strong maximum principle for holomorphic functions with values
in locally convex spaces, [13], if #€ @(M), and therefore F(z) # € @(N), then F,z=0
forn=1,2, ..., ie,

(u, F) 8,y =(F,u, 0,)= (F,u)(y) =0

for all yeNand n=1, 2, ....

For # = 1, the continuous linear form F, 8, is represented by a regular, complex,
compactly supported, Borel measure u, on M. If 0e Cx(M) and t€R, then u=
= ¢ e @(M). Hence (u, u,) =0, that is

B2 (@)
v=0 v!

for all teR. Thus (o, u,) =0 for all o Cx(M), and therefore F,d,=0, or also
(F,f)(y) =0 for all fe C(M) and all yeN. In conclusion F,=0 forn=1,2,3, ..,
and the following theorem holds.

(0", u,)=0

Tueorem 6: If the holomorphic map F: U— £(C(M), C(N)) satisfies (28) and
(29), F is constant.

CoroLLary 2: For any domain UCC containing R%, there is no non-trivial semi-
group T: R, — L(C(M)) whose restriction to R is the restriction to R% of a holomor-
phic map F: U— L(C(M)) satisfying (28) and (29).

7. Theorem 4 of [15] will now be extended to the case in which M is a connected,
n-dimensional (paracompact) complete Riemannian manifold of class C*. Let (,) be
the Riemannian metric and let » be a C ® vector field on M for which there exists a po-
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sitive constant %4 such that

(30) (v(x), v(x)) S k?, VxeM.

Given xye M, let & be the C* integral curve of v with initial condition x; ze.

E(t) =v(&()), Vtel0,d]

for some 2 >0, and &£(0) = x;.
The set

C, (%) ={teR,:3&:[0, 1] >M of class C',

with &(r) = v(&(r)), Vre [0, £] and &(0) =x,}

is open and non-empty.
LemMa 12: The set C, (x,) is closed.
Proor: Let tye C, (x,) and let {#,} be an increasing sequence in C. (x,) such that
t, 1 t,. If £, is the integral curve on [0, #,] of v, with initial condition x, then
V1 <V; = §v2|[0,tn] =£,.

That defines an integral curve &: [0, £,) =M of v with initial condition x, such

that &0, ,,1=&,-
Let d: M x M—R, be the distance defined by the Riemannian metric of M.

a) It will be shown that {£,(#,)} is a Cauchy sequence for 4. If v, <v,,

ty,

A€, (8,), E0(6,)) < [ (E), 0y )2 de =

tyy

tvz IVZ

= [ (&), o(ED))y ) 2dr <k [ de <kt 1),

tyy ty
Since {¢,} is a Cauchy sequence {&,(#,)} is a Cauchy sequence.
b) Let y,= ,,EIB.» &,(t,). For any £ > 0 there exists an index v( =1 such that,
whenever v = v,
t,e(tp—e,4) and d&,, ) <e.
Let te (t,— €, t,) and let v > v, be such that #<¢#,<#. Then

d(g(t); )’0) 3 d(g(t), Ev(t)) + d(&v(t): gv(tv)) + d(gv(tv)) yO) <

< I((é,,(r), E,(Ne,m) Pdr+esk(t,—t)+e<(k+1)e.
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¢) Letting &(#y) = y,, the map &:[0, £,] =M is continuous. The proof will be
complete once we show that &:[0, #,] =M is an integral curve of ».
By b) there exist an open coordinate neighbourhood U of y,, with local coordina-
tes 7y, ..., 7y, and an index v, = v, such that

&) elU, Vezy,.

The neighbourhood U can be chosen so small that there exists a positive constant ¢
such that, denoting with #,, ..., 7, the components, with respect to 7, ..., 7,, of a
tangent vector 7 to M at a point x € U and setting

In|?=ni+... +92,

then
_1 2 2 2
6'2 Inl s(’%ﬂ)ng ]ﬂl ) VxeU.

Since

E) = &,,(8,) = [0(E() dr=E(10) = 1) + &,,() - £,,(s,,)

tyy

14} )

~ [ol&(r) dr — [o(&(n) dr = Et) = &) = [ (&) dr,

ty, t )
then

E(to) = &, (8,,) = [ o(&(r)) dr

by

< |&(to) — &) | + [ |0(E() |dr <

< |&(%) — &) | + CI ((&(r)), v(E(M))) 2 dr < |E(2y) — E(2) | + ck(z — t,) =0

as t T t,. Hence

Et) = &,,(1,,) = [0(E()) dr,

tyy

and therefore £, C, (x,). ®
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In conclusion, the following theorem holds.

TueoreM 7: If the C*® Riemannian manifold M is connected and complete, and if v
is a C® vector field on M for which (30) holds, there is a C flow ¢: R X M— M such
that

iq)(t, x) = v(p(2, x))
dt

and
¢(0, x) =x
for all teR ans all xe M.

At this point, since Lemmas 6 and 7 and Corollary 1 of [15] do not require the
hypothesis that M is compact, proceeding as in [15] one proves

Tueorem 8: If the locally equicontinuous group T: R—> L(C(M)) is such that
T(z) ®(M) c OM) and T(t) C= (M) c C> (M) for all t € R, the infinitesimal generator
X of T is given by (27), where D is a C* vector field on M and B e Cg’ (M).

Viceversa, let D: @(D)cC(M)—C(M) be a  closed operator such that
C* (M) c 0X(D) and that D\qp) is a derivation defined by a C* vector field v on M sati-
sfying (30). Let t—> a, be a continuous cocycle associated to the flow defined by D, such
that a,e C* (M) N OM) for all teR, and let peCg’ (M) be given by (26).

Then the operator X: M(D) — C(M) defined by (27) is the infinitesimal generator
of a locally equicontinuous group T: R—> L(C(M)) such that T(t) @(M)c O(M) and
T(¢) C® (M) c C* (M) for all teR.
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