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AssTRACT. — A second-order hyperbolic equation with non-linear damping term is consid-
ered in a cylinder 2 X R,, where 2 cR? is a bounded domain. Sufficient conditions are found
for the existence, uniqueness, and asymptotic stability of a time-bounded solution. Under the
additional condition that the right-hand side of the equation is an almost periodic function in
time, the almost periodicity of this solution is proved. An example of a right-hand side for
which the problem in question has no almost periodic solution is constructed.

Comportamento asintotico delle soluzioni di equazioni iperboliche del secondo ordine
con termine dissipativo non lineare

SunTo. — Si considera un’equazione iperbolica del secondo ordine, con termine dissipativo
non lineare, in un insieme cilindrico 2 X R,, con 2 dominio limitato contenuto in RZ. Per una
tale equazione si danno condizioni sufficienti a garantire I'esistenza, I'unicita e la stabilita asin-
totica di una soluzione limitata rispetto al tempo. Si prova inoltre che questa soluzione & quasi
periodica rispetto al tempo se tale & il secondo membro dell’equazione. Si costruisce infine un
esempio di secondo membro per il quale il problema non possiede soluzioni quasi periodiche.

0. - INTRODUCTION

Let 2cR” be a bounded domain with Lipschitz boundary 892. Consider the
problem

(0.1) uy+ gla,) + Lu=h(x, t),
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(0.2) ulag=0, -
(0.3) w(x, T) = uy(x), u,(x, ) =u(x),

where 7€ R, uye H} (RQ), ;€ L?(2), g: R— R is a non-decreasing function, and L is
a second-order partial differential operator of the form

) ou
Lu= —.2 a—)q(a,-j(x)a—)-kao(x)u.

/=1 X

We assume that the operator L satisfies the following two conditions:

(L1)
xe€

ii» 40 €L 7 (8); a;(x) = a;(x), ag(x) =0 for 1 <7,7<# and almost all

(L2) i a;(x) E;E,2 1| &|? for EeR” and almost all xe 2, where 4> 0.
ij=1

It is well known that under the above conditions the problem (0.1)-(0.3) has a uni-
que weak solution on the halfline R,:=[7, + ©) for any right-hand side
heLl.(R,, L?(R2)) (see [4], Chapter 2). The present paper is devoted to studying the
asymptotic behaviour of solutions to the problem (0.1)-(0.3) as #— + o in case the ri-
ght-hand side A(x, ¢) is a bounded or almost periodic (a.p.) function of the variable ¢
with range in L2(£2). This problem was first studied by Prouse [11] (see also [1]). He
proved that if A(x, ¢) is a Bohr a.p. function, then under some conditions on g(p) there
is a unique a.p. solution, which is asymptotically stable as #— + . Prouse’s investiga-
tions were continued by many mathematicians (see the references in [4,15]). Accor-
ding to one of the most general results [5], the above assertion is true if # =3, h(x, ¢)
is a Stepanov a.p. function (see Section 2), g(p) satisfies the inequality

(0.4) lg(p) | < C(1+ |p|),

where £ < (7 +2) /(n — 2), and the inverse function g ! (p) is defined and uniformly
continuous on R. In the present paper, a similar result is established for the case £ =
= (n+2) /(n — 2). For instance, it can be applied to an arbitrary monotone-increasing
continuous function g(p) such that

N
glp) = ‘Zlfi|P_Pi|k"_l(P_Pi) for |p| Zpp>1,

where N=1,p,eRand>0for1</<N,1<k<(n+2)/(n—2),and 0 <k; <
< (n+2) /(n—2)for2 < i< N. We also consider the case in which the right-hand side
of (0.1) is a Levitan a.p. function.

Let us briefly describe the structure of the paper. In § 1 we prove the existence,
uniqueness, and asymptotic stability of a uniformly bounded trajectory (defined
throughout the time axis) for abstract processes in a Banach space. In the case of a.p.
processes, the almost periodicity of the constructed trajectory is established. In § 2 we
apply these results to study the asymptotic behaviour of solutions to the problem
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(0.1)-(0.3). Theorem 2.2 is the main result of this paper. In §3 we construct an
example of an unbounded Levitan a.p. function A(x, ) for which the problem (0.1),
(0.2) has no ap. solution. In Appendix we prove a variant of the Gronwall
inequality.

The author is grateful to Prof. M. L. Vishik for attention and encouragement and
also to the Joint-Stock Company «Ario-Niks» for the help in preparation of the
manuscript.

Nortation: Let B be a Banach space with a norm ||-||3 and let Jc R be a closed in-
terval. We shall use the following function spaces:

L?(J, B) is the space of Lebesgue-measurable functions f: J—B such that
I||f(t)||%dt< o if 1<p< o and esssupl||f(t)|z< ® if p= oo;
te]

d C*(J, B) is the space of k times continuously differentiable functions on ] with

range in B; if £ =0, the corresponding superscript will be omitted.

We denote by C; and ¢; unessential positive constants.

1. - ASYMPTOTIC BEHAVIOUR OF TRAJECTORIES FOR ABSTRACT PROCESSES

1.1. Existence, uniqueness, and asymptotic stability of a bounded trajectory.

Let E be a Banach space with a norm ||-|[z. Suppose that U, (¢, 5): E—E, ¢ =5, is
a family of processes depending on a parameter o € =, where X is a metric space with a
metric ds. (For the definition of a process and related notions see [2], § 1, 2). It is as-
sumed that a group of continuous operators T(s), s € R, acts on 2 and that the follo-
wing conditions hold.

(H1) The map T(s)o: R—ZX is continuous with respect to seR for any
oe’.

(H2) The translation identity holds (see [2], p. 171), that is,

(1.1) Uty olt, s) =Us(t+7,5+7r) for ceX, reR, t=s.

(H3) For any positive numbers R and u there are uniformly bounded functions
a, r(t) =20 and b, (¢, s; r) 20 defined for =5 and »=0 such that

(1.2)  |lu(z, s) U- Uy (2, 5) V“ESa”,R(t—s)HU— V||E +B#,R(t, s;ds(o,0)) +u,
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where 0, 0€Z, U, VeE, ||[Ulg, [V|g <R, and ¢=s. Moreover,
(1.3) a4, g(t) >0 as t—>+o,

(1.4) sup b, g(¢,5;7)—>0 as r—0

~T<s<t<T
for any T> 0.
(H4) There is 0 € X such that the process Uy, (¢, 5) has a uniformly bounded semi-
trajectory {V;(2), =0} in E.

TueoreM 1.1: Let Conditions (H1)-(H4) hold. Then for any o € X there is a unique
uniformly bounded trajectory U,(¢) of the process U, (¢, s). Moreover, the following as-
sertions take place.

(i) Uppyo(8) =Uy(t+7) for t,7reR and 0 2.
(ii) The map U,(¢): T X R—E is continuous with respect to (o, t)eZ X R.
(iii) The trajectory U,(t) is asymptotically stable as t— + . Moreover,

(1.5) sup  ||U, (¢, D) V=-U,(O)|g—=0 ast—7—>+»
oceX, VeBg

for any R>0, where BRCE is a ball of radius R centred at zero.
Proor: 1) We first show that U, () = U, (¢, —)0 (where 0 is the zero element in

E) is a convergent sequence.in E for any 0 € X and # € R. Indeed, by virtue of identity
(1.1) and inequality (1.2) with =1, we have

(U (D) llg < 1Ug—myo (2 + 72, 000 = Uy (2 + 12, 0) Vo (0) [l + [V (£ + m2) || <
<ay g(t+m)||[Vo(0) g + by, r(2+m, 0, ds (T(—m) 0, 04)) +

+1 +sup|[Vo(n) g,

r=0

where ¢ = — and R = ||V, (0)||g. Since 4, g and 4, g are bounded functions, we con-
clude that

(1.6) lU,(5)|le<R, for all % and = —m,

where R; > 0 is a constant. Let us fix an arbitrary € > 0. According to inequalities (1.6)
and (1.2) with R =R, for any x>0 we have

(1.7) Un(8) = U S gy g, (2 + B[ U, (—k, =) 0lg + 1 SRya, g, (t+k)+u,

where 722 k= —t. Set u=¢/2. By (1.3), there is ky> 0 such that g, g (2 + k) <
< &(2R,) 7! for k = ky. Inequality (1.7) implies that ||U,,(¢) — U.(#)||c < € for &= k,.
Thus, for each 0 € X the sequence U, (¢, —72)0 converges to a function U,(#) contai-
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ned in Bg . It is easily seen that U,(¢) is a trajectory of the process U, (2, s).

2) We now show that (1.5) holds and that U, (¢) is the only uniformly bounded
trajectory. Let Ve Bg, where R = R;. In view of (1.2), we have

Uy (2, 7) V = U, (8)|lg < |Us (2, T) V= Uy (2, T) U, (2)||g
<a, p(t— DV-U,(0)||g +u < 2Ra, r(t—7T)tu.

Combining this with (1.3) we arrive at (1.5).
To prove the uniqueness, assume that V,(¢) is another bounded trajectory for
U, (2, 5). In this case, relation (1.5) implies

1U,(8) = Vo ()|lg < [Us (2, 7) V,o(2) = Uy()]g—0 as 7> -,
whence follows that U, =V,.

3) Thus, it remains to prove assertions (i) and (ii). To this end, we note
that

Uty o2, ) Up(s +7) = U (e + 7,5+ 7) Uy(s +7) = Uyt + 7).

This means that U, (z + ») is a bounded trajectory for Uy, ,(¢, s) and therefore, by the
uniqueness, it coincides with Ur,),.

We now show that U,(z) is continuous with respect to (¢, o). Assume that sequen-
ces {#,} CR and {0,} CZ converge to te R and o e Z, respectively. In this case, ac-
cording to (H3), for any u >0 we have

(18) ”Ua/,(tk) T Ua(t)"E < ”‘u'a/,(tle’ 5) Ua/,(s) B uT(t—t/.)a(tk) S) Ua(s +tt- t/e)"E s
S a}l,Rl(tk SE S)”Uak(‘y) I Uo(x el tk)"E +l’/¢, R, (tky 5, dz(aley T(t o tk) 0)) +/l .

It follows from (1.3), (1.4), and Condition (H1) that the first and second terms on the
right-hand side of (1.8) tend to zero as s— — ® and &£— ®, respectively. The theo-
rem is proved.

1.2. Existence of almost periodic trajectories.

We now consider the case in which the parameter space 2 coincides with the hull
of an a.p. function. Before stating the corresponding results, recall some notions in the
theory of a.p. functions (see [1, 4, 10, 15]).

Let M= {1,}¢-CR be a countable module [10, Chapter III, § 2]. We set

Dg(2, s) = k§12_k |exp (A, (t—5)) — 1|
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for ¢, seR. In what follows we assume without stipulation that the module I has no
basis consisting of a single element, that is, it cannot be represented in the form It =
= {Jj: je Z} with A # 0. In this case, Dy defines a new metric on the real line R. Deno-
te by Ry the set of real numbers endowed with the metric Dy.

Let M be a complete metric space with a metric dy. Since R and Ry coincide in
the set-theoretical sense, any function f(¢): R— M can be regarded as a map from Ry
into M.

DeriniTioN 1.2: A function f: R— M is said to be Levitan a.p. (Bobr a.p.) with a
module contained in I if f(¢) is continuous (uniformly continuous) as a2 map from Ry

into M. The set of these functions will be denoted by LAP(M, ) (accordingly,
APM, IM)).

We now assume that the above-mentioned parameter space X and the group of
operators T(s) satisfy one of the following conditions.

(H5) There is a metric space M and a Bohr a.p. function ¢, e AP(M, IN) such
that X coincides with the hull 3C(g,) of @, (see [10], Chapter I, § 3), and T(s) has the
form

(1.9) (T(s)o)(¢) =0t +5) for 0eX.
The metric on ¥ is defined by the formula

ds(0y, 0;) = Sllg du(o1(2), 0,(8)) .
te
(H6) There is a metric space M and a Levitan a.p. function g€ LAP(M, )
such that ¥ coincides with the set S(g¢) = {@¢(- + 5), s€ R} of the shifts of g, and the
group T(s) is defined by (1.9). The metric on X has the form

ds(0,, 0;) = 'le_jK(dM,/(Ub g,3)), dw, (01, 02) = |S}1P dw (0,(2), 0,(2)),
i= 1) <5
where k(s) =s(s +1)7}, s=0.
Definition 1.2 easily implies that in both the cases Condition (H1) is satisfied. The
two assertions below refine the conclusion of Theorem 1.1 in the case of a.p. processes

(cf. [13]).

PropositioN 1.3: Let Conditions (H2)-(H5) hold. Then the trajectories U,(2),
o€ X, constructed in Theorem 1.1 belong to AP(E, ).

ProposirioN 1.4: Let Conditions (H2)-(H4) and (H6) hold. Then the trajectories
U,(2), 0 €2, constructed in Theorem 1.1 belong to LAP(E, IN).
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Proor or ProrosiTioN 1.3: We must prove that the function U,(z): Rp— X is
uniformly continuous for any o € 2. To this end, it suffices to show that if a sequence
{#} cR is fundamental, then so is the sequence {U,(#)} cE.

Let {#} c Ry be a fundamental sequence. In view of Condition (H5), T(#,) 0 =
= o(- + #;) converges to a function ¢, in X. Therefore, by virtue assertions (i) and (ii) in
Theorem 1.1, we have

/el_l_{r; Ua(tk) = kl—n)T:c UT(tk)U(O) y Ual(o):
whence follows that {U,(#,)} is a fundamental sequence.

Proor of ProrosiTioN 1.4: We must prove that the map U,(#): Rgz— X is conti-
nuous for an arbitrary fixed ce 2. Let te R, {#} cR, and #,—¢in Ry as £—> «. In
view of Condition (H6), we have T(#,)0— T(t)0o in X as £—> . Combining this with
assertions (i) and (ii) in Theorem 1.1 we obtain

klin’:o Ua(tk) = kli)l’r; UT(tk)g(O) = UT(,)g(O) o Ua(t) )

which means that U,(¢) is continuous at the point € Ryy.

2. - ASYMPTOTIC BEHAVIOUR OF SOLUTIONS TO THE PROBLEM (0.1)-(0.3) As t— + o

In this section, we study the asymptotic behaviour of solutions to the problem
(0.1)-(0.3) as t— + 0 in case the right-hand side 4(x, ¢) is a bounded or a.p. function
with range in L?(Q).

2.1. Statement of the main result.

We introduce some notation. Given a Banach space B and an interval Jc R, we de-
note by L{ (], B) the space of measurable functions f(¢): J— B such that fe L?(I, B)
for any finite subinterval IcJ. We also define the space S(J, B) consisting of the fun-
ctions fe L. (J, B) such that

I Alsg, 5y := sup f /) lpds < o .

tE]]n [¢,+1]

Recall the notion of almost periodicity in the sense of Stepanov and Levitan-Stepanov
(see [4], Chapter 2; [10]).

DerinimioN 2.1: Let Itc R be a countable module. A function f(¢) e L. (R, B) is
said to be Levitan a.p. (Levitan-Stepanov a.p.) with module contained in M if the
function f(¢+7), nel0,1], belongs to AP(L'([0, 1], B), M) (accordingly,
LAP(L([0, 1], B), M)). The set of these functions will be denoted by SAP(B, M)
(accordingly, LSAP(B, IR)).
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We shall denote by H and H, the spaces L2(2) and H (£2) with the norms

172 7 au 8u 1/2
b= (s b= [ £ a—+aou)dx) ,
0 9 l ;

]
respectively. For a function u(x, £), set E,(¢) = (1/2)(|lu,(-, D[P + |lu(-, 8)|).

We now turn to the investigation of the problem (0.1)-(0.3). Suppose that the coef-
ficients of L satisfy Conditions (L1) and (L2) (see Introduction) and that g(p) is a con-
tinuous non-decreasing function on R. It can be assumed without loss of generality
that g(0) = 0. As is shown in [4, Chapter 2], if e L;}.(R,, H), then for arbitrary two
functions #ye H; and #; € H the problem (0.1)-(0.3) has a unique weak solution
ue C(R,, H)) N C'(R,, H). Moreover, if #(x, ¢) and v(x, ) are two solutions, then
E,_,(¢) <E,_,(s) for all = 5 = 7. Denote by E the space of the vector functions U =
= [ug, ;] € H, x Hwith the norm [|Ul|z = ([l + ||, | )*/2. Thus, for each right-hand
side » € L;. (R, H) we can define a process of non-expanding operators U(z, s): E—
—E, ¢ = 5, mapping a vector function [#y, #;]1to [u(-, ¢), u,(-, )], where u(x, #) is the
solution to the problem (0.1)-(0.3) with 7=s.

The asymptotic behaviour of solutions to the problem (0.1)-(0.3) will be obtained
for the case in which the function g(p) satisfies the following assumptions
(cf. [7D).

(G1) The function g(p) is monotone—increasing and continuous on R; the inver-
se function g ~!(p) is defined and uniformly continuous on R.

(G2) Depending on the dimension # of the domain Q, the function g satisfies
one of the following conditions:

(a) if » =3, then g can be represented as a sum of non-decreasing functions
&> ---» gy on R, where g, is uniformly continuous on R and the inequality

2.1) |2:(p) — &i(q) | SCi (1 +glp) p+ g(q) )% |p — q]*, p, g R,
with 0 <a,;<1 and k;=(#2+2—a,(n—2))/2n holds for i=1, ..., N;

(b) if n =2, then g is representable as a sum of two non-decreasing functions
& and g,, where g, is uniformly continuous on R and g, satisfies the inequali-
ties
(2.2) |g1(p)| <Ciexp(c |p|”), peR,

) 1&1(p) —a(9) | <G (1+¢() pfp) +g(q) af (@) |p—4]*, |p—9g| S1,

with y <2, 0 <a<1, and f(p) =(In(2+p?))*(In (2 + glp) p) "2, £ > 0;

(c) if »=1, then g can be represented as a sum of two non-decreasing fun-
ctions gy and g;, where g, is uniformly continuous on R and g; satisfies inequality (2.3)
with f=1 and 0 <a <1.
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We shall denote by C,(R, E) the space of uniformly bounded continuous fun-
ctions U(-, ¢): R—E.

Tueorem 2.2: Let QCR” be a bounded domain with Lipschitz boundary 38. Sup-
pose that L and g satisfy Conditions (L1), (L2), (G1), and (G2) and g(0) = 0. Then for
any right-hand side h e S(R, H) the problem (0.1), (0.2) has a unique solution u(x, t)
such that [u, u,] € C,(R, E). Moreover, the following assertions take place.

(i) The solution u(x,t) is globally asymptotically stable as t— + o, that is,

24)  sup  (luC-, &) = oC, £ O+ |l C, ) —0,¢, £, D) =0 ast—T>+®
[ug, 411 € Br

for any R > 0, where v(x, t; T) is the solution to the problem (0.1)-(0.3) and BRCE is a

ball of radius R centred at zero.

(ii) If the right-band side h(x, t) belongs to SAP(H, IM) or LSAP(H, IN) for so-
me countable module INCR, then the vector function [u,w,] is an element of

AP(E, M) or LAP(E, IN), respectively.

Remarks: 1) Under some additional conditions on g, an estimate for the rate of
convergence in (2.4) is obtained in [4], Chapter 5; [7].

2) In the case » =1 and h e AP(H, IN), Haraux established the existence and
asymptotic stability of a Bohr a.p. solution for the problem (0.1), (0.2) assuming only
that Conditions (L1), (L2), and (G1) hold (see [4], Chapter 4; [5]).

3) In the case where 7 = 3, g is a locally Lipschitz function, and its derivative sa-
tisfies the inequality 0 <y < g’ (p) < C(1 + g(p)p)*"" almost everywhere on R, the exi-
stence, uniqueness, and asymptotic stability of a bounded (Bohr a.p.) solution are pro-
ved in [4], pp. 206-211; [7].

4) It is easy to see that if Condition (G2) holds, then g satisfies inequality (0.4)
with £ = (z+2) /(n — 2) for n = 3. Some sufficient conditions ensuring the existence
of a Bohr a.p. solution for the problem (0.1), (0.2) and allowing a faster growth of the
function g at infinity are obtained in [6] and [12].

5) In Section 3, we shall construct an example of an a.p. function
heLAP(H, IN) not belonging to S(R, H) for which the problem (0.1), (0.2) has no
a.p. solution.

2.2. Proor oF THEOREM 2.2: We shall show that the solving process U(#, s5) of the
problem (0.1), (0.2) is contained in a family of processes that satisfies the conditions of
Theorem 1.1. This fact will imply the existence, uniqueness, and asymptotic stability
of a bounded solution #(x, ¢) such that [#, #,] € C,(R, E). To prove assertion (ii), we
shall use Propositions 1.3 and 1.4.
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Set E=H, xH, ¥={h(x, t+5): seR},

(T(s) 0)(x, t) =0(x, t+5), o0€eX,

25) U, (¢, $)ug, w1 = Lulx, t), u,(x, 8)], [uy, w;]1€E,

(<]
ds(0,, 0,) = 2}2_"1‘(”01 - 0lls—j0m),  01,0,€Z,
=

where k(s) = s(s + 1) ! and u(x, #) is the solution to the problem (0.1)-(0.3) with » =
=0 and 7 =s5. It is easy to see that the family of processes U, (¢, s) satisfies Condi-
tions (H1) and (H2). To verify (H3) and (H4) we need some auxiliary asser-
tions.

Lemma 2.3: (a) Let g be a continuous function on R satisfying Condition (G1).
Then for any v >0 there is y(v) >0 such that
@) —g@D)p—-q)=yW) |p—q|>~v for p,q€R,
where v/y(v) =0 as v— +0.
(b) Let gy be a uniformly continuous function on R. Then for any B> 0 there is
I(B) >0 such that
|&(p) —&(q) | STB) |p—q| +B  for p,qeR.

Lemma 2.3 is a simple consequence of the definition of the uniform continuity
(e.g., see [4], p. 162 for the proof of assertion (a)).

Lemma 2.4: Let a function g satisfy Condition (G2) and let g(0) = 0. Then for any
B >0 there is C3=C5(B) >0 such that

(2.6) gzl -4 S,Bfg(u) udx +C;(B) for ueH,;,
@

where |-||_, is the norm in the dual space H} = H () of H,.

Proor: Inequality (2.6) is proved in ([3], Proposition 4, p. 101) for » =2 and in
[4], p. 181 for »=1. Let »=3. It follows from (2.1) that inequality (0.4) with &=
= (#+2) /(n — 2) holds for g. Therefore (2.6) is a consequence of Proposition IV.4.1.1
in ([4], pp. 181-182).

Lemma 2.5: Under the conditions of Theorem 2.2, for any R >0 there is C,=
= C4(R) > 0 such that the solution u(x, t) to the problem (0.1)-(0.3) with arbitrary h =
=o€ X and [uy, u,] € By satisfies the inequality E,(t) < C, for t = t. In particular, Con-
dition (H4) holds for the family of the processes U,(¢, s).

Proor: The definition of the metric space X and the conditions of Theorem 2.2
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imply that [lol|sx, ) < Cs for every o € 2, where the constant Cs > 0 does not depend
on 0. Therefore Lemma2.5 follows from TheoremIV.2.1.1 in ([4], p.149) and
Lemma 2.4.

To simplify notation, the integral f f1(x) £(x) dx will be denoted by (£, £) for

any two functions £, (x) and £ (x), andgthe dependence of functions on x and ¢ will not
often be indicated.

LemMMA 2.6: Let a function g satisfy Condition (G2) and let g(0) = 0. Then there is
a continuous increasing function b(r) =0 defined for r=0 such that

2.7) [ lg(w) — g(0)lw| dx < Bb(lwll,) Flu, v) +
Q

+c6(nu — o + [ (gla) — o)) — ) dx)
Q

for any $>0, where u, v, weH,, Flu,v) = I(l + g(u) u+ g(v) v) dx, and the con-

Q
stant Cq = C4(B) >0 does not depend on u, v, and w.

Proor: We first assume that 7z = 3. Let us fix an arbitrary 8> 0. In view of Condi-
tion (G2), Lemma 2.3, and the Schwarz inequality, we have

28) [ lgo®) = go(w)llw| dx < 1) = ol eol] + Blhel o <
Q

<BC (1 +[lelf) + Cs(B) |l — oIP,
()
@9 [lgw) - gw)lw| de< j'gf gla, | = o} o] de <
Q

< J’ | g(#) — g;(v) |

e BB ] ) de <

Q

1
<B ™3 (g(u)—gv), v)+ﬁCII(l+g ) u+g(v) o) |w|!tedx <

1
<73 (glu) — gv), u—v) + BC,F(u, v) b2 A&, 1<;<N,

where 7 =2#/(n — 2). To estimate the second term on the right-hand side of (2.9),
we apply the inequality ||lw|| mg) < const|w|;, where weH; (for instance,
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see [4], Theorem 1.1.3.3). Its substitution into (2.9) results in

j |gi(#) — g(W)|lw| dx < B~V (g(u) — g(v), u — v) + BCy Fu, v)ollw|t e,
2

where 1 <7< N. Combining this with (2.8) we derive (2.7).
Con51der now the case # = 2. Let us fix an arbitrary 8 > 0. Since (2.8) holds for any
n, it suffices to estimate the integral

I=I|gl(u)—g1(v)| |w) dx .

Set @(p) = p(In (1 + p))* and Ag(p) = Be(p), p = 0, where & > 0 is defined in (2.3).
Denote by Af () the Legendre transform of Ag(p), that is,

Af(q) =qsup{p=0: A5(p)=q}, 420,
where Ay is the derivative of Ag. By the Young inequality,

Jlgl(u) 8()|

2.10) I< [ |gi(@) - g ()] dx + ) = 0|* |w]| de <
Q

< [ la@) - ) |(45 (1) + Ay(|w])) dx +
2,

f |g1 —g ()|

-v|®

ST (A (- o)) + Ag(Jw])

where 2, = {xe 2: |u(x) — v(x) [*Z v}, 2, =02\2,, and the positive constant v =
=v(f) <1 is so small that

(2.11) AF(p)<p for0<psvw.

Denote by I(R2,) and I(£2;) the integrals on the right-hand sides of (2.10). According
0 (2.3) and (2.11), we have

(12) I(R,) <

sAﬂ*(m-“aj(g(u)—g(y), u—v) dx+,3](|g(u)| + |g(0) |Dg(|w]|) dx

QI’ QV

2.13) IR, <p f (1+ () uf(w) + g(v) of () )(1 + @(|w])) dx
Y

Furthermore, it follows from (2.2) and the definition of f(p) that

(2.14) |f®)| <Cw, |pf@)|=6>0 for peR.
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Substituting (2.12) and (2.13) into (2.10) and taking into account (2.14), we
derive

(2.15) 1< Cy B(F(u, v) + 1) + C,(B) (g(u) — g(v), u—v) ,

where

I = j (1 + g(u) uf(2) + g() of ) |w]) dx .
Q

To estimate I; we need the Pokhozhaev-Trudinger inequality ([14], Theorem 2): there
are positive constants k and Cy; such that

(2.16) jexp (k2?)dx<C;; for zeH;, |4 <1.
Q

Denote by y(p) the inverse function of ¢ and set
B,(p) =exp (kp?(p)/(1+7¢%)), p=0,
B¥(¢q) =qsup{p=0:B/(p)=q}, 420,

where r = |jw||; and B, is the derivative of B,. It is easily seen that B;* is well defined.
Moreover, B*(g) is an increasing function on R, = [0, + @), and the inequali-
ties

(2.17) |B*(q)| < b:(r) glng)*?(Inlng)*, g=g>1,
(2.18) pq<B,(p)+B*(q), p,q=0,
hold. Here and henceforth 4,(r), =1, 2, ..., symbolise positive increasing functions

of »= 0. Inequalities (2.2) and (2.17) with ¢ = g(«) uf(«) imply that
| B* (g(u) uf ()| < Ciqby(r) (1 + g(u) u) .
Combining this with (2.16) (where z=w(1+ r?)"1"2) and (2.18), we obtain

Jg(u) uf(u) p(|w|) dx < I[B,(tp( |w|)) + B (g(n) uf(u))] dx <
Q Q
< Iexp (kw2 (1 + |jw|f)~1) dx + Cia by (7) J’(l + g(u) u) dx <
@ Q
< by(r) J(l + glu)u) dx ,
Q

[ o)) de< [[B# (1) + B (g(|w])] dv < b5 ().
Q

Q
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Thus, we have
L < by(|wlly) F(u, v).

The required inequality (2.7) follows now from (2.15).

The proof of (2.7) in the one-dimensional case is simpler than for » = 2. The di-
stinction is that we use the continuous embedding H; ¢ C(22) when estimating I. (Here
C(Q) is the space of continuous functions on 2). For brevity, we omit the proof of the
lemma in the case #» = 1.

For ]=R or R, we denote by W;%:?(J, B) (where ke Z, £=0, and p =1 or »)
the space of functions fe L2 (], B) whose generalised derivatives up to the order £ be-
long to L&.(], B).

Lemma 2.7: For any u > 0 and R > 0 there are 6(u, R) > 0 and Cis(u, R) > 0 such
that if u(x, t) and v(x, t) are two solutions to the problem (0.1)-(0.3) with right-hand
sides 0, 0 € X and initial data [uy, u, ], [vy, v1] € B, respectively, then the inequality

(219) E,_,(t) sCsexp(—268(t—5))E,_,(s) + Cysllo — olfs, . 1y + 1
holds for t=s=1. In particular, the family of processes U,(t, s) satisfies Condi-

tion (H3).

Proor: We shall prove (2.19) for the case in which the right-hand sides and the
solutions possess some additional smoothness, namely, o, o€ Wi.*(R, H) and
u,ve Wi * (R, H)) N WZ.*(R,, H). The general case can be obtained by passing
to the limit in the inequality for smooth solutions (see [4], p. 155).

Let us fix an arbitrary u > 0. Consider the functional

(2.20) At) =E,(¢) + n(w, w,),

where w = u — v and the constant # > 0 is sufficiently small and will be chosen later.
Let 1, > 0 be the first eigenvalue of L in the domain Q with Dirichlet boundary con-
dition. It is easy to see that if 7 <V/2,/2, then

2.21) E,(¢)/2 <z(t) S3E,(1)/2,
2.22) llew; + nw|| < 2(E, (£))72 < 21/2(x(2) )2

for any ¢. Since # and v are solutions to (0.1) with right-hand sides ¢ and g, the func-
tion z(#) satisfies the differential equation

(223) z2'(5)+ (g(ut) - g(vt): wt) ey 71”10:”2 + 77”10“% + 77(g(ut) - g(”t)» w) =
=(o—o0, w,+nw),

where 2" = dz/dt. In view of Lemmas 2.3 (4) and 2.6, for any positive numbers v and 3,
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we have
224)  (glu) = g(v,), w,) = yW) |, [P — vmeas (2),
2.25)  |(g(w) — g(v,), w)| < Co(B) (P + (g() = g(os), w,)) +

+Bb(lw-, ) A1),
where meas (2) is the measure of 2 and f(¢) = j (1 + g(n,) u,+ g(v,) v,) dx. Let us

I’
estimate b(||w(-, #)|l;). Lemma2.5 implies [w(-, )|, <2(E,(¢) + E,(£)) <4C,(R).
Since b(r) is an increasing function on R .., we have b(|jw(-, #)||,) < 5(4C,) =: C for
t = 1. Combining this with (2.21)-(2.25) and the Schwarz inequality, we derive

2.26) 2" () + [yw)/2 = n(Cs(B) + 1)||w, | + nllol2 +

+(1/2 = nCe(B) ) glu,) — glv,), w,) < p(2) (2(2) )72 + (1),

where

2.27) @(z) = vmeas (2)/2 + gBCif(),  w(t) =2V2|o(-, £) — o(-, 2)| .

It can be assumed without loss of generality that

(2.28) y(») <min{2 Vi, 1}.
Set

y(v) Vi, 2 y(v) 1
229) 7= < N TR ALd DR
229) w= e - 2 37T 3G R +2) 6

It follows from (2.21), (2.26), and (2.28) that
(2.30) 2'(8) +282(2) S (&) ()2 + g(2) .

To estimate z(#) we apply the following lemma whose proof is given in Appendix
(see § 4).

Lemma 2.8: Suppose that an absolutely continuous non-negative function z(t) sati-
sfies inequality (2.30) for almost all t = 1, where 6 >0, ¢, e LL (R,), and ¢, =0
almost everywhere on R,. Then the inequality

5 20
231),. s eT {e T )+ (2 = 1) gllsis, o+ (2= 1) P Wl R)}

holds for t=s=1.
It is easily seen that (e” — 1)~ < 7! for »> 0. Therefore, in view of (2.27), (2.29),
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and (2.31), the function z(#) defined in (2.20) satisfies the inequality
(2.32) 2(¢) < Cp(exp (=062 —5))2(s) +20 2|lo — olfis. o my) + Pls, ), t=5,

where @(s, #) = C;70 *||@llsics, 1, ) and the constant C;; >0 does not depend on ¥
and B. We claim that

(2.33) D(s,t) <2 fort=s=t
under suitable choice of v and 8. Indeed, it follows from (2.27), (2.29), and the defini-
tion of @ that

(234) ®(s, 1) < %cn 4 meas (2) (C,(8) + 1)# + CoBIFO s, 0

Let us estimate the second term in the brackets on the right-hand side of (2.34). Be-
cause #(x, t) is a solution to the problem (0.1), (0.2) with 4 = g, for any r = 7 we have
(see [4], Proposition 11.1.2.1)

r+1 r+1
j jg(u,)u,dxdtsE,,(r)—E,,(r+1)+ j(a, u,) dt <
r Q r

r+1

<CR+ | lwllllllde < € (R) + V2Co(R) Ihlls, 1 =: Cua(R).

The second and third inequalities are consequences of Lemma 2.5 and the definition
of X. A similar estimate holds for »(x, #). Hence

1A ) lsiis, o, gy < meas () + 2Cyg(R)  for t=2s527.

Comparing this with (2.34) we obtain

4

(2.35) D(s, t) < Cp +Cpf fortzs=rt,

y(v)

where Cyo> 0 and C,, > 0 depend only on 8 and R, respectively. By assertion (2) in
Lemma 2.2, v/y(v) =0 as v— +0. If v and f are so small that C;3v/y(v) <u/4 and
CyB <u/4, then we derive (2.33) from (2.35). Inequality (2.19) with C;s=
=Cpmax {3,262} follows now from (2.21), (2.32), and (2.33). Lemma2.7 is
proved.

We can now complete the proof of Theorem 2.2. By Lemmas 2.5 and 2.7, the fami-
ly {U,(¢, s), 0€ X} of solving processes for the problem (0.1), (0.2) with b = o sati-
sfies the conditions of Theorem 1.1. Hence, this problem has a unique solution
u(x, t), [u, u,] e C4(R, E), for which (2.4) holds. Let us prove that this solution is al-
most periodic if so is the right-hand side A(x, #).

We confine ourselves to the case » e SAP(H, M). Set M = L'([0, 1], H) and con-
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sider a function goe AP(M, IN) defined by the formula
olx, ;1) =h(x,t+7n), xeR, teR, nel0,1].

According to the definition of SAP(H, M), we have 9oe AP(M, M). Let us denote by
2 the hull of the a.p. function @, and endow it with the metric (cf. (2.5))

ds(0,, 0;,) = SUP"01 — 0 ”S(R,H) .
teR

Obviously, this metric is stronger than the one defined in (2.5). Thus, the above-men-
tioned family {U,(, 5), 0e X} satisfies Conditions (H2)-(H5). Hence, by Proposi-
tion 1.3, the function U= [#, #,] belongs to AP(R, E).

3. - ExaMpLE OF AN EQUATION WITHOUT A.P. SOLUTION

In this section we prove that if the right-hand side of Equation (0.1) is an unboun-
ded Levitan a.p. function, then the problem (0.1), (0.2) generally has no ap.
solution. .

Consider the ordinary differential equation

(3.1) u"+2u'+u=h2),

where #' = du/ds. For a Banach space B, denote by LAP(B) the set of all Levitan a.p.
functions, that is, the union of the spaces LAP(B, M) over all countable modules
PMcR.

Turorem 3.1: For any increasing function ¢(r): R , >R, tending to + © as r—
— + o, there is a Levitan a.p. scalar function h(t) e LAP(R) such that
(3.2) |b(2)| <g@(|¢])  for all teR

and Equation (3.1) has no solution u(t) such that u, u' € LAP(R).

Remark: Let 2cR” be a bounded domain, let 1; > 0 be the first eigenvalue of the
operator (—A4) in £ with Dirichlet boundary condition, and let ¢, (x) be the corre-
sponding eigenfunction. It is easy to see that if A(¢) is the function constructed in
Theorem 3.1, then the problem

ty + 2\ A4, — Au = h(£VA,) e (x), #|30=0
has no solution u(x, #) satisfying the inclusion [#, #,] e LAP(E).

Proor oF THEOREM 3.1: Suppose that a non-negative function » € LAP(R) satisfies
the following condition:

(H) there are sequences {#,} and {/;} cR and a number d > 0 such that 5,—
—>+ 0 as £—> o and h(¢) = b, for te s, — 0, t, + J].
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We claim that Equation (3.1) with the right-hand side A(¢) has no solution #(#) such
that #, ' € LAP(R).

Indeed, it is easy to prove that any solution #(¢) to (3.1) can be represented in the
form

(G3) u(t) =" (uls) + (¢ —s) (@' (s) + uls))) + Ie’_’(t— ) bh(t)dr, t,seR.

Suppose that #, #' € LAP(R). In this case there is a sequence {s;} CR tending to — o
such that |u(sy) | + |#'(s¢) | < C for all k. We set s =5, in (3.3) and pass to the limit
as k— + . Since the integrand in (3.3) is non-negative for 7 <¢, we derive

t

(3.4) u(f) = j e"Ht—1) b(z) dr .

— 0

It follows from the inclusion # e LAP(R) that there are constants L >0 and C>0
such that for any £ the interval [# + J, # + 6 + L] contains a point T} for which
|#(T) | <C. On the other hand, since b(¢) =0, Condition (H) and relation (3.4)
imply
L
u(T,) = j e Te(T,—7) h(z) dr = 0e " L*20hy—> + 0 as k—> + .

t]t—é

This contradiction proves Theorem 3.1. Thus, it remains to establish the existence of a
function A(#) e LAP(R) satisfying (H) and (3.2).

Denote by T a two-dimensional torus represented on the plane RY, ,) as the square
{(x, y): —w<x,y<an} with identified opposite sides. Let us endow T with the me-
tric d(qy, ¢2) = |e™ ™% —1| + |e17%) — 1|, where ¢;,= (x;, ) €T, i=1, 2. Let
A€ (0, 1) be an irrational number. In this case the curve

(3.5) E:R->T, t—(¢,4) (mod2m)

has no self-intersections, and its image E(R) is everywhere dense in T. Denote by
Sc T the set £(R) with the induced metric. Let Ptc R be the smallest module genera-
ted by the numbers 1 and 4 (see [10], Chapter ITI, § 2). Since the metric space Ry
(see § 1) and the real line R coincide in the set-theoretical sense, the map () defined
by (3.5) can be regarded as a function from Ry to S. It is easy to show that & is a ho-
meomorphism of the metric spaces Ry and S. Therefore, in view of the definition of
the almost periodicity in the Levitan sense (see [10], Chapter IV, § 1; [9]), to any con-
tinuous function A(x, y) on S there corresponds a Levitan a.p. function A(z) on R that
is defined by the formula

(3.6) h(z) = B(&() .
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To construct the function A(¢) e LAP(R), we first define a non-negative continuous
function 5 S—R and then show that (3.6) possesses the desired properties.

For any integer /= 0, we set ;= [t;— &, t;+ n], where 7;,= —n(; + 1) (1, = 7))
if 7 odd (even). Denote by ¢;= (0, y,), —7 <y, < the intersection point of the set
&(];) and the straight line {(x, ): x=0}. Let j, =0 and let {;;, #= 1} be an increa-
sing sequence of positive integers such that 0 <y, <m(1 —A) for any &, y;, <y, for
k<m, and y;,— (1 — 1) as £—> . For £=1 denote by a, an arbitrary positive
number that satisfies the following inequalities:

(3.7) S (Y, =303, aps<(y,—y,. )73,

(3.8) ap< |y, —|/2 for 0<j<j—1 and j=j;+1.
Set

3.9) Po={(x,y)eS: |x| <a/2, |y—y, —Ax| <a,}, k=1.

Inequality (3.7) implies that the sets P, are mutually disjoint. Let y(7) be a continuous
function on R such that 0 <y <1, x(r) =0 for || =1, and x(r) =1 for |r| <1/2.
Set

(|7, +x|) x(2xw 1) ylait(y —yjk—lx)) , (x,y)eP,,
(3.10) A(x, y) = o
0, (x,y)eS\kl:JlP,e.

Clearly, 5 is a non-negative function. Since
{(x,9)eT: y=Ax+n(1-1), |x| <a}NS=4g,

we see that A(x, y) is continuous on S. Consequently, the function A(¢) defined by
(3.6) is a.p.in the Levitan sense.

Let us show that h(¢) satisfies Condition (H) with 6 = /4 and £, =7,,. Set I, =
= [#— 0, t, + 6]1. Since

={(x,y)eS: |x| <n/4,y—y, =Ax}
we conclude from (3.9), (3.10), and the definition of y(s) that
(3.11) h(t) = @(|t|) x(2(t — ) /7) x(0) = @(|£])  for tel,.

It remains to note that #,— o as £#— © and @(r) — + ® as r— + ®, and hence Con-
dition (H) with A, = miIn @(|¢|) holds for /y(t)
telp
We now prove (3.2). Let teR. If &(¢) € S\ U P,e, then, by (3.10), we have A(z) =

=0 < @(|¢#|). Assume that £(¢) e P, for some /e If tely, then (3.2) is a consequence of
(3.11). Let ¢ € J; for some j # 7. In this case, by (3.9) and (3.8), we have |¢| = |, | + 7.
Since ¢(r) is a non-decreasing function, we conclude from (3.10) and the definition of
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x(s) that

168 | = | BED)| <o(|t] +m) <o|f]).

The proof of Theorem 3.1 is complete.

4. - APPENDIX

Proor oF LEmmA 2.7: Lemma 2.7 is a variant of the well-known Gronwall inequa-
lity. Therefore we only outline the proof.
Let us fix an arbitrary T =5 and consider the function

t
4.1) w(t) = e~ 5(s) — jeww-ﬂ(p(e) 40, s<:t<T.

s

It is easy to see that

4.2) 2(2) < (w(#) + K)e72%¢=9  for s<¢t<T,
where

T
4.3) K=K(T) = J.ez‘s(a_”tp(O) 9 .

s

Now note that
w'(¢) =e? =9 (2" (1) + 262(2) — @(2)) <
S eIy Py(r) < e p(e) (wl2) + K2, s<t¢<T,

whence it follows that

(w(#) + K2 < (w(s) + K2 + % jeb(e_‘)w(G) d9, s<t<T.

Combining this with (4.1) and (4.2), we arrive at the inequality

t

(4.4)  2()'P<e % (z(s) + K)/2 + %je-"“-%(e) 4o, s<t<T.

Squaring both sides of (4.4) and setting T = ¢, we derive

t t 2
2(8) < % e 209 o(s) + je’”““”q)(@) de + (Ie"d(""zp(e) de) Ry X ¥

s



It remains to note that

t
Je ~20t=96(0) db < e2° (e’ — 1) l@llscrs, , vy

s

t

J‘e —0=01(0) d6 < e®(e® — 1) H|wllsrs, a1, )

s

where #= 5. The proof of Lemma 2.7 is complete.
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