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0. - INTRODUCTION

The aim of this paper is to provide a connection between the long time dynamics
of autonomous and non-autonomous partial differential equations via the Bogolyubov
averaging principle [2].

If an autonomous differential equation 8, = N(«), #(0) = u, is well posed in a Ba-
nach space E, then the long time behaviour of the semigroup of its solution operators
S;: E—E, S,uy=u(t) is described by the attractor @ of this semigroup (of course,
when it exists) which, by definition, is a compact (A €E), strictly invariant (S, = @)
and globally attracting (distg (S,B, @) =0, t— ) set [1], [5], [12], [17]. The global
attractor @ is the w-limit set of a ball Bg(R) with sufficiently large radius:
a=a(E®) = 0] UsB®)

t20| =271 E

A non-autonomous equation in E will be written in the form [4]

(0.1) Ou=Nyy(u), wlt)=u,, t=1eR,

where o(¢) is the collection of all time-dependent terms of the equation and is called
the time symbol. For instance, o(¢) = {F(-, ¢), f(¢)} for an equation of the form

(0.2) dyu= —Au+Flu, t)+ f(2).

In general, o() takes values in a Banach space 91 defined by a particular partial differ-
ential equation and as a function of ¢, o belongs to a symbol space X.

We suppose that equation (0.1) has a unique solution #(z), u(z) = U,(¢, 7)u,,
defining thereby a family of solution operators U, (¢, 7), # = 7€ R, which is called the
process generated by (0.1). The uniqueness of the solution implies the following two
characteristic properties of U, (¢, 7):

U,(t, 5) oU,(s, ) =Uylt, t), t=s5s=1,
(0.3)

UT(b)a(t) T) = Ua(t+/7, T+ ].‘7) .

where T(b) is the translation operator T(h)o(-) = o(- + ).
By a formal application of (0.3) we see that the operator

S(u,0)=(U,(t,0)u, T(2)0), t=20, wueE, oeX

acting in the extended phase space E X X [15] enjoys the semigroup property:
S, ©8,=38, 4+, To be able to construct the attractor of S, as an w-limit set, the symbol
space X must be invariant with respect to T(b), T(h) X ¢ X, and compact in a certain
topological space. The simplest way to ensure this (although, not the only possible
way) is to choose this topological space to be C,(R; 91) and suppose that ¢ is an al-
most periodic function with values in 9. Then we can set 3 = 3((0), where 3((0) is
the hull of the a.p. function o: 3(0) = [o(- + ), h € Rl¢, &, ). By Bochner’s criteri-
on (see, for instance, [14]), 3(0) €C,(R; M), the embedding being compact.



— 167 —

If the semigroup S,: E X ¥ —E X X has a global attractor @ 5 in the usual sense,
then its projection on E, @y := IT; A« 5 is minimal with respect to inclusion among
all closed sets @, that are uniformly attracting, that is, which have the property
that

tlim sup diStE(Ué(t, r)B,(fL,)=0, VBE:%(E)
X jeX
The set @y is called the uniform attractor of the equation (0.1) [3], [4], [8].

From the theory of almost periodic functions (see, for instance, [14]) it follows

that o(#) has the average o,e IN:

t+7

- j o(s) ds — o,
t T

lim

t—

=0,
b4

uniformly with respect to 7€ R. Thus, to equation (0.1) there naturally corresponds
the autonomous averaged equation

(0.4) 8,4 =N,,(@).
We suppose that equation (0.1) has the form
(0.5) azu = Na(wz)(u) ,

where w>>1 (in other words, we suppose that the equation is written in the so-called
standard form of Bogolyubov). The main result of the paper can now be formulated in
this abstract setting as follows.

Suppose that the averaged equation has an attractor @ which is stable in the sense
of Lyapunov. Then the solutions of (0.1) are absorbed by an infinitesimally thin (as
@ — )) neighbourhood of @. If, in addition, the non-autonomous equation (0.5) has
an attractor (z(,) which is bounded in E uniformly with respect to w, then @y, de-
pends upper semicontinuously on @ as w—> @

diStE (dz(,,,), a)_)o ) w—>
where distg (X, Y) := sup iﬂg llxe = ylle-
xeX Y€

We call this result a global averaging theorem.

The outlined strategy is realized in the abstract setting for the equation (0.2) in
Sect. 1 and Sect. 2. Examples of application of global averaging to evolution equations
of mathematical physics are given in Sect. 3. They include a reaction-diffusion system,
a two-dimensional Navier-Stokes system and a damped wave equation.

The present paper may be regarded as a continuation of [10] where equations of
the type (0.2) with F(, t) = Fy(x) were considered.

Finally, we compare our results with those of [6], where equations of the type
(0.5), (0.2) with unbounded A and bounded periodic functions F and f were consid-
ered. In particular, it was shown in [6] that the local attractors @(w) of the Poincaré
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map corresponding to (0.5), (0.2) converge to the attractor @ of the equation (0.4) as
w—> o, In our work we construct global (not local) attractors. Moreover, we give ap-
plications to the equations of mathematical physics mentioned above.

1. - ABSTRACT AVERAGING THEOREM

We shall be dealing with an equation of the form
(1.1) Su+Au=Flu, wt) + flwt), u(0) =uy,

where A is a linear and F a non-linear operator, f is a right-hand side.
Let Banach spaces E, F, X, § satisfy

EcE; [ E;F, Xc8,

each embedding being dense and continuous.
We further suppose that the linear operator A is densely defined in & and is such
that the linear equation

Su+Au=0, u0)=u,
generates the semigroup of linear bounded operators
e .88, ult)=e Mu,,

which for ¢# > 0 can be extended to the linear bounded operators from F to E satisfying
the following estimates

(12) lle ~#|lg— g < Ke =,
(1.3) le #|lrmp <Kt~ *e™*, 0<a;<1,
(1.4) lAe #|rog <Kt %e *, 0<a,<2.

We also suppose that the following natural condition is satisfied
(1.5) Ae M=e"M4,
in the sense of £(F, E).

Function F. The non-linear function F is a Lipschitz map from F to E in the fol-
lowing sense:

(1.6) |F(ay, £) = Fluz, Ol < LR) |y — sy |lz, 1, € Be(R),

where L(R) is an increasing continuous function. For e E, F(u, -) eLl(R, F).

Function f. The right-hand side fe L*(R, X) and the operators e ~#, >0 can
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be extended to the linear bounded operators from X to E satisfying the esti-
mates

(1.7) el < Re=Pre 0<pB,<1,
(1.8) e 4|y <Kt Pze ®, 0<pB,<2,

and the equation (1.5), this time in the sense of £(X, E).

Existence of average. The non-linear function F(«, t) has the average Fy(u), that
is, for e Bg(R)

1 T+¢
dof e

" J. F(u, s) ds — Fy(u)

T

Fs mln (MR3 )uR(t)) )

uniformly with respect to #e€Bg(R) and TeR, where My >0 is a constant and
ug(¢) =0 monotonely as t— o,

Note that by (1.6) and (1.9), Fy(#): E—F is a bounded Lipschitz map with the
same Lipschitz constant L(R):

(1.10) [1Fo (211) = Fo(u2) lp < L(R) [ly = 2| -
The right-hand side f has the average. There exists f; € X for which

T+¢

(1.11) ; [ 79 ds— || < min O, u0),

X

where M >0 and u(#) =0 monotonely as t— o,
If F(u,t) and f(¢) are periodic, then (1.9) and (1.11) can be made more
precise:

T+t

(1.9") H% IF(u,s) ds — Fy(u) F$MRmin(1, 1/8),
1 T+t

(1.11") ” " f(s) ds — £, Xstin(l, 1/¢),

with, in general, other M and Mg.
Along with equation (1.1) we consider the autonomous averaged equation

(1.12) du+Au=Fy@u)+fy, u0)=1u,

What do we mean by the solution of (1.1) and (1.12) will become clear in the
analysis of the particular examples of partial differential equations in Sect. 3; for the
moment, however, we suppose that #, % € C([0, T1; E) and satisfy the following inte-
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gral equations

(1.13) u(t) =e Yuy+ je ~At=9) (F(u(s), ws) + flws)) ds ,
0

(1.14) u(t) = e %, +J A= (Fy (a(s)) +£,) ds .

We suppose that the autonomous equation (1.12) has a unique solution and there-
by generates a semigroup of non-linear continuous operators acting in E:

(1.15) Siag=1u(t), S;:E—E.

We suppose that S, has the following properties.

Dissipativity and uniform boundedness. The semigroup S, has an absorbing ball
Bg(Ry). This means that for every ball Bg(R)

(1.16) SIBE(R) CBE(RQ) 5 for = to(Ro, R) N

The semigroup S, is uniformly bounded for ¢#= 0, that is, for every ball Bg(R,)
there exists a ball Bg(R,), R, =R,(R,) such that

S,BE(RI)CBE(Rz), for all 1=0.

This inclusion is valid, in particular, for the absorbing ball Bz(R,). Hence we may as-
sume that

(1.17)  §,Bg(Rg)cBg(R—-9), t=0, >0, R=R,(Ry)+o.
We fix R, and R.
Estimate of derivative. We suppose that for any T > 0 the time derivative of the
solution %(¢) = S, 4, satisfies
(1.18) 16,7 |g<t'D(T, |lulls), 0<t<T,

where D(-, ) is a continuous increasing function.

Turorem 1.1: Let all the assumptions listed above be true and let T > 0 be arbitrary
but fixed. If u(0) = %(0) = uye Bg(Ry), that is, the initial points coincide and belong to
the absorbing ball, then the solutions of the initial and averaged equation satisfy for
te [0, T] the following proximity estimate

(1.19) lu2) — () || < Nr,R(@) >0 as w—> oo,

Remark 1.1: The assumtion that the initial points be taken from the absorbing ball
involves no loss of generality. We can increase R, if necessary.
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TueoreM 1.2: If equation (1.1) bas the form
(1.20) 8,u + Au=Fy(u) + f(wt),

then Theorem 1.1 holds without the assumptions (1.4) and (1.18).
If, in addition, (1.11") holds, then the proximity estimate bas the following explicit
form:

120 7)) - wd]e < = (P + 0P 46, o +1) CR, T),
w

where O is the Kronecker delta.

The proof of Theorems 1.1 and 1.2 will be given in the Appendix and we now turn
to the global averaging.

2. - GLOBAL AVERAGING

The main result of this section is the theorem on the proximity of the attractor of
the initial equation to that of the averaged equation. We recall the definition of the at-
tractor of an autonomous equation [1], [5], [12], [17].

Let a semigroup of non-linear continuous operators act in a Banach space E,
S, E-E, t = 0. (For instance, S, may be the solution operator (1.15).) A compact set
@AEE is called a global attractor of the semigroup S, if @ is strictly invariant §,d = a,
t=0, and globally attracting, that is, for every bounded set Be B(E), distz(S,B, @) —0
as t—

The attractor @ is stable in the Lyapunov sense if for every &-neighbourhood
0,(a) = {ueE, distz (u, @) <&} there exists a J-neighbourhood Os(@) such
that

(2.1) S,05(@)co.(a), Vt=0.

The assertion of the following lemma is the same as that of [1], Proposition II.1.3
but the hypothesis is slightly different.

Lemma 2.1: If S, bas an attractor Q and S, is continuous in E in the following
sense:
2.2) IS,%, = S,mlle<dT,R)|luy— wlle  for te [0, T), w1, u,€Bg(R),
then @ is stable.

Proor: Let a neighbourhood 6,(@), e <1, be given. By the attraction property
there is a T(¢) such that S,0,(A) c 6,(@) for all £ = T(e). We choose §, 0 <d <& so

small that «(T(e), R)d < &, where R is defined by @c Bg(R — 1). Then 05(@) is the
desired neighbourhood.
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We now consider a non-autonomous equation (1.1) written in the form (0.1) (the
value of w does not matter for the moment, so we put w =1)
(2.3) O,u=Nyy(u), u|;—r=u,, t=71eR.

Here o(#) is the collection of all time-dependent terms of the equation (right-hand
sides, non-linear interaction coefficients etc). For instance, o(¢) = {F(u, ¢), f(¢)} for
equation (1.1). Following [4] we call o(#) the time symbol of the equation (2.3).

Suppose that in a Banach space E the equation (2.3) has a unique solution #(z),
ue C([7, t]; E) and thereby generates the evolution operator U, (¢, 7) which we shall
call the process

(2.4) Uy(¢,1): E>E, t=t, teR, Ut t)u,=ul?).

The process U, (¢, ) has two characteristic properties which follow from the unique-
ness of the solution «(#):

(2.5) Uy(2,5)oU,(s, 7) =Uylt, ), t=s=zt, Uyr,1)=E,

and

(2.6) Urinyo(t, T) =Uy(t + b, T+ b),

where T(h) is the translation operator
T(h)o(-) = o(- + b).

The symbol o(z) is defined for e R and takes values in a Banach space IN,

ot)edm, teR.

For instance, for equation (1.1)
ot)em=am; x X,

where X is the same as in (1.7), (1.8) and the Banach space 91; characterizes the rate of
growth of the non-linear function F(x, ¢) (see Sect. 3). (If we are dealing with equa-
tion (1.20), then M =X.)

Suppose that o(¢) is almost periodic (a.p.) with values in 1. By Bochner’s criteri-
on [14] the set of all translations T(h)o(:) =o(-+5h), heR, is precompact in
C,(R; ). The closure of this set in C,(R; 1) is called the hull of o and is denoted by

X(o) = [o(- + b), heRlg,r, ) -
Moreover, if 6 € 3((0), then
(2.7) () = (o) =:2.

Along with an individual process (2.4) we shall consider the family of processes
generated by (2.3) where o is replaced by an arbitrary element &, 6 € 2 = (o).
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DeriNiTION 2.1 (see [41,[8]): A compact set s €E is called the uniform (with re-
spect to 0 €X) attractor of the family of processes Us(¢, 7): E=>E, 6eZ, if

(1) the set @y is uniformly attracting, that is,

lim sup distg (Us(¢, ) B, As) =0, VBe®B(E);

D Sex

(2) if @, is another closed uniformly attracting set, then dzC ;.

Turorem 2.1: Let the symbol o be a.p. in I with hull = = H(0) and let the family
of processes Us(¢t, ), d € X satisfy:
(1) there exists a compact uniformly attracting set in E;
(2) the operators Us(t, 1): EXZ—E are continuous with respect to
(#,0)e Ex X,

Then the semigroup S, acting in the extended phase space E x ZCE X C4(R; M) ac-
cording to the rule

S(u, 8) = (Us(2, 0) u, T(¢) 9),

has an attractor Qg « 5 in this phase space. If we denote IT,(u, 8) = u, then the uniform
attractor of the family of processes in the sense of Definition 2.1 is the projection

As=1I1,0gxs .

For the proof see [4], Theorem 3.2.
We now return to the problems connected with averaging in this more abstract
setting. We introduce a large parameter w in (2.3):

(2.8) O,u=Nyun(#), u|;—c=u,, TER.

In fact, (2.8) is just a short way of writing (1.1). Since we have supposed that o is a.p.
with values in J1C, it follows [14] that ¢ has the average o, IN:

1 t+7T
” — I o(s) ds — oy
t T

< min (M, u(¢)), M=const, wu(t)—0, t—>o,
n

uniformly with respect to 7 € R. We further suppose that (1.9) and (1.11) follow from
the existence of the average o,. Of course, this will be verified in each particular
example of a PDE (for (1.11) this is obvious).

Associated with (2.8) in a natural way is the averaged equation (see (1.12))

2.9) 8a=N, @, u0)=u.
We suppose that (2.9) generates in E a semigroup of solution operators

S;: E=E, S,uy=u(2).
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THEOREM 2.2: Suppose that S, is uniformly bounded in E and has an absorbing ball
Bg(R,). Suppose further that S, bas an attractor Q. in E which is stable in the sense of
Lyapunov. Finally, suppose that the theorem on averaging on a finite time interval is
valid. In other words, if u(t) = u(z) e Bg(Ry), then for te[t, T+ T]

[Usw (£, T) #(2) = S, ;@D g < 7,8, (@) =0, -,

uniformly with respect to deX.

Then for arbitrary large Ry and arbitrary small u >0 there exists wo(Ry, u) such
that for w = w, the u-neighbourhood of @ uniformly (with respect to d € X) absorbs the
ball Bg(R,):

(2.10) Usy (£, T) Be(R) O, (@), for t—12 T(Ry, o).

If, in addition, the family of processes Uy, (¢, T), 6 € Z bas an attractor Qs which
is bounded in E uniformly in w, then the attractor Qs depends upper semicontinuous-
ly on w as w—> ®:

diStE(az(w), a)—>0 as w—> ®©

Proor: Since @ is stable, we can choose &, 0 < & <u/2 such that
(2.11) 50,@co,@, ¢20.

We consider the absorbing ball Bz(R,) for the semigroup §,. Taking if necessary a
larger Ry, we may assume that R, =R;.
Let T=T(R,, €) be so large that

(2.12) $,Bs(Ry)CcO,,(@), ¢>T.

We now fix this T>0.

We consider a point %, Bg(R,). By the averaging theorem there exists an wo =
=wy(Ry, T, &), such that for @ > w the inequality 7 1, g, (w) < /2 is valid. Let two tra-
jectories of (2.8) and (2.9) start at #y: u(2) = Uy, (2, 0) sy, %(2) = S,uy. These trajec-
tories will diverge on the interval ze [0, T] by a distance less than &/2 and the end-
point #(T) € O,, (@), hence, (T) € O,(Q).

From this moment #(#) will never leave ©,(d). To see this, we take #; =
= u(T) € ©,(@) as the initial point, consider the trajectory S, %, , ¢ € [0, T], starting from
it, and continue the trajectory «(¢) to the interval [T, 2T]:

u(t+T) =Upy(t+T,0) u.

By (2.12), S;u;€0,,(A), and for te [0, T1, S,4,€0,,(A), by (2.11).
Again, by the averaging theorem we see that ||y, (¢ + T, 0) 2o — S, ||z < /2,
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te [0, T] and therefore the end-point Us,,(2T, 0) %, € O,(d), while on the interval
te [0, T]

Us)(T+¢,0) tg€ Oup+,2(A) cO,(A) .
Repeating this procedure we see that u(¢) € 9,(q) for t=T*e [0, T].
However, neither T nor @, depends on the choice of the particular initial point

#o€ Bg(Ry). It is also clear that the above construction is applicable to the trajectory

Us(wy (2, T) 4y, t = TR, as well. Finally, all our estimates are uniform with respect to
oeX.
Thus, we have proved that for o > w, and t—7>T*e [0, T]

692U6(w')(t, T) BE(R()) = Oﬂ (a) ’

which gives (2.10).

The last statement of the theorem now follows from Definition 2.1 if we choose the
absorbing ball Bg(R,) so large that it contains the attractors () for all @ > 0. The
proof is complete.

3. - ExampLES
1. Reaction-diffusion system. We consider a non-autonomous reaction-diffusion
system:
(3.1) O,u=dAu—F(u, wt) + flwt), u|z=0,

where QER”, d = d,I is a positive diagonal N X N-matrix and #, F, f are N-dimen-
sional vector-functions. The non-linear function F and its derivatives with respect to #;
are of class C(RN X R, RV) and satisfy the following growth conditions:

(3.2) -C < (F(u,),u), y>0,

(3.3) (Flv,v) = —Cy(v,v), VveRN,

G4)  |Fu, )| SG(u7 +1),  |Fw, 0| <C(|uf72+1),
where

(3.5) 2sp< 2:_—22 if n=3; 2<p< o otherwise.

The analysis of the equation
(3.1 O,u=dAu— Fy(u) + f(wt), #|s0=0,

where F, satisfies (3.2)-(3.4) is, of course, included in that of (3.1). However, in this
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case we may impose less restrictive growth conditions:

(3.5") 2<sp< ifn=3; 2 <p< wotherwise .

n—2

(Condition (3.5) is used only in Lemma 3.1 below.)
We suppose that f is an a.p. function with values in L,(2)N. Next we define the
Banach space 91, of functions ¥(«), ¥: RN—>RYN with norm (see [4])

| P(u) | | ¥, () |
(3:6 = + )
’ Mo = sob | T * 12

and suppose that F(-, ¢) is an a.p. function with values in I1;.

We shall now define the spaces X, E, F from Sect. 1. We set A= —dA supple-
mented with Dirichlet boundary conditions. Then A is an unbounded self-adjoint po-
sitive operator in (L,(£2))Y with compact resolvent. We define the Hilbert spaces
D(A?), a eR, as the domains of the powers of A in the standard way. Then D(A°) =
= (L,)N, D(A?) = (H¢)N and by interpolation

D(A®?) = [(Lz)Na(Hol)N]o= (HON, 0= % , 6el0,1],

which gives, by duality, that for 0 S e <1/2, D(A"1*972) = (H ~1*¢(Q))N. We now
set in the notation of Sect. 1 A= —dA and

E=(H{(2))N=D(A'?),
(3.7) X = (L),
F=(H—1+E(Q))N=D(A(—1+e)/2),
where 0 < & =¢(p) is small and will be defined later.

Setting 8 = F we find (see, for instance, [9]) that the (analytic) semigroup e =% is
well defined and satisfies (1.5) and (1.2)-(1.4), (1.7), (1.8) with

a=1-¢2, a,=2-¢2, B,=1/2, B,=3/2.

Let us verify other conditions from Sect. 1. Since by our assumption fis a.p. in X,
an average fy € X exists and (1.11) holds. Moreover, (1.11) holds if we replace f by an
arbitrary element ge 3((f). Analogously, there exists the average F,edN, such
that

t+7T
1

” I F(-, s) ds—Fo(')“m < min (M, u(2)), u(t)—=0, t— oo,

(3.8)

where F can be replaced by an arbitrary G e 3((F).
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This implies (1.9). In fact, by (3.6), for a smooth # = u(x) € (C5° (2) )N

1 t+t

| " f Flu(x), s) ds — Fy (u(x))
We now note that by the Sobolev embedding theorem H) ~“cL,, g=2#/(n—2) —
—8,(¢). (Here and in what follows 6,(g), 6,(e), ..., are certain uniquely defined
functlons of € such that lim ,(¢) =0.) By duality, for ¢’ =27n/(n+2) + d,(e),
L,cH '*¢=F. Hence 2

< min (M, u(£))(1 + |a(x) |?71) .

<mm(M,u )C(|Q|)1+||u||(” Y

(p— 1)

1 titiT
” = j Fu, s) ds ~ Fo(w) |
t T

By 3.5'), ¢'(p—1) <2n/(n—2) for all sufficiently small ¢. Taking the closure in
(H)N and using the Sobolev embeddmg EcL, ,-1) we obtain (1.9).

The Lipschitz condition (1.6) is verified in a similar way. For smooth #%;, %, by
(3.6), the mean value theorem and Hélder’s inequality we have

[IF(us, 5) = Flaa, 9)lr,. < [Flle,r; o |1+ [ P72 4 |ty |P72) |y — 1 |”L,,: S

< ||Ale, :ml)ll(l +lu P72+ |uy |P_2)||Lq',' %

which gives (1.6) if we choose ¢'7=2#/(n—2). Indeed, then ¢'#'=n/2 + d;(e),
giving that (p —2) ¢'7'<2n/(n —2), when ¢ is small enough.
Thus, to (3.1) there corresponds the averaged autonomous equation

(3.9) du=dAu—Fy@)+fy, u0)=u,

— U "Lq', >

where fye X, Fye I, . Clearly, F, satisfies conditions (3.2)-(3.5) with the same con-
stants C; and y.

We now turn to the analysis of the averaged equation (3.9). We invoke the follow-
ing results concerning (3.9) (see [1], Theorems1.5.2, 1.5.4 and Propositions 1.2.1-
1.2.3).

Equation (3.9) generates a semigroup of solution operators acting in E, S,y =
= %(¢), t = 0, which is uniformly bounded in E and has an absorbing ball there; in other
words, (1.16), (1.17) are satisfied. The semigroup S, has also a compact absorbing set
in E.

The semigroup S, is continuous in E and estimate (2.2) holds. This will be shown in
a more general context of non-autonomous equations (see (3.18), (3.19)). Now, by the
well-known theorems on the existence of attractors for autonomous equations [1], [5],
[12], [17] we obtain that the semigroup S,: E—E has a global attractor @ €E which
is stable in the Lyapunov sense.

Lemma 3.1: If condition (3.5) holds, then for equation (3.9) the estimate of the
derivative(1.18) is valid.
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Proor: We differentiate (3.9) with respect to ¢ and set 8,z = #':
(3.10) o,u'=dAu' — Fg;(a) u' .

Multiplying by —A%’', using Holder’s inequality and the Sobolev embeddings we
obtain

1 Syl L — 1=
5 ol e+ dlaw < | [Fa@ a7 o | < aw |

|L2,,/(,,_2) ”FO,E (ﬁ) ”L,, s

<cllaz Il gl + 1%~ 2|, < dlaz |17 le(1 + 7l ~2) < e(R) la@' | |7 e,
taking into account that (p —2)# <2#n/(n —2) (see (3.5)). By Young’s inequality
a7 B<a®lz .

Multiplying by =7, 0 <7<¢<T, we find
3 (=7 [}) <R, Dk,

and integration from 7 to ¢ finally gives
T
(3.11) (=)@ OE<cR,T) [ ds.

To estimate the the integral we multiply (3.9) by —Au. Since F,(z) e L, for % € E,
we obtain after simple transformations

3 |lallt + dollaul? < c(do, R, I,

which gives after integration
T
[ la7(s)|2 ds < C,(T, R).
0

We now see that all the three terms on the right-hand side of (3.9) belong to
L, (0, T; L,(R)), therefore %' belongs to the same space, in other words,

(3.12) j %' (s)|P ds < C,(T, R).

Let us multiply (3.10) by %’'. This gives

1 U ) 1 (5 d =1
2 Sl I+ doll [ < F @ e, 17 1% e, -, < o, R I+ 2117 [

Thus,
(3.13) il |I? + do I | < e(R) |7 |P .
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Integrating and using (3.12) we obtain
T
(3.14) j |7 (5)|B ds < G5 (T, R) + ||# ()|

Inequality 8,7’ |P < c(R)||#'|? obviously follows from (3.13). Multiplying by ¢#
gives

8, (@ |P) < Co(T, R) ||’ P,

hence, integrating and using (3.12), we obtain
1

(3.15) 7@ ()P < Cs(T,R), or |#'()|P< =C5(T,R).
T

Combining (3.11), (3.14), and (3.15) we finally obtain

C,(T, R) G, (T, R)
- Shatic

% ()|t < (1+1/7) <

=1 (¢t —1)
Setting 7 = #/2 we complete the proof.

Thus, all the hypotheses of Theorem 1.1 are verified and therefore this theorem is
applicable to the reaction-diffusion system (3.1) (resp. (3.1'))), (3.2)-3.4), (3.5) (resp.
(3.5')). As far as the global averaging is concerned, we have to verify that in E there
exists a uniform attractor of the non-autonomous equation which is bounded in E as
w—> 0,

In E there is a ball Bg(Ry), Ry =Ry (||Fllc,, o> Il #lc,r, x)) which is uniformly
absorbing for the family of processes generated by (3.1). This is proved in exactly the
same way as for the autonomous case (see [1], Theorem 1.5.4) by replacing in the esti-
mates there the norms of the type || £ |lx by || 7 llc,r, x) and similarly for F. This clearly
shows that R, does not depend on . The same sort of argument shows that the family
of processes is uniformly bounded in E:

(3.16) U U U Us(¢, ) Be(Ry) cBg(R), for R=R(R,).

5e(F) x (f) teR t=71

Then, uniformly with respect to TeR and 6 = {G, g} € 3(F) x 9(f)
3.17)  ||Us(2, 7) Bg(Ro)lIpearz+m < Ry (Ro, 8", |Flle,m; omy» I/ lleyms 30) 5

where e/2>u>0,8'>0,and t+0'st<7+1.
In fact, writing u(#) as

u(t) = e A9 y(7) + Ie —At=9 (- G(uls), s) + g(s)) ds,

using the estimate |le ~|lpae)>pusy <t "¢~ P Ke™*, B = a, and the uniform (with
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respect to seR and {G, g} € 3(F) X 9¢(f)) boundedness of G(s):= G(u(s), s) +
+£(s) in F=D(A"1*972) we obtain

3
) lloara sy < Kt = 2 ) s + KI Gl [ (2= 5707472 s,

which implies (3.17). By compactness of the embedding D(A42*#) c D(A?), we see
that the set

U U Ug(T"‘l,T)BE(Ro)
deI(F) x x(f) teR

meets all the requirements from point (1) of Theorem 2.1.
To prove the continuity we write for 0, = {F,, £}, 0, = {F,, /;}

(3.18) (2) =uy () — uy(2) = Uy, (2, T) 21 (1) — U, (2, 7) uy (7).
Then z(#) satisfies the equation
2t) = e A7) -

t

- Ie “A (Fy (w1 (5), 5) = Fy (. (5), 8) + Fy (1 (5), 5) = Fy (w5(s), s) = £, (s) + f5.(s) ) ds ,

T

and therefore
ll2(#) ||z < KL(R) [ (£ = 52 Yo(s) || ds +

+C(¢ =7, R) (@) lg + IF, = Ellg,w; om0 + 1 A = Alleywi x0) -
The desired continuity now follows from Lemma A.1 (see Appendix):
6.19) [l < Gz =7, R ((D)le + IFs = Falleym; omy + | £ = £ llcyms ) -
Thus, we have verified all the hypotheses of Theorem 2.2.

Treorem 3.1 (Global averaging of the reaction-diffusion system): Suppose that in
equation (3.1) (resp., (3.1')), (3.2)-3.4), 3.5)( resp., (3.5")) the time symbol o(t) =
={F(-, 1), f(8)} is ap. in M= M, X (L,(R))N, where I, is defined by (3.6) (resp.,
o(t) =f(t) is ap. in (Ly(R2))N). Then there exists a uniform  attractor
Asw) €(H (2))N in the sense of Definition 2.1 which depends upper semicontinuous-
by on w as w—> o

diSt(Hol)N (az(w), a) —0, @W—> 0 |

where Q. is the global attractor of the averaged autonomous equation (3.9).
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2. Navier-Stokes equations. We consider the two-dimensional Navier-Stokes
system

2
o,u+ .y = —Vp+
(3.20) L ,2‘1 u;8;u=vAu— Vp + p(wt),

divu=0, u|;=0,

where Q is a bounded domain in R? with smooth boundary.

The functional setting of the problem is well known [13], [16]. We denote by H
and V the closures of the linear space {#weCy"(RQ)?, divu=0} in L,(2)* and
H{(R)?, respectively. Denote by P the corresponding orthogonal projection
P: L,(2)Y—H. We further set

2
A= —-PA, Blu,v) =P(Z u,»@,v).
i=1

The Stokes operator A is self-adjoint positive with domain D(A) dense in H. The
inverse operator is compact. We define the Hilbert spaces D(A%), a € [0, 1] as the
domains of the powers of A in the standard way. Furthermore, V =D(A!?), and
llullpeara) = Vel = [[rot u]|.

Applying P we write (3.20) as the evolution equation of the form (1.1)

(3.21) 8,u+B(u, u) = —vAu+ f(wt), f=Pgp.

We suppose that fis almost periodic with values in H. Then (1.11) (with X = H) obvi-
ously holds and to (3.21) there corresponds the averaged equation

(3.22) 3,4 +B(u,u) = —vAu+f,.
We now set in the notation of Sect. 1
B DA MY DX, ¢ e DAY
and see that (1.2), (1.3), (1.7), (1.8) are valid with a;=1/24+6, B;=1/2,
/32 = 3/2 N
The non-linear operator B(x, #) is a bounded Lipschitz map in the following sense
(see [10], Lemma 2.1):

1BCay, ) — Blatz, ) Ipea -4 < s (lety llpeary + ez llpiarey) ey = 42 llpar2y

where >0 can be taken arbitrarily small. This is the Lipschitz condition
(1.10).
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The averaged system (3.22) generates a semigroup S,: E— E of solution operators
which is dissipative and uniformly bounded in E (see [1], Theorem 1.6.2 and [13],
[16]), that is, (1.16) and (1.17) hold. Since (3.21) is of the form (1.20), the estimate
(1.18) is not required (although it is valid). Thus, all the hypotheses of Theorem 1.1
are verified and we obtain the following theorem.

THEOREM 3.2: Suppose that the right-hand side in the Navier-Stokes system (3.21)
has the average in H in the sense of (1.11). If u(0) = %(0) € Bp(q12)(Ry) and te [0, T1,
then the solutions of the initial and averaged equation satisfy the following proximity
estimate

lla(2) = %(8) lpary < N7, R (@) =0 as w—> o,

Moreover, if (1.11') holds (this is the case, for instance, when f is a sum of finitely many
functions periodic in H), then the estimate can be made more explicit:

||u(t) i ﬁ(t) ”D(AI/Z) sSw L C(Ro, T) B

Proor: The proof follows from Theorems 1.1 and 1.2.

Turning to the global averaging we first observe that by [1], Theorem 1.6.2, there
exists a global attractor @ €E of the the averaged equation (3.22). Then, similar to the
reaction-diffusion system considered above, we see that the family of processes
Uy (2, 7), glw*) € Z(w) = H(f(w")), generated by (3.21) with f replaced by g has a
uniform attractor @y, such that @y Bg(R,) uniformly for @ >0 (see details in
[10], Example 4.2). By Theorem 2.2 we obtain as a result the following theo-
rem.

THEOREM 3.3 (Global averaging of the Navier-Stokes system): Suppose that the
right-hand side f in equation (3.21) is a.p. in H. Then this equation bas in D(AY?) a
uniform attractor Qg,) in the sense of Definition 2.1 and

diStD(AI/Z) (az(w), a) —0, w—> o,

3. Dissipative hyperbolic equation. We consider a non-autonomous dissipative hy-
perbolic equation with rapidly oscillating right-hand side

) {afu+y8,u=du—3(u) + p(wt),

u|lsq=0, xeQCR", #»n<3, y>0.
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Suppose that Fe C%(R), H0) =0 and for any >0

(3.24) f Ho) dv+qu= —C,(y),
0

(3.25) uF u) — clffﬂv) dv+nu’= -C,(7y),
0

3.26) |F(u)|<SC(1+|uf”), B), PpR2)<wo, PB)<2,

for some positive constants ¢;, C, C;(n), C,(n) (see [1], [17]).
We shall write (3.23) in the form (1.1) (more precisely, (1.20))

(3.27) 8,y = —Ay —F(y) + f(wt),
where
0 I y=(u1p)T7 p=atu7
A=—[A d I}’ F(y) = (0, #A«))T,
I =00, 9T

We shall now verify the hypotheses from Sect. 1 for #» = 3, the cases =1, 2 are
treated in a similar way. First we set

E=F=E,, X=E,,
where
Ey={y=(u,p); ucH;(2),peL,(2)}, b}, =IVal? + [lolP,
Ei={y=(u,p); ucH*(Q) NH{(R), peH} (D)}, |bl}, = laul? + Vol

The linear homogeneous equation 8,9 + Ay =0, y(0) =y, has a unique solution
y(¢) = e “#y, and the semigroup of the solution operators satisfies the following esti-
mates [1], [12], [17]:

(3.28) le ~#|lz—g<Ke ™, i=0,1,4a>0.

Since A is an isomorphism from E; onto E,, it follows that equation (1.5) is satisfied in
the sense of £(E;, E;) and (3.28) implies that estimates (1.2), (1.3), (1.7), (1.8) are
valid with a; =8,=8,=0.

The Lipschitz condition (1.10) follows from the following estimates:

IF(y1) = F(92)llg, = lF,) = Hat) [, < L+ oy [P2 + [y [P, Nty — 25 1 <
< LQR) ||y — # ||y < LR) |y, — 9, lg,, 910 32€ Bg,(R),
where we have used the Sobolev embedding H{ (2) c Ly ().
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Suppose that the average @, exists in the following sense: ¢, ¢(¢) € H§ and

T+¢

(3.29) ”% IV((p(s)—tpo)ds < min (M, u(2)), u(t)—>0, t—>ow,

which is obviously equivalent to the existence of the average f, = (0, @,) of the right-
hand side £(¢) = (0, @(#))T in X =E;:

”% [ ()= fo)ds|| < min (M, ()

E;

(3.30)

Thus, to (3.27) there naturally corresponds the averaged equation:
(3.31) 3y =—-Ay-F(3) +£.

The semigroup S,: E—E, §,5, = 7(¢) generated by (3.31) is continuous in the sense of
(2.2), dissipative, uniformly bounded for # = 0 in E [1], Theorem 1.8.1, [17], Lemma
IV.3.2 and asymptotically compact [7] and therefore posesses a global attractor @
which is stable in the sense of Lyapunov.

Suppose that ¢ is almost periodic in Hg (£2). Then (3.29), (3.30) hold. The family
of equations

3y=-Ay—Fy)+gwt), glo)eZw)=flw))=[Aw(-+h)), heRlgr g

generates a family of processes Uy, (¢, 7): E-E, t=7eR, g(w-) € X(w). This fami-
ly is uniformly (with respect to ge X) asymptotically compact and for each w has a
uniform attractor @y, €E in the sense of Definition 2.1 [3].

It remains to verify that the attractors @y, are bounded in E uniformly with re-
spect to @ >0. This follows from [17], Lemma IV.3.2, where an absorbing ball
Bi(Ry), Ro=Ry(|lpoll,), was constructed for the autonomous equation. In fact,
following the proof there, we see that it gives the desired result if the norm [|@l|z,
is replaced by |lg|..r;z,). Theferore for each w, @z, CBg(R,), where
Ry =Ry (|l¢ll.. g 1,))- Hence the hypotheses of Theorems 1.2 and 2.2 are satisfied and
we obtain the following result.

TueoreM 3.4 (Global averaging of the hyperbolic equation): Swuppose that in the
equation (3.23), (3.24)-(3.26) the right-hand side @(t) is almost periodic in Hy (L2).
Then

distg, (A5, @ =0, w—>®.

Remark 3.1: Averaging in the norm of E; = {(H*N Hy) x Hy } with B(3) <2 in
(3.26) has been considered in [10].
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APPENDIX

Proor oF THEOREM 1.1: The proof below goes along the same lines as the proofs of
the corresponding results in [2], [6], and [11].
We set

and write (1.1) in the so-called standard form of Bogolyubov
(A1) O, u+ eAu=¢eF(u, 1) + &f(t), u(0)=1uy;
the averaged system becomes

(A2) 0,7% +eA7 = eFy@) + ¢fy, #(0) =7,

where 7€ [0, T/e].
In view of (1.17), ||a(z)|[ <R — o for all 7=0. We suppose for the moment
that

(A.3) l«(x)|e<R, telo0, T/el.

We set 2(7) = u(tr) —%(7). By (1.13) and (1.14), z(7) satisfies the inequality

A4) o) s

EIf-;;A(:-:) (F(u(s), s) — F(u(s), s)) ds e
0

T

+ sfe_”“’_‘) (F(w(s), s) — Fy(a(s))) ds|| +
0

E

+ , 71el0, T/e].

E

eje—M(r—s) (}[(S) _fo)dS
0

By (1.6), (A.3), and (1.3) we see that the first term on the right-hand side of (A.4) is
less than

(A.5) el ‘“‘L(R)Kje ~ar =9 (g — 5) "% lz(s) || ds .
0

We now show that the sum of the second and third terms in (A.4) tends to 0 as
€— 0 uniformly with respect to 7€ [0, T/¢]. We will show that it is dominated by
Gg, 7(€), where Gy 7(g) =0 as e—0. Moreover, we shall prove this estimate for the
right-most point 7 = T/¢ only. It is clear that this involves no loss of generality provid-
ed that we can show that G, g(¢) is increasing with respect to T and is bounded for

T=0.
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We begin with the third term. Integrating by parts in s we find

-

Soje—eA(r—:) (F(s) = £,) ds i

=

ee-woj (F6) = fy) dr + szojAe-wf-f’[(f(t) —fo)drds|| <
(by (1.7), (1.8))

< eKe * (e7) Pit

v j () —fo)dt”X+

ds <

2~ ﬂzKI —ea(t— :)(T_S)l B2 (t—1s)" I(f fO dt‘

{ (taking into account that 7= T/e and using (1.11))

Ke =TT~ Bimin (M,ﬂ(T/e))+Kez“ﬂ2f ~eas g 1=Boamin (M, u(s)) ds <

0

(considering two cases T < &'”? and T = ¢'”2 in the first term and splitting
the integral with the point 7=¢ 712 in the second)

sKMe(l—ﬂl)/Z +,u(8_1/2) sup e—aTTl—ﬂ1+

0sT<w

v ©

+KMe?~F2 J s'=Pads + Ku(e ~12) ez‘ﬂzfe'“’sl“ﬂzdsS
0

0

S g, g, KM+ 1) (1 7AV2 4 @82 4 1y(£-12)) =: P(g) =0, £—0.

If (1.11") holds, then we can give a more explicit esimate for ®(¢). In fact, a straight-
forward calculation shows that

1, f2>8>1,

00

(A7) Je’“‘xl_ﬂmin(l,1/:)d:$yﬁ(s):=c(/3) In(1/e), if f=1,

ef-1, if B<1.
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Then

-

<
E

eje—eA(r—s)(f(s) —f(,)ds
0

(A.8) sKMmin(Tl—ﬂ‘,eT_ﬁ‘)+KM£2"ﬁZIe_E“’sl_ﬂzmin(1, 1/s)ds <
0
(considering two cases T<e and T= ¢ and using (A.7))

t S KM(e' =P+ pg, () < KMcp, (¢! Pr+ g2 P24 65, 1eln(1/e) +¢),

where 6, ;is the Kronecker delta. Note that estimates (A.6), (A.8) do not depend on T
at all and therefore are valid not only for 7= T/e but for any e [0, T/e].
We now consider the second term in (A.4). As before, v = T/e. We split [0, 7]
into 7 equal sub-intervals by points (cf. [11]) 74=0, ..., 1,=7a/m, ..., T,,=T.
Then

(A.9) efe""“’"’) (F(@(s), 5s) — Fy(@(s))) ds E521 +2,+2;,
0
where
i Ti+1
>, = 'Zo £ I e ~#C=9 (F(u(s), s) — F(a(z,), ) ds "
=l Ti+1
o= 20 € j e~ =9 (F(u(t,), s) — Fy (u(z,))) ds "
=il Ti+1
2= 3 |le [ &= (B (alx,) ~ Fy (als))) ds|

We first consider 3,. Setting F(u, s) = F(u, 5) — Fy(«) and % = %(t,;) we have

Ti+l

€ f e " AT-F(g. ) ds -
0

m—1 ti . m—1
3 == Y sfe”M(’_’)F(Ei, s)ds|| + >
i=0 B E i=0

Each term is estimated by (1.3), (1.4), (1.9) similarly to (A.6):

<

=

E

rl
eje_M(’_’)F(ﬁi, s) ds
0

S oy a0, K(Mg+ 1) (e 7002 4 g2mad2 4y (67172)) =:Pp(e) >0, £—0.
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Since X', contains 27z — 1 terms of this type, it follows that
(A.10) Z‘ZS(Zm—l)@R(e)

The terms X; and 35 in (A.9) are of the same type and we only consider
2.

f —eAlT =) (F(3(s), 5) — 5))a's

Ti+1

. f e =47 =9 (F(3(s), s) — F(7, 5)) ds
T; .

m—1

+ 2

i=1

We estimate the first term integrating by parts using Lipschitz condition (1.6) and
uniform boundedness (1.17)

(A.11) [ —eA=9) (F(%(s), 5) — )a’s

\

< Ee _EATI(F(ﬁ(f), t) _F(;‘(O)’ t)) dt E+
0

<

EZIAe-EA“-f)[(F(a(t), 1) — F(#(0), £)) dt ds
0 s

<2KL(R) R((‘sr)_"‘ler1 + ez‘azf(t —5)7%(t, —5) ds) <

0
S ¢, KL(R) Rmax (T' =%, T2~ %) (m '+ m~?-2)) 50 a5 m—> o0 .

The 7-th term (: = 1) is estimated by the mean value theorem. Integrating by parts and
using (1.18) in the form ||%(#) — %(z;)||z < eD(R, T)(T#/m) (¢ — 7;), te(t;, Tiv1)
and bearing in mind that 7= T/e we obtain

Ti+1

i J e A=) (F(a(s), 5) — F(a(z,), 5))ds

Ti+1

pp A1) f (F(a(2), ) — F(a(z,), ) dt .t

T

<

Ti+1 Ti+1

g2 [ Ae —cAz=9) j (F(@(z), t) — F(u(z,), ) de ds <

=
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Ti+1

<elmKLR)(r 7)™ [ [[8() ~a(r)llp dr +

Ti+1 Ti+1

+&2~“2KL(R) I(r—S)““ I l[2(e) = a(x)) || drds <

< ¢, KL(R) D(R, T)(T! %1 =(1=00) 4 T2~ 02y =202y 41,

Summing these estimates with respect to 7 from 1 to 7 — 1 and adding (A.11) to the
result we obtain

(A12) 3, < W ()= o, KLR)IR + 1) (DR, T) +1) X
X max (T* =%, T2~ %) (m 14+ m ="+ m =27 %) lnm,

where Wg 1(m)—0 as m—> . Since X5 satisties the same estimate, we see from
(A.6), (A.9), (A.10), and (A.12) that the sum of the second and the third terms on the
right-hand side of (A.4) is bounded by the expression

¢(£) + (2m bl 1) ¢R(8) +2WR,T(m) =:9R,T(8) m) )

With 7 being at our disposal we now set 72 = m(g) = (Pg(g)) 12—, =0
and see that Gg r(e, m(e)) =:Gg r(g) =0 as é—0. Observing that Gg, r(¢) is con-
tinuous and monotone increasing with respect to T we obtain the following integral

inequality
(A.13) llz(2) |lg < €'~ *'KL(R) j (7 —5)""|lz(s) ||z ds + Gg, (),
0

which is valid on the interval Te [0, T/e].
We invoke the following generalization of the Gronwall inequality.

Lemma A.1 (see [9], Lemma 7.1.2): Let ye (0, 1] and for te [0, T]
u(t) <a+ bf(t—s)y’lu(s) ds .
0

Then
u(t) < aE, ((bI(y))7 1),
where the function E,(2) is monotone increasing and E,(2) ~y ~'e* as z—> .
This lemma and (A.13) give that for 7€ [0, T/e]
2(7) |z < Gr, 7(€) E; o, (TKL(R) [(1 — @)/ =) =:Gg, 1(e) CR, T),
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which proves the theorem if we revert in the equation to the original time ¢ = &7 and
set g, (@) := Gg, 1(1/w)C(R, T). (We recall that in (1.17) R=R(R,). )

Thus, we have proved the theorem assuming that ||«(z)||z <R, te [0, T/¢]. If this
were not true, then let 7* e [0, T/¢] be the first moment when [ju(t*)|z=R. Our
proof then shows that on the interval 7€ [0, 7*], [lu(r) — %(7)||z < 0/2 for all suffi-
ciently small &, which contradicts our assumption that [|%(z)||z < R — ¢ for all 7 = 0 in-
cluding 7 =1t* (see (1.17)). The proof is complete.

Proor oF THEOREM 1.2: We observe that in this case (A.5) does not change and the
second term on the right-hand side of (A.4) is zero. Hence @r(e) = Wy 1(m) =0,
and the proximity estimate takes the form

(A.14) I7(6) = u(6) g < D(1/0) CR, T), tel0, T1,

where @ is defined by (A.6). Finally, if (1.11’) holds, then (1.21) follows from (A.14)
and (A.8).
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