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Asstract. — In this paper we study the stochastic integral H-X of certain two parameter
processes H with respect to a p-summable process measure X. We prove that a right continuous
process measure X with integrable variation is summable and that the stochastic integral H-X
can be computed pathwise, as a Stieltjes integral of a certain kind.

Integrazione stocastica rispetto a una misura-processo in uno spazio di Banach.
Parte I: caso di una misura-processo con variazione integrabile

Sunto. — Nella presente memoria si costruisce e si studia I'integrale stocastico H-X di un
processo H dipendente da due parametri, rispetto a una misura-processo X sommabile. Si prova
che, se una misura-processo X & continua a destra e con variazione integrabile, allora essa & som-
mabile, e il corrispondente integrale stocastico H-X pud essere calcolato «per traiettorie» come
un particolare integrale di Stieltjes.

INTRODUCTION

The framework for this paper consists of a probability space (2, &, P), a Lusin
space L endowed with its Borel o-algebra £, 1 <p < » and E, F, G Banach spaces
with Ec L(F, G) isometrically. We study process measures X: 2 X R, X £—E, that
is, for each e R, and B e £, the mapping o~ X(w, ¢, B) belongs to L£, and for each
teR,, the mapping B—X(-, ¢, B) of £ into Lf is o-additive.

The process measures have been used for the first time by J. Walsh [W] in the im-
portant particular case of scalar valued, orthogonal, square integrable martingale
measures.

(*) Indirizzo dell’Autore: Mathematics Department, University of Florida, Gainesville,
Florida 32611.
(**) Memoria presentata il 25 novembre 1998 da Giorgio Letta, uno di XL.
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The main part of the paper is Sect. 3. Here we define the p-summable process mea-
sures X and construct their stochastic integral H- X, for some two parameter processes
H: 2 xR, X L—F, using the general integration theory presented in [B-D.1]. The
stochastic integral H-X is again a process measure, with values in G. The following are
the main results of the paper:

1) The right continuous, adapted process measures X with integrable variation
are summable (Corollary 3.6), hence their stochastic integral H-X is defined,;

2) The stochastic integral H-X for such process measures X can be computed
pathwise, as a Stieltjes integral of a certain kind (Theorem 3.10):

(H-X)(w, ¢, B) = j H(:, o, x) X(w, dt, dx).

[0,#1xB

Similar results were obtained in [D3] for usual, one parameter, right continuous,
adapted processes X: X R, — E with integrable variation, and in [D4] for two par-
ameter, right continuous, adapted processes X: 2 X R4 —E with integrable varia-
tion.

There is a close relationship between process measures and two parameter proces-
ses, which is studied in Sect. 2. Here we show that if X is a right continuous process
measure with integrable variation |X|, which is pathwise o-additive in E (in addition
of being o-additive in L{), then we can associate to X a two parameter, right continu-
ous process F: 2 X R, X L—E with integrable variation |F|, by the equality

Flw,t, x)=Xw, t,(— o, x]),
and then we have also
|Fl(w, t, x) = |X|(w, t,(— o, x]) .

This establishes a 1-1 correspondence between such process measures X and two par-
ameter processes F. However, if X is only o-additive in L (without being pathwise o-
additive in E), then this is no longer possible. But we can still associate to X a two par-
ameter, right continuous process F that satisfies only

Flw,t, x)=Xw, t,(—o,x]), as.,

the negligible set depending on x, and only an inequality between the varia-
tions:

|Fl(w, ¢, x) < |X|(w, ¢,(— o, x]).

(See Theorem 2.4). This is one of the main results of Sect. 2, which allows us to reduce
the study of process measures to that of two parameter processes. The relationship be-
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tween the Stochastic integrals H-X and H-F is given by an equality of the same
kind:

(H-F)(w, ¢, x) = (H-X)(w, t,(— o, x]) .

Another important result in Sect. 2 is Theorem 2.6 which states the existence of a
P-measure uy: FQ B(R) ® £—E with integrable variation, satisfying

[Hdux= E(IHw ¢, %) Xlw, dt, dx) (ij ¢, %) Flo, dt, dx))

for certain processes H: 2 X R, X L— F. Here again, the integral with respect to X
is a Stieltjes integral (of a certain kind), and the integral with respect to F is the usual
Stieltjes integral in the plane R X L.

This leads us to the need of defining the Stieltjes integral of a «certain kind» f fdg

with respect to a right continuous function measure g: R X £— E with bounded vari-
ation |g|.

One of the main results in Sect. 1 is Theorem 1.3 which states that if g is a right
continuous function measure with bounded variation, then its variation |g| is also a
right continuous function measure. To a right continuous function measure g with
bounded variation |g|, we associate a o-additive measure 7z,;: B(R) ® £—E with
bounded variation, satisfying

mg((s, £]1 x B) = g(¢, B) — g(s, B), for s<¢in R and Be£.

Then we have |7, | = m, (Theorem 1.6). We denote by L} (g) the space Lf (12,) of
Bochner integrable functions /: R X L—F, with respect to |7, |. For a function

fe LE(g) we define the Stieltjes integral f £ dg, also denoted I F(¢, x) gldt, dx), by the
equality

[rdg= | fim,.

Here, again, we have a close relationship between right continuous function measures
g: Rx £—E with bounded variation |g|, and right continuous functions of two
variables G: R X L—E with bounded variation |G|, given by the equality

Gl¢, x) = glt,(— o, x]) .
Moreover
|G|(£, ) = |g| (£, (0, £1)

and we have mg = m, (Theorem 1.6). It turns out that the Stieltjes integrals with re-
spect to g and G are equal:

jfz x) g(dt, dx) = jft x) G(dt, dx).
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In [D3] and [D4] we have shown that there is a new class of processes which are
summable, namely the right continuous, adapted (one or two parameter) processes
with integrable semivariation (rather than integrable variation).

This class can only be evidenced for processes with values in an infinite dimen-
sional Banach space, since for finite dimensional Banach spaces, the variation and the
semivariation are equal.

Correspondingly we defined in [D3] and [D4] a new kind of Stieltjes integral

J’ £ dg, for right continuous functions g of one or two variables, with bounded serzz-

variation (rather than bounded variation).

In a forthcoming paper [D6] we shall extend these results for process measures, by
showing that right continuous, adapted process measures with integrable semzivaria-
tion are also summable.

Finally, we shall show that right continuous, orthogonal, square integrable martin-
gales with values in a Hilbert space are 2-summable [Di-Mu]. This extends the result
presented in [W] for scalar valued, orthogonal, square integrable martingale mea-
sures.

NOTATIONS

Throughout the paper, we shall use the following notations. In general, we adopt
the notations and the definitions in [D-M].

1) (£, &, P) is a probability space and (&), g, is a filtration satisfying the usu-
al conditions. For <0 we set J, = &,.

& is the ring generated by the subsets of 2 x R, of the form A x {0} with A e &
and A X (s, t] with A e &,. The o-algebra generated by R is the g-algebra & of pre-
dictable subsets of 2 X R, . However, in Section 1.2, we shall denote by & the ring
generated by the intervals (s, #] in R.

2) (L, £) is a Lusin space endowed with its Borel g-algebra £. Without loss of
generality, we shall consider L = R and £ = B(R), but we shall maintain the notations
L and £.

We shall assume that any measure # on £ has its support contained in (0, + o),
and that any function defined on L vanishes on ( — o, 0]. This is justified in the fol-
lowing way: we embedd first L into (0, %) and £c B(0, «); then any measure 4 on £
can be extended to B(R) by u(B) = u(BN L) for Be B(R); and any function on L is
extended with 0 on (— o, 0].

S is the ring generated by the intervals (x, y] with x <y in L and Sg is the subring
of S generated by the intervals (x, y] with x, y rationals. The o-algebra generated by
Sais £. Jis the ring 7R X 8) generated by the «cubes» of the form A X (s, #] X (x, y]
with Aed, s<tin Rand x<yin L.
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3) E, F, G are Banach spaces with Ec L(F, G) isometrically; 1 <p < o and
LE=LE(P).

We shall use also the letters F and G to represent functions of two variables, or two
parameter processes. It will be clear from the context and from the notations the pre-
cise meaning of the letters F and G.

4) We shall consider the functions defined on R, X L automatically extended
to Rx L, with 0 outside R, X L. Similarly, two parameter processes defined on
2 xR, X L will be considered extended with 0 outside 2 X R, X L.

1. - FUNCTION MEASURES WITH FINITE VARIATION

The purpose of this paragraph is to define the Stieltjes integral I f dg with respect
to a function measure g with bounded variation |g| . For this purpose we associate to g
a function G of two variables with bounded variation |G| and define I fdg=
= [fdG.

One of the main result is Theorem 1.3 which states that if g is a function measure,
then |g| is also a function measure. Then (Theorem 1.6) |G| is the function of two
variables associated to |g| . We associate also to a right continuous function measure g

with bounded variation |g|, a measure 72, on B(R) X £ with finite variation |7z, | =
=m|y (Theorem 1.6).

1.1. Function measures.

We define the variation of a function defined on R X X, where X is a ring of sub-
sets of L with Sgc X cC L.

DerNITION 1.1: Let g: R X X—E be a function. For every interval IC R and every
set Be X we define the variation

var(g, [ X B) = supz 2 |g(t:+1, B;) — g, B)) |
b7 by

where the supremum is taken for all divisions ty<t, < ...<t, of finite points from 1
and all finite families (B;);<; of disjoint sets from X contained in B.
The variation function |g|: R X X—R, is defined by

|g|(¢, B) =var(g,(—»,t1xXB), for teR and BeX .

We say g has finite (respectively bounded) variation if |g| is finite (respectively
bounded).
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Remark: The variation |g|(¢, B) depends on the ring 9. If we want to emphasize
this dependence, we write |g| (2, B). For the restriction of g to R X 8, we have
|g|s(¢, B) <|g|x(t, B), for BeS. However, if for each teR,, the mapping
B+>g(¢, B) of X into E is o-additive, we have equality: |g|s(¢, B) = |g|x(¢, B) for
Bes.

We can extend the above definition of |g| for £= — o and #= + . We have
then

|g|(—,B)=0 and |g|(e, B) = var(g,(— o, o] X% B).

We note that var (g, I X B) is an additive set function with respect to I X B. We have
then

var (g, (s, t1 X B) = |g| (¢, B) — | g|(s, B),

for s<tin R and Be £.
Next we define the function measures.

DerINITION 1.2: Let g: RX X—E be a function.

We say that g is right continuous, if for every set Be X, the function t—g(t, B) is
right continuous.

We say that g is a function measure, if for every te R, the set function B—g(t, B) is
o-additive in E on X.

We show next that the properties in the above definitions are inherited by the vari-
ation. This is the main result of this paragraph.

TreoREM 13: Let g: R X X—E be a function with finite variation |g|.
a) The function g is right continuous iff its variation |g| is right continuous.

b) If g is a function measure, then its variation |g| is also a function
measure.

Proor: a) From the inequality
|g(¢, B) — g(s, B)| < |g|(¢, B) — |g| (s, B)

valid for s < ¢ in R and Be X, it follows that if |g| is right continuous, then g is also
right continuous.

Assume now g is right continuous, but that there is a point ze R and a set Be %
such that |g| is not right continuous at (, B), that is,

=|g|(a+, B) - |g|(a, B) >0,

and show that this leads to a contradiction. Let £ > 0 and 5 > a. We shall show that
there is a decreasing sequence x, | 4 in R with x; = 5 and a family D = (B); <,<,, of
disjoint sets from X contained in B and for each # a division d, of points from
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[%,+1, %,] such that

Varde(g): 2 2 |g(tl+l) n ] |>M— - .

1</;<m ted, 2"

In fact, let 4, be a division of [4, 5] and D = (B;); <, <,  finite family of disjoint sets
from X contained in B, such that

vary, p(g) = 2 2 |gltiv1, B) —glt;, B)| >

1<j<m tied,

£ £ £
> ,[a, b1 X B) — — =|g|(b, B) — ,B) = —2=M-—.
var (g, [a, b] X B) y |¢| (5, B) —|¢|(a, B) 4 4

We take x; = b. Since for each B;, the function #+>g(¢, B;) is right continuous, there is
a point x, >4 such that for every xe [4, x,] and 1 <;<m we have

€
4m

We can choose x, = inf {ted,, t > a} and add x; to the division 4, which does not
change the above inequalities. Denote d; = A, — {4}; then d, is a division of the inter-
val [x,, x;] and

Vardl,D(g) 2 2 |g(t,+1,B) (n i I_Vardl D(g) <Z |g(x2)B)_

1<j<m ted Sjsm

£
1<j<m 4m

e

— M- A
4 2

€ €
—gla,B)|Z2M—- — + —

gla, B) | q )
The second step and the #-th step are proved similarly. By induction, we have, for
every 7,

Igl(b:B |g|(ﬂ B 2 [Igl(an |g|(xz+1)B)]/ z Vard D(g) M—E,

1<isn

hence |g|(b, B) — |g|(a, B) = + o, which contradicts the hypothesis that the varia-
tion |g| is finite. This proves assertion a).

b) Assume g is a function measure. Let e R be fixed and prove that the set
function B+ |g|(¢, B) is o-additive on X. We prove first that |g| is additive. Let B,
B’ e X be disjoint sets. There are sequences of divisions (c,), (4,), (d,) of points from
(— o0, #] and sequences (C,), (D,), (D,) of finite families of disjoint sets from X con-
tained in BUB', B, B' respectively, such that

|g|(¢, BUB') = lim var, ¢ (g),
|g|(¢, B) = lim var, p (g),
|g|(¢, B") = lim vary; p.(g),
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For each # we can take refinements of C,, D, and D, and the above equalities remain
valid. We can therefore assume that C, = D, U D, . For each # there is a division 4, in
(— o0, ¢], finer than ¢,, d, and d,. Then

|g|(¢, BUB') = lim var,, ¢, (g),
|g| (¢, B) = lim var,  p (g),
|g|(¢, B") =lim,, p:(g).
For each # we have
var, c (g) =var, p (g)+var, p:(g).
Passing to the limit we obtain
|g|(¢,, BUB") = |g|(¢, B) + |g|(¢, B').

Then this equality remains valid for finitely many disjoint sets from X.

Let now (B,) be a sequence of disjoint sets from X with union B. Let d be a divi-
sion in (— 0, ¢] and (B/); <;<, a family of disjoint sets from X with union B. For
each 7, the family (B, N B/); <;< of disjoint sets has union B,, and for each j <,
the sequence (B, N B/);<,<« of disjoint sets has union B;. Then

2 2 |egltiv1, B/)—gl#;, BY)| =

tied 1Sj<m

=Ry > g(t;iv1, B,NB) — 2 g(t;, B,NB/) | <
t

J l1sn<ow 1Sa<o®

SZ2Elg(tz+l)Bntj,)_g(tz)BnnB]')l':
[ A

=3 5 Slgltr, B.OB) g, BB < S gz, By),
n i g sSn<®

therefore

lgl(t) Uan)Sl E |gl(t’B")’
sSn<®

that is, the set function B+ |g|(¢, B) is o-subadditive.
To prove the converse inequality, let

0<6<|g|z, B +|g|(z, B,)
and let 6 =a, + a, with

0<a;<|g|(t, B,) and 0 <a,<|g|(¢, By).
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There is a division d' in (— o, #] and a finite partition (B;) of B; such that

a1<2 Zlg tiv1, Bf) —glt;, BY) | .

J tied

There is also a division d” in (— o, ¢] and a finite partition (B/') of B, such
that

a2<2 Z |g(tt+l: j) g(ti) Bj”)l <

J tie
The sets B/ and B/ are mutually disjoint and form a partition of B, U B,. Let d be a di-

vision in (— o, ¢] finer than d' and 4”. Then

0= a1+a2<2 2 |g I+1)B V= g(ti’B/,)|+

j tied

+2 E |g(t;+1, B!) — g(t;, B/') | <|g|(¢, BiUB,),

J te
therefore
|g|(z, By) + |g|(z, B,) < |g|(¢, BiUB,).
By induction we have, for every 7,

S felt, 8 <lelfe, 03) <1ai(s U 3).

lsisn
Then

00

S lelte, By <1al(1. 58).

and this proves that that the set function B—>|g|(¢, B) is o-additive.

1.2. Measures associated to function measures.

In this paragraph we denote by R the ring generated by the intervals (s, #] in R,
and by X any ring of subsets of L such that Sqc Xc £.

Let g: R X X —E be a function. We define the additive measure 7,: & X X —E
by

my((s, t] X B) = g(t, B) — g(s, B),  for s<tin R and Be X,
and then we extend 7, to an additive measure on the ring (R X X) generated by the
semiring R X X of rectangular sets (s, #] X B.

The relationship between the variations of g and 7z, is given by the following
proposition.
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Proposition 1.4: Consider the variation |m, | of my on the ring (R X R). Then for
every interval ICR and set Be X, we have

|2, | (I X B) =var (g, I X B).
In particular, for I=(— o, t], we have
|, |((— o, £] x B) = |g|(¢, B)
and for s<t in R we have

|74 | ((s, £]1 X B) = my (s, £] X B) .

Proor: Let (A4;); <;<, be a family of disjoint sets from R contained in I and
(B)1 <j<m a family of disjoint sets from X contained in B.
Each set A, is a finite union of disjoint intervals,

A= /eyK;(Sik’ ).

Arrange all points s, #; in increasing order #y < #; < ... <uw,. Then

Zlmz(AiXBf) | < E |7 (t4y, 4,111 X B;| =
i Jor
=2|g(ur+1,Bj)—g(u,, B))| <var(g,IxB) < o,
o

therefore |z, |(I X B) <var(g, I X B).
For the converse inequality let d: 4 <# < ... <t, be a division of points from I
and (B)); <<, a family of disjoint sets from X contained in B. Then

Z |g(t,‘+1, B]) _g(t,', B/) l b z |mg((t,~, ti+1] XB])I < |mg I(IXB),
5 i

therefore var (g, IXB) < |, |(IXB); hence the equality |z, |(I X B) =var(g, I X B),
and the proposition is proved.

The next question is whether 7z, can be extended to a g-additive measure on the
product o-algebra B(R) ® £. We answer this question in theorem 1.6 in the next
section.

1.3. Function measures and functions of two variables.

Let g: RX 8—E be a function. We associate to g a function of two variables
G: R X L—E by the following equality:

G(t,x) =g(¢t,(—o,x]), for teR and xelL.



—95 —

This allows us to reduce the study of the function measures g to that of the
functions of two variables G, which are studied in detail in ([D4], Sect. 1).

The variation of G on a rectangle I X Jc R X L, where I and ] are intervals, bound-
ed or not, is defined by

var (G, I X ]) = sup ,E,lA(l,-» tiv 11X (x5, x/+1](G) I -
ij
= sup 2 |Gt 1, %41) + Gty %) = Gt %541) — Glti1, %) |
i

where the supremum is taken for all divisions #, < #; < ... < #, of points from I and all
divisions xy < x; < ... <x,, of points from J.
It turns out that the variations of g and G are equal:

ProposiTioN 1.5: For any intervals ICR and JC L we have

var (G, IX]) =var(g, I X]).

Proor: Denote by ¢ the additive measure defined on XS by
me (s, t] X (%, 91) = A, nx x, 9(G) s
for s<tin R and x<y in L, where
A ixw5(G) = Gls, x) + Glz, y) — G(s, y) — Gz, x).
Then
me (s, 1 % (x, y1) = my((s, £1 X (x, 31) .
By proposition 1.4 we have
|7, |(Ix B) =var(g, IXB), for any Be$,

in particular for B =]. From ([D4], Sect. 1.6, property 10), with g replaced by G, we
have

|mg |(IX]) =var (G, IX]).
Since | |(IX]) = |m, |(IX]) we deduce that
var (G, IX]) =var(g, Ix]),
and the proposition is proved.
The following theorem gives conditions to insure that G is right continuous on

R x L and has bounded variation, and answers the question whether 7z, can be ex-
tended to a o-additive measure on B(R)® £.
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TueoreM 1.6: Let g: RX S—E be a right continuous function measure with
bounded variation |g|. Let G: R X L—E be the function defined by
G(t, x) =glt,(—o,x]), for teR and xeL.
Then:
a) G is right continuous and has bounded variation |G| satisfying
|G| (¢, x) = |g|(¢,(—»,x]), for teR and xeL.

b) g can be extended uniquely to a right continuous function measure with
bounded variations from R X £ into E, still denoted by g.

¢) The measures m, and mg can be extended to o-additive measures from
B(R) ® £ into E, with finite variation |m,| and |mg | respectively, and we have

mg=my and |mg|=|my|=my=mq , on BR)®L.

Proor: The function G is separately right continuous in ¢ (since g is right continu-
ous in #) and right continuous in x (since the measure B+>g(¢, B) is o-additive). More-
over, G has bounded variation on R X L. In fact, let IcR and Jc L be two intervals
and consider a grid

Q:itg<tyy<...<t,, %<x<..<x,

consisting of points ¢ from I and x; from J. Then

Z |4, 0 11% (5 541(G) | = 2 lg(t;41, (x5, x;4011) — g(ts, (x;, %7411) | S var (g, IX]),
i i j

hence G has finite variation on I X ] and
var (G, IX]) <var(g,IX]).

From ([D4]), Corollary 1.3) it follows that G is right continuous.

The equality |G|(¢, x) = |g|(¢,(— %, x]) will be proved below.

Consider G extended with 0 for every point (s, #) with s or # equal to — . By
Radu’s theorem [R] (see also [D4], Theorem 1.8), there is a o-additive measure
mg: B(R) ® £— E with finite variation satisfying

me(R) =A4x(G), for any rectangle R,
where, if R = (s, ¢] X (x, y], then
AR(G) =4 nxx,1(G) = G(s, x) + G(¢, y) — G(s, y) — G(2, x) .
In particular, if R= (-, #] X (= %, x], then

mc(R) = Ag(G) =G(t, x) = g(t,(— o, x]),

|
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hence
mg((— o, t]xB)=g(¢,B), for teR and BeS.
Then we can extend g from R X £ into E by setting
g(¢, B) =mg((—o,t1xB), for teR and Bef.

The extended function g is a right continuous function measure on £. From the above
equality we deduce, for teR and Be £,

|g|(z, B) =var(g,(— o, t] X B) < |mg|((—®, ] XB) < o,
hence the extended function measure g has bounded variation |g| . This proves asser-
tion ).

Consider now the additive measure 7,: & X £—E satisfying

mg((s, t] X B) = g(¢, B) —g(s, B), fors, teR and Bee£.

Then , has bounded variation |7, | on & X £ and we have
|m, |((s, ] x B) = |g|(¢, B)—|g|(s, B), fors, teR and Bee£.

We deduce that
my((s, 11X (— o0, x]1) = g(t,(— o, x1) = gls,(— 0, x]) = mg((s, ] X (=, x]),
therefore 2, =mg on R X S, consequently |, |=|mc|, that is », =m on
R X 8. Since m is o-additive on B(R) ® £, we extend 7, to a o-additive measure on

B(R) ® £ by the equality

my(C) =mg(C), for CeB(R)®L
Then m, has finite variation |7,| on B(R)®L£ and we have |, |=|mg| on
B(R) ® £. The equalities |7z, | =, and |mg | = m g follow from Proposition 1.4
and ([D.4], property 11 of section 1.5). This proves assertion ¢). Finally, for e R and
xeL we have
|G|(t,x A(_w A% (= o,,,‘]lc;l m|G| (—°° L‘]X(—OO x])

=mpy (=, £1X (=, x]) =var(g,(— o, ] X (=, x]) = |g|(t,(— o, x]),

and this proves assertion 4) and the theorem.
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1.4. The Stieltjes integral with respect to a function measure.

Let g: R X £—E be a right continous function measure with bounded variation
|g|. Let m,;: B(R)®L—E be the o-additive measure with bounded variation
|m, | = m)y associated to g by Theorem 1.6 and satisfying

my((s, £1 X B) = g(¢, B) — g(s, B), for s<t and Be£.

Let F, G be Banach spaces with ECL(F, G) and consider the space L#(m,) =
=Lg(|m,|) of functions f: R X L— F which are Bochner integrable with respect to

|m,|. Then, for any fe Lg(m,), the integral j fdm, is defined and belongs to G.

By analogy with the definition of the Stieltjes integral with respect to a function of
two variables with bounded variation ([D4], Sect. 1.6) we are led to denote L7 (1) by

LE(g) or L} (dg), and for fe L} (g) to call I f dm, the Stieltjes integral of f with respect
to g and to denote it by jfdg or jf(t, x) g(dt, dx):

[ A2, %) gtde, d) = [ £ dm,

Then we have

‘ [ £t ) glde, )

< [1£, )] lg|(de, dx).

This convention is further justified in the following way. Let G: R X L—E be the
function of two variables defined by

G(t,x) =g(¢t,(—»,x]), for teR and xeL.

By Theorem 1.6, G is jointly right continuous and has bounded variation |G|
satisfying
|G|(¢, x) = |g|(¢£,(—=,x]), for teR and xeL.

Consider the o-additive measure m¢: B(R) ® £— E with bounded variation |z |
associated to G by Radu’s theorem ([L]; [D4] Theorem 1.8) and satisfying

me((s, 11X (x,91) = A, qx x, 1(G).

The space L# (m¢) of functions f: R X L—F which are Bochner integrable with re-
spect to | | is denoted in ([D4], Sect. 1.6) by L# (G) or L# (dG), and for fe L (G

the Stieltjes integral j £dG or j A2, x) G(dt, dx) is defined by

[ #¢, %) Glat, dx) = [ £ dm .
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Now, for each rectangle (s, £] X (x, y] we have
my((s, £1% (x, 91) = mg (s, £1 X (x, 1) .

Since both measures 7z, and 7 are o-additive on B(R) ® £ and since the rectangles
(s, 2] X (x, y] generate B(R)® £, we deduce that

my=mg and |m,|=|mc|, on BR)IQL.

It follows that L} () = L (mg), and for fe Lg (m,) we have
[ fdm= [ fdme= [ fr, x) Glar, dx).

This means that I f dm, is indeed a Stieltjes integral with respect to the function G of
two variables. If we identify g and G, it is justified to call I f dm, the Stieltjes integral
of f with respect to g and to denote it by Ifdg or jf(t, x) g(dt, dx), as we did above.
We have then

If(t, x) g(dt, dx) = If(f, x) G(dt, dx)

for fe L} (g) = LF (G).

2. - P-MEASURES INDUCED BY PROCESS MEASURES WITH INTEGRABLE VARIATION
2.1. Definitions and properties.

Let (R, &, P) be a probability space, X a ring of subsets of L satisfying SoC X C £
and X: @ xR, x X—E a function. Its values X(w, ¢, B) for we 2, teR, and
Be X will be also denoted by X,(w, B). As we mentioned before, the function X will
be automatically extended to 2 x R X X, with 0 outside £ x R, x X. Furthermore
we shall define X_ (@, B) =0, for every w € 2 and Be X.

We gather in the following definition all the terms about X that will be needed lat-
er on.

DerNiTiON 2.1: a@) A function X: Q X R, X X—E is called a process set
function.

b) A process set function X is said to be measurable, if for every Be X, the pro-
cess (w, ) —>X,(w, B) is measurable with respect to FQ B(R).

¢) A process set function X is said to be adapted to a filtration (F,), if for every
teR,, and every Be X, the random variable w—X,(w, B) is F-measurable.

d) We say a process set function X is right continuous, if for every w € Q and
Be X, the function t—>X,(w, B) is right continuous.

e) A process set function X is said to be pathwise o-additive in E on X, if for
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every we Q and teR,, the set function B—X,(w, B), from X into E is o-addi-
tive.

f) Let 1 <p < . We say a process set function X is a p-process measure, if it is
o-additive in L, that is, if for every te R and Be X, the random variable X,(-, B) be-
longs to LE and for every teR,, the set function B—X,(-, B) from X into LE is
o-additive.

g) We say a process set function X bas finite (respectively bounded) variation, if
for every w € R, the function (t, B)—X,(w, B), has finite (respectively bounded) vari-
ation | X(w) |,(B), in the sense of Definition 1.1.

We shall also denote | X(w) |,(B) by | X|.(w, B) and we shall denote the process set
function (w, t, B)—|X|,(w, B) by |X].

b) Let 1 <p < . We say a processs set function X bas p-integrable variation, if
the function w+> |X|«(w, L) = sup,>¢ | X|,(@w, L) belongs to L. If p=1, we say
that X bas integrable variation.

We list now a series of properties of interrelationship between the above
notions.
Let X: 2 XR, X X—E be a process set function.

1) If X is right continuous and adapted, then X is measurable.

2) If X is measurable and right continuous and bas p-integrable variation |X|,
then X is right continuous in LE, that is, for each Be X, the mapping t— X, (-, B) from
R, into LE is right continuous.

In fact, if ¢, %, we have X, (w,B)—X,(w,B) and |X, (w,B)|s
< |X|, (@, B) <|X| (@, L) and the last function belongs to L?. We apply then
Lebesgue’s theorem and deduce that X, (w, B) =X, (w, B) in L£.

Remark: The converse is not true.

3) If X is measurable and pathwise o-additive in E on X and has p-integrable
variation, then X is o-additive in LE on X, that is, X is a p-process measure.

In fact, B—X,(-, B) is additive; if B, | ¢, then X,(w, B,) =0 in E for each
we®, and |X,(w,B,)|<|X|«(w,L). Since |X|.(-,L)eL”, we can apply
Lebesgue’s theorem and deduce that X, (-, B,) =0 in L§.

Remark: The converse is not true.

4) If X is right continuous and has finite variation, then the variation process set
function |X| is also right continuous.

See Theorem 1.3a.
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5) If X is pathwise o-additive in E on X and has finite variation, then
the variation |X| is also pathwise o-additive in R on X.

See Theorem 1.35.

Remark: If X is pathwise o-additive in E on X and has finite variation (but not p-
integrable variation), then the variation |X| is not necessarily o-additive in L?.

6) If X is measurable and pathwise o-additive in E on X and has p-integrable
variation |X|, then |X| is o-additive in L7 on X.

Use Properties 5 and 3.

2.2. Process measures and two parameter processes.

Let 8 be the ring generated by the intervals (x, y] in L. The o-algebra generated by
Sis £.

Let F: 2 X Ry X L—E be a two parameter process. We associate to F a process
set function X: Q X R, X S—E, defined by

X, (w,(—»,x])=Flw,t,x), forwe®, teR, and xeX

and then extend X by additivity to 2 X R, x S. We call X the process set function in-
duced by (or associated with) the two parameter process F. The set function
B—X(w, B) is finitely additive on 8, for each w e 2 and teR, .

Conversely, any process set function X: 2 X R, X §— E which is finitely additive
on 8, is induced by the two parameter process F: 2 X R, X L—E defined by

Fw,t, x)=X(w,(—o,x]), forwe®, teR, and xelL.

Let F and X be associated to each other as above. We list some properties of relation-
ship between F and X. For each w € 2, we denote by F(w) the function defined on
R, XL by Flw)(¢, x) = Flw, ¢, x). Similar definition for X(w).

We state first a property about the variations of F and X.

7) For any intervals ICR and JC L and for every w € Q we have
var (X(w), I X ]) = var (F(w), I X ]) .
See Proposition 1.5.
7') In particular, taking I=(— o, ¢] and [ = (— o, x] we get
| X (@,(= o, x]) = |F|(w, ¢, x).
Next we state a property about right continuity in ¢.

8) F is separately right continuous in the variable t on R iff X is right continuous
on R.
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See Definition 2.1.d.
The relationship between separate right continuity of F in x and o-additivity of X
is given by the following property:

9) If X is pathwise o-additive in E on S, then F is separately right continuous in x
on L.

In fact, if x, | %o in L, then (— o, x,]1 | (— %, x,1, hence, for any w and ¢ we
have X,(w,(—o,x,]1)—>X,(w,(— o, x,1), therefore F(w, ¢, x,) =>F(w, ¢, x,)
in E.

Conversely:

10) Assume F is separately right continuous in the variable x € L and has bound-
ed variation |F|. Then X bas bounded variation on 2 X R, X 8 and is pathwise 0-addi-
tive in E on S. Moreover, X can be extended to a process set function X: 2 X R, X £—E
which is pathwise o-additive in E on £.

If, in addition, F is measurable and bas p-integrable variation, then X has p-inte-
grable variation and is o-additive in LE on S.

In fact, for each w € 2 and e R, the function x> F(w, ¢, x) is right continuous
and has bounded variation |F(w, ¢) | (x) <|F|(w, ¢, x); therefore it induces a o-addi-
tive Stieltjes measure with finite variation u,, ,: £—E, satisfying

Uo (x,y] =Fw, t,y) - Flo, t, x).
For every we 2, teR, and Be £ we set
X,(w, B) =/‘w,t(B)

Then X is a process set function, which is pathwise o-additive in E on £ and
satisfies

X, (w,(x,y])=Fw, t,y)-Fw,¢t,x),

hence X is an extension of the process set function associated to F. By property 7, the
restriction of X to 2 X R, X S has bounded variation.
For the last part we use Property 3.

Remark: For the variation |X;| of X on 2 xR, X 8 we have, by property 7',
| Xs|:(@,(= o, x]1) =|F|(w, ¢, x).

But the variation | X | of X on 2 X R, X £ satisfies the inequality | X | = | X;|, and
| X¢ | is not necessarily finite. For this reason, although X is pathwise o-additive in E
on £, X is not nessarily o-additive in L on £, since the variation | X | of the exten-
sion X is not necessarily finite or p-integrable.

If, in property 10 we impose F to be right continuous jointly in ¢ and x, then X has
bounded variation on 2 X R, X £.
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THEOREM 2.2: Assume the function F: Q X R, X L—E is right continuous jointly
in t and x and has bounded variation |F|. Then there exists a process set function
X: Q@ xRy X L—E which is right continuous, pathwise o-additive in E on £ and has
bounded variation | X| on X Ry X £, which is itself right continuous, pathwise o-ad-
ditive on £ and satisfies

X, (w,(— o, x]) -=F(a), t,x), everywhere
and
| X|(w,(= o0, x]) =|F|(w, t,x), everywhere .

If, in addition, F bas p-integrable variation, then X bas p-integrable variation, is path-
wise o-additive in E on £ and o-additive in Lf on 8.

Proor: Since F is right continuous and has bounded variation, by Radu’s theorem
([R], and [D4] Theorem 1.8), for each we R there is a o-additive measure
MEw): B(R) ® £— E with finite variation |mzp, | satisfying

mpw) (=0, t] X (=, x]) =F(w, ¢, x)
and
|mF(w)|((_°°,f]><(—°°,x])=m|p(w)|((—°°,t]><(—°°,x])=|F|(a),t,x).
We define X: Q X R, X £—E by
X,(w, B) =mp((—,t]xXB), forwe®, teR, and Bef.
For we 2, teR, and xeL, taking B= (— o, x] we obtain
X(@,(—o,x])=Fo, ¢, %),

therefore X is the extension to 2 X R, X £ of the process set function induced by F.

Since mp(,) is o-additive, it follows that X is right continuous and pathwise o-addi-
tive in E on £. To prove that X has bounded variation |X|, let we 2, eR and
Be£. Let #; < ¢, <...t, be a division of points in (— o, ¢] and (B)); <, <, 2 family of
disjoint sets from 2 contained in B. Then

ZIX,’.“(G), B]) —X,‘.(a), BI) | 5 ZlmF(w)((ti’ ti+1] XBf)l s
1 v

< | mpw) | (= @, £]1 X B) = mpay) (=, £]1 X B),
therefore

le,((l),B)ng(w) ((—Oo,t]XB))SIFlm(w, o, 00)< ©
|Flw) |
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For B=(— o, x] we get
IXIt(a),(—w,x])$m|p(a,)|((—°°,t]X (—o,x])=|F|(w, ¢, x).

To prove the converse inequality, let weR, reR, and xe L. Let £, <#,<..., be a
division of points in (— o, ] and x; < %, < ...x,, a division of points in (— 0, x].
Denoting R;; = (¢, t;4+1] X (x;, %4 1], we have

Z |AR,-,-(F(CU))| = 2 lmF(w)((th L] X (xj’ xj+1]) a
i i
= 21X, (@, (x, %411) =X, (@, (x;, %,11)| <
17

< var (X(w), (=, 1 x (=0, x]) =|X|, (0, (=, x]),
therefore
|F|(w,t,x)=var(F(w),(—00,t]x(—w,x])S|X|,(w,(—°°,x]);
consequently
|X|,(@,(— o, x]) =|F|(w, ¢, x), everywhere.
In particular, for #= o and x= ®, we get
| X| (@, L) = |F|(w, ®, ©),

therefore if F has p-integrable variation, ie., if |F|(:, ®, ) eL?, then
|X|w(-, L) eL?, that is, X has p-integrable variation. We use then property 3 to de-
duce that X is o-additive in L? on £. This proves the theorem.

The converse of Theorem 2.2 is also true for pathwise o-additive process
measures.

TuEOREM 2.3: Let X be a ring such that SCRC L. Assume X: QX R, X L£—>Eisa
right continuous process measure with bounded variation |X| and pathwise o-additive
in E on X. Then the two parameter process F: Q x R, x L—E defined by

Flw,t, x)=X,(w,(—o,x]), forwef, teR, and xeL

is right continuous jointly in t and x and has bounded variation.

The process measure X can be extended uniquely to a right continuous process mea-
sure X': w X Ry X £—E with bounded variation |X| and pathwise o-additive in E
on L£.

Proor: Since X is right continuous and pathwise o-additive in E, by properties
8 and 9, F is separately right continuous in ¢ and x. Since X has bounded
variation, F has also bounded variation, by property 7'. Then, by ([D4], Theorem 1.4),
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F is right continuous, jointly in ¢ and x. For the existence of X' we apply
Theorem 2.2.

Remark: Theorem 2.3 is no longer true if we assume that X is o-additive in L£, but
not pathwise o-additive in E. Such a process is no longer induced by a two parameter
right continuous process with p-integrable variation; however, we shall see below
(Theorem 2.4) that there is a right continuous two parameter process F: 2 X R, X
x L—E with p-integrable variation, satisfying

Fw,t, x)=X,(w,(—x,x]), as.,

but not everywhere, the negligible set depending on x. We close this series of proper-
ties with the property of being adapted to a filtration.

11) Let (&) be a filtration satisfying the usual conditions. Consider also the
constant filtration (F,),.; with & = Ffor every x € L, and the double filtration (F; ,)
with %, , = %0 &= 7,

If F is right continuous in the variable x, has bounded variation |F| and is adapted
to the filtration (7, ), then X: Q X R, X £—E is pathwise o-additive in E on £ and
is adapted to the filtration (F,).

The extension of X to 2 X R, X £is insured by property 10. Let te R, and Be £
and prove that the path w—X,(w, B) is J,-measurable. This is true first for B =
=(— o0, x], from the definition of X:

X, (w,(—x,x])=Fw,t, x).

Then X, (-, B) is F-measurable for B in the ring S generated by the intervals (— o, x].
Since these intervals generate £ and since B— X, (w, B) is o-additive in E, for each @
and ¢, it follows by a monotone class argument that X, (-, B) is -measurable for every
Be L.

We state now and prove the property mentioned in the Remark following Theo-
rem 2.3, and which is one of the main results of this paragraph.

TureoreM 2.4: Let X be a ring such that SCXC L. Let X: Q XR, X X—E be a
right continuous p-process measure with p-integrable variation, ie. |X|o(L)eL”.
Then there exists a two parameter, right continuous process F: Q X R, X L—E with
p-integrable variation |F|, satisfying for every teR, and xe€L,

Flw,t,x)=X,(w,(—%,x]), as.
and

|Fl(w, t, x) < |X|(@,(—o,x]), as.
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If X is adapted to a filtration (F,) satisfying the wusual conditions, then F is
also adapted to (F,).

Proor: As usual, we shall consider the process measure X extended with 0 for
t <0, and the two parameter process F, to be defined below, will be also considered
extended with O for (¢, x) with one or both coordinates equal to = — .

We shall divide the proof into several steps.

a) We define first the two parameter process G: 2 X R X L—E by
Glw,t, x)=X,(w,(-—o,x]), forwefl, teR and xelL.

Since X,: S— L is o-additive, it is finitely additive, hence, for A, Be $ disjoint, we
have

X,(AUB) =X,(A) + X,(B), in LZ,
hence
X,(w,AUB) =X,(w, A) + X,(w, B), as.,

the negligible set N(¢, A, B) depending on ¢, A and B. Since X is right continuous, for
o outside the negligible set N(A4, B) = tUQ N(z, A, B) we have

X,(w,AUB) =X,(w, A) + X,(w, B), for all teR.
It follows that if Ac B, then
X,(w, B\A) =X,(w, B) - X,(w, A), for w¢N(A4, B) and teR.
Taking A= (— o, x] and B= (— o, y] with x <y, we denote N(x, y) = N(A, B)

and we get

™ X(w,(x,9])=Glw, t,y)—Glw,t,x), for wgN(x,y) and reR.

If we set N= U{N(x, 9); x, y rational}, then N is negligible and the equality (*) is
true for w ¢ N, all reR and all x, y rational.

b) Denote by G, the restriction of G to the set Q? of points (¢, x) with ¢ and x
rational. Then X, (0, (x, y1) = Gy(w, ¢, y) — Gylw, ¢, x), for ¢ N, teR and x <y
rational. For any rectangle R = (s, #] X (x, y] with 5 < ¢, x < y reals, consider a grid Q
consisting of rational points £, < # < ... <t, contained in (s, #] and rational points
%o < x; < ...X,, contained in (x, y]. Then, for ¢ N we have

Z IAR.-,-|(G0) | = 2 |Go(ti, %) + Go(t;4 15 %541) — Golt, %41) — Go (41, %) | <
i i
< Z.IX'Hl((xf’ %+11) = X, (%, %411) | <
i

<var (X, (s, ] X (x, y]) Svar(X, RXL) < o ,
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therefore the variation of G, on Q2 is bounded. By ([D4]), Theorem 1.1) it follows
that for w ¢ N, the function G, has right limits at every point (¢, x) e R X L, with ¢, x
rational or not. We set then, for every (¢, x) e R XL,

Flw, t, x) = :hrln Gylw,t',x'), ifweN,
t

x' ] x
t',x'eQ

and F(w, ¢, x) =0, for w e N. Then F is right continuous at every point (¢, x) e R X L,
for every we 2.

¢) For every (¢, x) e R X L we have
F(t,x) =G(t, x) =X,((— o, x]), as.

In fact, since for w ¢ N the limit of G, at (¢, x) exists and is equal to F(¢, x), the iterat-
ed limits of G, at (¢, x) also exist and are equal to F(z, x):

F(¢,x)= lim Gy(¢',x')=lim lim Gy(¢', x") = lim L G(t', x') = lim G(¢, x'),
t:it x"lx el 'l xx' )t t' | x
t",cx'er

since t—>G(t, x) = X,((— o, x]) is right continuous. Let x, | x with x, rational.
Since B— X, (B) is 0-addditive in L, we have X, ((— ®, x,1) > X,((— ®, x]) in L,
that is G(z, x,) = G(¢, x) in LZ. Since, by the above, we have also G(¢, x,) — F(¢, x)
pathwise a.s, we deduce that the two limits are equal as.:

F(z, x) =G(t, x) =X, ((— o, x]), as.

d) F has bounded variation. Let R be any rectangle in R x L. Since F is right
continuous, we can use only grids consisting of rational points £ <# <...t, and
Xo < % < -..Xp, with Ry = (£, ;411 X (%}, %411 CR. Then, for outside a negligible
set we have

Z IAR,,(F) l . z |AR,,(G) | = 2 |Xt.'+1((xf’ xf+1]) _Xli((xf’ xf+1])| S
] y 1,7

<var(X,R) Svar(X, RxL) = |X|o(L) <
(since |X|(L) is p-integrable); it follows that
var (F, R) <var(X,R) €|X|(L), as.

Since F is right continuous, its variation function |F|(#, x) = var (F,(— o, ] x
X (— o0, x]) is right continuous ([L] Theorem I.3.2 and [D4], Sect. 1.4, property 5),
hence |F| is Fmeasurable. From

|F|(, ) =var(F,RXL) <|X|.(L)eL?,

we deduce that F has p-integrable variation.
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e) From the inequality var(F, R) <var(X, R), as., proved above, taking
R=(—,t] X (—o, x] we get

|F|(¢, x) =var (F,(— 0, t] X (-, x]) <
svar(X,(—OO,t]X (—°°,x])=|X|¢((—°°,x]), a.s.

f) Let now (&) be a filtration satisfying the usual conditions and assume X is
adapted to (), i.e., for each e R and B e S, the random variable X,(-, B) is &-mea-
surable and prove that F is adapted to (& ,) with & , = &,. This follows from the
equality

Fw,t x)=X,(w,(—»,x]), as.

and the fact that &, contains all the negligible sets of 2.
This proves the theorem.

Remarks: 1°. We are able to prove only the inequality |F|(w, ¢, x) <|X|,(,
(-, x]), as. By Theorem 2.2, we have the equality |F|(w, ¢, x)=|X|;(w,
(— o, x]), provided that we have F(w, ¢, x) = X,(w,(— %, x]) everywhere or out-
side a negligible set independent on # and x; and this is realized if X is pathwise o-ad-
ditive in E.

2°. Under the hypothesis of Theorem 2.4, we do not know whether or not, the
variation |X| is o-additive in L, that is, we do not know whether or not |X| is itself a
p-process measure.

From Theorem 2.2 it follows that | X| is a p-process measure if X is induced by a
right continuous, two parameter process F with p-integrable variation |F|. In this case
| X| is itself induced by |F|.

Combining Theorems 2.4 and 2.2 we obtain the following theorem.

THeOREM 2.5: Let X be a ring such that SCXC Landlet X: QX Ry X X—E bea
right continuous process measure with p-integrable variation |X|. Then

1) There is a right continuous process measure X': Q@ X Ry X £—E which is
pathwise o-additive in E on £ and bas p-integrable variation |X' |, and which is a mod-
ification of X, that is,

X/(w,B)=X,(w,B), as., for teR, and BeX,

the negligible set depending on B.

2) The variation |X'| is right continuous and pathwise o-additive in E, and
satisfies

|X'|,(w, B) <|X|,(w, B), as. for B€S.
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3) If (&) is a filtration satisfying the usual conditions and if X is adapted
to (F,), then X' is also adapted to (F,).

Proor: Let F: 2 X R, X L—E be a right continuous two parameter process with
p-integrable variation |F| associated to X by Theorem 2.4 and satisfying

Flw,t, x)=X,(w,(—,x]), as.
and
|F|(@, t, x) < | X]|(0,(-®,x]), as.

for each teR, and xeL.
Let X': 2 X R, X 2—E be the right continuous process measure with p-inte-
grable variation, associated to F by Theorem 2.2 and satisfying

X/ (w,(—»,x])=F(w, t,x), everywhere
and
| X, |(@,(—o,x])=|F|(w, ¢, x), everywhere.
Then
1 X' |, (@,(— oo, x]) <|X]|,(0,(—,x]), as.,
the negligible set depending on x.

From
X/ (0,(—w,x])=X,(w,(-,x]), as.,

we deduce
X/ (- (=0, x])=X,((-»,x]), inLE,

therefore

X/(-,B)=X,(-,B), inL{

for every B e S. Since the set functions B— X, (-, B) and B—X, (-, B) from X into L{
are both ¢-additive and coincide on 8, they are equal on X:

X'(-,B)=X,(-,B), inLf, forteR, and BeX
that is
X/ (w, B) =X,(w, B), as., for teR,, and BeX,

the negligible set depending on B, because of the right continuity of X' and X. This
proves assertion 1).

The right continuity and pathwise o-additivity of | X' | follows from Theorem 1.3,
for each w € 2. To prove the inequality in condition 2), let ze R, and Be 8. Since X’



—110—

is right continuous and pathwise o-additive in E, we can compute the variation
|X'|,(w, B) by taking divisions d: #; <#, <...t, consisting of rational points and a
family (B;); <;<,, consisting of intervals B; = (x;, y;,] with x;, y; rational. Then, for @
outside a negligible set which is the same for all rational points, we have

,2. |X;,, (@, B) - X, (w0, B)) | = 2 | X, (@, B) — X, (w, B)) | <
57 2,7

< var (X(w),(— o, £]1 X B) = | X|,(w, B),
therefore
|X'|,(w, B) <|X|,(w, B).

This proves assertion 2).
Finally, assertion 3) follows from assertion 1).

2.3. Pathwise o-additive process measures and their Stieltjes integral.

We define first the Stieltjes integral for process measures which are pathwise o-ad-
ditive. By Theorem 2.3, we can assume these process measure to be pathwise o-addi-
tive on the whole o-algebra £.

Let X: 2 X R, X £—E be a right continuous process measure, pathwise o-addi-
tive in E on £ and with bounded variation |X(w) | for each w € Q. For each w e Q
consider the measure 72x(,): B(R) ® L—E with finite variation, associated to the
function measure X(w) by Theorem 1.6 and satisfying #2x(,) ((s, ] X B) = X,(w, B) —
—X,(w, B), for s<¢t and Be £.

Let F, G be Banach spaces with ECL(F, G) and let H: 2 X R, X L— F be a two
parameter, measurable process with j |H(w, t, x) | |mxw) |(dt, dx) <  for each

w € 2. This means that for each w € Q, the function (¢, x) —H(w, ¢, x) belongs to
L# (my.)), therefore the integral

IH(w, t, x) my ) (dt, dx)

is defined and belongs to G. According to Sect. 1.4, this is the Stieltjes integral
J H(w)dX(w) which was also denoted

fH(w, £, %) X(w)(dt, dx) = jH(w, t, %) X(w, dt, dx).
So
jH(w, t, %) X(w, dt, dx) = jH(w, 1, x) My (dt, dx).

Consider now the right continuous, two parameter process F: 2 X R, X L— E with
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bounded variation, associated to X by Theorem 2.3 and satisfying
Flw, t,x) =X, (w,(—o,x]), forteR, and xeL.

For each we 2, let F(w): R X L—E be the function defined by F(w)(z, x) =
=F(w, t, x).

Then F(w) is the function of two variables associated to the function measure
X(w) by Theorem 1.6. The measures 725, and 72y, corresponding to F(w) and X(w)
respectively are o-additive on B(R) ® £ and are equal on the rectangles (s, ] X
X (x, y]:

mxw) (s, £1 X (x, 1) = X, (0, (x, y]) — X, (@, (x, y]) =
=A; nx (x, 51 (F(@)) = mp) (s, £1 % (%, 91) .

It follows that 72,y = 7p() and |mx,) | = | @) | ; therefore L (my(,)) = LE (mp,))
and for any two parameter process H: 2 X R, X L—F with

[1H@, £, )| d|mya) | < =,
we have
j|H(w, t,%)| d|mrwy | < @,
hence the following two integrals are defined and are equal:
j H(w, ¢, x) my(dt, dx) = [ H(w, ¢, x) mp)(dt, dx),
which, translated in terms of Stieltjes integrals, gives
[Hw, t, %) X(@, dt, dx) = [Hw, t, ) F@, dt, dx).

This equality justifies the name of Stieltjes integral given to the first integral, since it is
equal to a genuine Stieltjes integral.

2.4. General process measures and their Stieltjes integral.

We define now the Stieltjes integral for an arbitrary process measure.

Let X: 2 xR, X £—E be a right continuous p-process measure with p-inte-
grable variation |X|. The process measure X is o-additive in L£, but not necessarily
pathwise o-additive in E. For each w € 2, consider, as in the preceding section, the
measure 7x(,): R X L—E defined by

myw) ((s, 1 X B) = X,(B) — X,(B), for s<t and Bef.

The measure 7y, is finitely additive, but not necessarily o-additive in E on & X £.
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For this reason, the integral I H(w, ¢, x) mx)(dt, dx) cannot be defined as a usual

integral. It will be defined below just as a notation for a genuine Stieltjes integral (in
the sense of Section 2.3) with respect to modifications of X that are pathwise o-addi-
tive in E.

Indeed, by Theorem 2.5, there is a right continuous process measure X': £ X
X R; X £—E, pathwise o-additive in E on £, with p-integrable variation | X' |, such
that X' is a modification of X, that is,

X/(w,B)=X,(w, B), as., for Be £,
the negligible set depending on B only. Then
mX'(w)((S, t] X B) = mx(w)((.f, t1xB), as., for Be£,

outside a negligible set depending on B.

If X": 2 x R, X £—E is another right continuous process measure, pathwise o-
additive in E on £, with p-integrable variation, such that X" is a modification of X,
then, because of right continuity and o-additivity in E of X' and X", there is a negligi-
ble set N such that for o ¢ N we have

X/(w,B)=X/(w,B), for every teR, and Be £.
Then
mX'(w)((S,t]XB)=mX"(w)((S,t]XB), for CL)¢N, s<t and Be L.

Since mx: () and mxn(,) are o-additive in E on B(R) ® £, we deduce that

my () = Mxrw), o0 BR)®L, for w¢N.

Then, for w ¢ N we have L} (my:()) = L# (#x+4)); and for a measurable process
H: 2 xR, Xx L—F we have

[1H@, £, 2)] x| (@1, dx) < oo iff [1H@, ¢, )] |mx- | (@2, dx) < oo .
It follows that for w ¢ N, the following integrals are defined and are equal:
[H(w, #, %) my o) (dt, dx) = [H(w, 2, %) mx-(de, d).
These are Stieltjes integrals in the sense of Section 2.3:
[H, 2,2 X" (0, d, dx) = [H,t,x) X" (@, d, dx), for w¢N.

This means that these two integrals are in the same equivalence class modulo P, and
this equivalence class is determined by H and the process measure X.
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By analogy with the above Stieltjes integrals, we denote their equivalence class
by

j H(w, ¢, x) my)(dt, dx)
and
jH(w, t, %) X(w, dt, dx),
and call it the Stieltjes integral of H with respect to X:
jH(w, t, %) my)(dt, dx) = jH(w, £, %) mxr () (dt, dx)
and

jH(w, t, %) X(w, dt, dx) = jH(w, t, %) X' (0, dt, dx).

We emphasize again that JH(w, t, x) myy) (dt, dx) and fH(a), t, x) X(w, dt, dx)

do not have a meaning as integrals with respect to #y,), but that they are just nota-
tions for the equivalence class, of the meaningfull integral with respect to X':

jmw, t, %) X' (w, dt, dx) = jH(w, £, %) mxo () (dt, dx).

We define now the expectation of the equivalence class to be the common value of the
expectations of its representatives:

EUH(w, t, %) X(w, dt, dx)) =E(jH<w, £ X (o, dt, dx)).
Using the considerations of the preceding section, we have also
jH(w, £, %) o) (dt, dx) = jH(w, t, %) Flw, dt, dx)
or
jH(w,t, %) X' (o, dt, dx) = jH(w,t,x) Flw, dt, dx),

where F: 2 X Ry X L—E is a right continuous two parameter process with p-inte-
grable variation |F|, associated to X by Theorem 2.4 and satisfying

Flw, t, x) =X, (w, t,(— %, x]), as.

Then we have

E“H(w, 8, %) X (@, dt, dx]) =EUH(w, ¢, %) Flo, dt, dx)),
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therefore with the above convention about the Stieltjes integral with respect to X, we
have

E([H(w, ¢, %) X(w, dt, dx)) =E([H<w, ¢, %) Flo, dt, dx)).

2.5. P-measures associated to process measures.

The next theorem, which is one of the main results of this paragraph, associates to
a process measure X, a P-measure ux by means of the Stieltjes integral. We have to
distinguish the measure ux from the measures 7z, considered in the preceding two
sections.

THEOREM 2.6: Let X: Q X R, X £—E be a right continuous process measure with
integrable variation |X|, i.e. the function @ |X| (@, L) is integrable.

There exists a P-measure pux: FQ B(R) ® £— E with finite variation |ux |, satis-
fying the following conditions:

Let F, G be Banach spaces with ECL(F, G) and let X': 2 X R, X £—E be a right
continuous process measure, pathwise o-additive in E, with integrable variation and a
modification of X. If H: Q X R, X L—F is measurable, then He L (ux) #ff H is

U x-almost separably valued and EU |H(w, ¢, x)| |X'|(, dt, dx)) < . In this case
E(jH(w, t, x) X(w, dt, dx)) is defined (in the sense of Section 2.4) and we have

IHd,uX=E(jH(w, ¢, %) X(o, dt, dx))
and
[1HIdlux | =E([|H@, £, 9] X' | (@, de, &),

that is |/Axl=,u|xr|.

Proor: Let F: 2 X R, x L—E be a right continuous two parameter process with
integrable variation |F|, associated to X by theorem 2.4 and satisfying

Fw,t x)=X,(w,(—»,x]), as.

By ([L], theorem IV.2.1; see also [D4], Theorem 3.1), there is a P-measure
pr: FQ B(R) ® £—E with finite variation |ur| such that, if H: 2 xR, X L—F
is measurable, (distinguish between the Banach space F and the process F!), then
He L} (up) iff H is up-separably valued and

E([|H(w, ¢, 0| |F|(w, dt, dx)) <w.
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In this case, E(IH(w, t, x) Flw, dt, dx)) is defined and we have
J’Hd/z,;:EUH(w, ¢, %) Flo, d, dx))
and
j|H|d|ﬂF|=E(j|H(w, ¢, %)| |F|(w, dt, dx)),
that is, |ur|=p r. We notice that for the modification X' of X we have
Fw,t x) =X (w,(—®,x]), as.,
the negligible set being independent of ¢ and x, and
|Fl(w, ¢, x)=|X"|(@,(—o,x]), as.,
hence
[IH(@, ¢, )| |F|(o, dt, dr) = [IH@, 8, 0] X' |(@, dt, dx), as.

and pup=py, and also u|p = x'|. We take px:=pup=px and the theorem is
proved.

Remark: If X is itself pathwise o-additive in E, then

IHduX=E(JH(w, ¢, %) X(w, dt, dx))

and lex | =wmx-
The following theorem is a converse of Theorem 2.6.

TueoreM 2.7: Let u: FQ B(R) ® L— E be a P-measure with finite variation || .
Assume E bas the Radon Nikodym Property. Then there exists a right continuous pro-
cess measure X: 2 X R, X £—E, pathwise o-additive in E and with integrable varia-
tion |X|, such that p=px.

Proor: By ([L], Theorem IV. 2.2) there is a right continuous two parameter
process F: 2 x R, x L—E with integrable variation |F|, such that 4 =pup. Let X:
Q xR, x £—E be the right continuous process measure, pathwise o-additive in E,
with integrable variation, associated to F by Theorem 2.2, and satistying

X,(w,(—»,x])=F(w, t,x), everywhere.

Then we have ux = pF, therefore 4 = uy, and the theorem is proved.
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3. - THE STOCHASTIC INTEGRAL FOR PROCESS MEASURES WITH INTEGRABLE VARIATION

This paragraph contains the main results of the paper.

We define first the summable process measures and prove that the right continu-
ous process measures with integrable variation are summable (Corollary 3.6). Then we
define the stochastic integral for summable process measures and show that for right
continuous process measures with integrable variation, the stochastic integral can be
computed pathwise, as a Stieltjes integral (Theorem 3.10).

3.1. Summable process set functions.

Let (2, &, P) be a probability space and (&) a filtration satisfying the usual con-
ditions. In this paragraph we denote by & the ring of subsets of 2 x R, , generated by
the sets A X {0} with A e & and A x (s, ¢] with A € &. We also denote by $ the ring
generated by the intervals (x, y] in L, and by Jor #(R X 8), the ring generated by the
semiring

KRX8={AXB;AeR,Bes}.
The o-algebra generated by J'is the product o-algebra $® £, where @ is the pre-
dictable o-algebra of Q X R, .
Let F, G be Banach spaces with ECL(F, G) and 1 Sp< o, LetX: 2 xR, X

X £— E be a right continuous, adapted p-process measure. We define the finitely addi-
tive measure Iy: —>LECL(F, L&) by

Ix(AX {0} X (x,9]) =1, X,((x, y]), for Ae &,
and
Le(A X% (s, 21X (x, 91) = 14 (X, ((x, y1) = X, ((x, 1)),  for AeF,
and extended by additivity to J.

DeriNimioN 3.1: We say that an adapted, right continuous process measure X:
Q X Ry X 8—E is p-summable, relative to (F, G), if Iy can be extended to a o-addi-
tive measure Iy: PQ L— LECL(F, LE) with finite semivariation (Ix)F, L.

We shall prove below (Corollary 3.6) that if X is adapted, right continuous, o-ad-
ditive in Lf on £ and with integrable variation |X|, then X is summable.

Let now X': 2 X Ry X £—E be another adapted, right continuous process mea-
sure, which is a modification of X, that is,

X/(w,B)=X,(w, B), as. for teR, and Be £,
the negligible set depending on B. Then we have
Ix.(C) =Ix(C), as., for each Ce T,
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the negligible set depending on C. As elements in Lf, we have
Iy (C) =Ix(C), for every Ced.

It follows that, as Lf-valued additive measures, Iy and Ix have the same varia-
tion:

Iy |p=|Ix |1, on T,

and the same semivariation relative to (F, L&),

(IX')F,L& . (Ix)p, Lé> on J.
We deduce that X is p-summable iff X' is p-summable.

3.2. The Stochastic integral with respect to a summable process measure.

Let X: 2 X R, X £— E be a right continuous, adapted process measure. Assume
that EC L(F, G) and that X is p-summable relative to (F, G). Then we shall use the
general theory of integration presented in [B-D.1] to define the Stochastic integral
with respect to X.

Consider the ¢-additive measure Ix: $® £— LEc L(F, L&) with finite semivaria-
tion (Ix)f, re-Let 1/p+1/g=1 and let Zc L+ be a norming space for L&. For each
zeZ, consider the measure (Ix),: @ X £—F* defined by

(x,Ix),(M)) = (Ix(M)x, z), for xeF and MePX £,

where the first bracket represents the duality between F and F*, and the second
bracket represents the duality between L% and L&-.
Each measure (Ix), has finite variation |(Ix),| and we have

(Ix)E, 1p (M) = |(Iy), | (M), for MeP®L.
<1

Let D be a Banach space. For each ®® £-measurable two parameter process
H: 2 xR, X L—D, we define

L)H) = H|d|(y),|< + .
(GH) = sup [ |H] ] ()| < +

We denote by Jp((Ix)r, ) the set of @ £ measurable process H: 2 X R, X L—D
with (Iy)(H) < o . Then &, ((Ix)r, ¢) is a vector space, complete for the seminorm
(I)(H).

If F = D we denote ., ¢(Ix) = x((Ix)r, g). For H e ¢ ¢(Ix) we define the inte-
gral IHdIX in the following way: we have

T, clIx)c zDzL"l ((Ix)z) .
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Let He F, ¢(Ix). Then for every zeZ we have HelLl}((Ix),), hence the integral
J Hd(I), is defined and is a scalar. The mapping z—> J Hd(Ix), is a continuous linear
functional on Z:

“Hd(Ix)z <Iy(H)|z|, for zeZ.

We denote this linear functional by I H dIy and call it the integral of H with respect to
Iy. We have thenJHdIXeZ*,

<deIX, z>= [Hd@,, for ze2,
and

l deIX < I (H).

If He % ¢(Ix), then for every =0 and Be £ we have 1jy gxpHe Fr, c(Ix). We
denote

Hdly= Il[o,t]xBHdIX-

[0, ¢1xB

We are interested in processes for which I Hdlye LE for every t =0 and Be £.
[0,¢1xB
We denote by the same symbol the equivalence class J Hdly in L as well as any
[0,1xB
random variable belonging to this equivalence class. If we choose a representative
from each equivalence class, we obtain a process set function

j Hdlk (o)
iR t=0,Bee

with values in G. This process set function is automatically adapted and o-additive in
L& on £:

TuroreM 3.2: Let X: Q x R, X 8—>EcL(F, G) be an adapted, right continuous
p-process measure, and assume X is p-summable relative to (F, G). Let He ¢, ¢(Ix)
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be such that f Hdlye L¢ for every t =0 and Be £. Then

[0,£1xB
j Hdly ()
[0,¢1xB

is an adapted p-process measure with values in G.

t=z0,Bef

Proor: 4) We prove first that the mapping B> I BH dly from £ into L{ is o-addi-

tive. Let ze (L&)*. Then 1, H e L# ((Iy),) for every M e P® £, and the indefinite in-
tegralf Hd(ly), = I Hdly, z) is o-additive on P® £. Taking M = 2 x [0, ] X B

with ¢ fix and Be £, it follows that the indefinite integral J H dly is weakly
o-additive in LE on £, therefore, by the Pettis theorem, it is strongly o-additive in L&

on £, hence, U ]xBH dIX) is a p-process measure with values in G.
20,Bef
We prove now that this pr(;cess is adapted. Let ¢ = 0 and prove that f Hdly is
Fr-measurable. Replacing H with 13 H for Be £, it will follow that I s xBH dly is

F,-measurable.

b) Assume that H=1,,(, , xpx with Ae &,, Be £ and x e F. By the definition
of the integral we have

f HdIX= Ile (u/\t,v/\t]XBdeX= 14 (Xv/\t(B) _Xu/\t(B))x >
[0, ¢]

and the last term is equal to 1,(X,r, — X,)x if # < ¢, and to 0 if # < #; in both cases it
is F-measurable.

It follows that I 1y xdly is F-measurable for xe F and M in the ring 7(R X 8)
generated by the rectangular sets AX B with Ae R and BeS.

¢) We prove now that ) 1y x dlx is F-measurable for xe F and M e P& L.
Let xeF and denote by 9, the class of sets M e #® £ for which .[[0 ) 1yxdly is

F-measurable. By step b), I, contains the ring #(R X S). We show that I, is 2 mono-
tone class. Let (M,,) be a monotone sequence in 91, with limit M. Let z e (L&)*. Then
lto, alm,x—>1po, n1yx in LE ((Ix),), therefore

j 1y, xd(Iy),— j 1yxd(y),,

[0, #] [0, 2]

that is

< le”deX,z>—>< IldeIX,z>.

[0, 2] [0, 2]
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It follows that

j 1y, x dly— j lyxdy, weakly in LZ=L2(F, P).
[0, ] [0, 7]
Now, by hypothesis, for each » we have I o 1y, xdly e LE(F,, P). It follows that
Lo, g 1y x dIx belongs to the weak closure in LZ(F, P) of the convex set LZ(&F,, P);
and the weak closure of this convex set is equal to its strong closure, which, in turn, is
L&(F,, P) itself. It follows that J[o, i 1% dlx is J,-measurable, hence M e ,. We de-
duce that M, = P@ £ and this proves assertion c¢).
It follows that f [o,;]H dly is F,measurable for any ®® L£-step function

H: QxRy xXL—>F.

d) Assume now that H is as in the statement. Since H is $ ® £-measurable, it is
separably valued (by definition of measurability in Banach spaces), therefore there is a
sequence (H") of F-valued #® £-step processes such that H”— H pointwise and
|H" | < [H].

For each ze (L)* we have HeLf((Iy),), hence, by Lebesgue’s theorem,
1o, nH" =10 gH in L{((I),), thereforeL0 t]H” d(IX)z—ef[O)l]Hd(IX)Z, conse-
quently I[o t]H" dly— I[O t]HdIX, weakly in L&(&F, P). Since, by step ¢), we have

N :]H "dlye L&(F,, P), it follows by the same argument in step ¢) that the limit
J " t]H dly also belongs to L&(F, P) hence it is F-measurable. This proves the

theorem.

Remark: If X and H are as in the statement of Theorem 3.2, it does not follow that
an arbitrary choice of representatives

s
[0, £1xB
t=0,Bel

is cadlag or that there is a cadlag choice. This leads us to the following definition.

DeriNtTION 3.3: We denote by Lg, g(X) the subspace of Ty, ¢(Ix) consisting of proc-
esses H satisfying the following conditions:

1) J HdlyeL?, for every teR, and Be £;
[0, 1xB
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2) The process set function ( I H dIX) has a cadlag modifica-
[0, 1% B 120,Bes
tion.

The processes H e L} ¢(X) are said to be integrable with respect to X. Any right

continuous process measure which is a modification of J Hdly is
[0,1xB 120,Bes

called the stochastic integral of H with respect to X and is denoted H-X:

(H-X),(w,B)=( j HdIX)(w), as.

[0, 1 xB

It follows that the stochastic integral H-X is defined up to an evanescent set, i.e. a sub-
set of N X R, X L with N negligible.
From Theorem 3.2 and Definition 3.3 we deduce the following theorem.

TueoreM 3.4: For every He L} ¢(X), the stochastic integral H-X: QX R, X £—G
is a cadlag, adapted p-process measure.

Remark: Assume X is p-summable and X’ is a modification of X. Then we have
Iy =Ix in L{ and (Ix)F, 1= (jx)r, L&> Tz, Ix) = Fr, cx) and Lrl, c(X') =
=L} (X). Moreover, for He L} ¢(X) we have H-X'=H-X.

It follows that the stochasic integration for process measures is invariant with re-
spect to modifictions. Then, for right continuous process measures with p-integrable
variation, from the point of view of Stochastic integration, we can consider only pro-
cess measures which are pathwise o-additive in E, according to theorem 2.5.

33. Two parameter processes associated to process measures with integrable variation.

For right continuous, adapted process measures with integrable variation, their
stochastic integral can be reduced to that of two parameter processes.

Let X: 2 x R, X £— E be a right continuous, adapted p-process measure with p-
integrable variation and let F: 2 X R, X L—E be a right continuous, two parameter
process with p-integrable variation, related to X by Theorem 2.4 and satisfying the fol-
lowing equality:

Flw,t, x)=X,(w,(—,x]), as. for teR, and xeL.

Then F is adapted to the filtration (F, ,) with & ,=&.
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Let Ir be the LE-valued additive measure defined on the ring J by
Ie(A X (s, t]1 X (%, 91) = 144 gx (v, n(F) =
=1,(F(s, x) + F(¢,y) — F(s, y) — F(¢,x)), for Aed;,
and
Ir(A X {0} x (x,9]) =1,(F(-,0,y) —F(-,0,x)), for Ae%.
Then we have
Ir=Iy inLfon J,
therefore, their variations as Lf-valued additive measures on J are equal:
[Ir|rg=|Ix|g< +, on J.
In particular
|Ip|pp=|Ix|pp< +©, ond.

If F, G are Banach spaces with EC L(F, G), hence LEc L(F, L&), then the semivaria-
tions of Ir and Iy relative to (F, LZ) are also equal:

~ ~

Up)r1p= Ux)p p< +©, on J.

In particular

Ip)p 1= Ux)p S+, onJ.

It follows that X is p-summable relative to (F, G) iff F is p-summable relative to
(F, G), and in this case we have

IF=IX’ on QL
and
Fr, (Ir) = Fr, (Ix) .

For H e F¢, g(Ir) we have IHdIF = IHdIX, in L& (rather than in L&+, since the sim-
ple processes are dense in F ¢(Ir), see [D4], Theorem 4.7).

By ([D4], Theorem 4.6), Ir can be extended to a o-additive measure Iz: PQ £—
— L& with finite variation. We obtain then the following theorem.

TueoreM 3.5: Let X: Q X R, X 28— E be a right continuous, adapted process mea-
sure with integrable variation |X|, ie. |X|o(-,L)eL" and let F: Q X R, X L—>E
be a right continuous, adapted, two parameter process with integrable variation |F|, as-
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sociated to X by theorem 2.4, and satisfying
Flw, t,x)=X,(w,(—,x]), as., for teR, and xeL.

Then the measures Iy and Ir can be extended to o-additive measures Iy, Ip: P L— L}
with finite variation |Iy| and |Ir|, and we bave

IX=IFaﬂd|le=III:I=I|F|, on PRL.

If, in addition, X is pathwise o-additive in E, then |Ix|=1 IX| -

Proor: It remains only to prove the last equality. This follows from Theorems 2.2
and 2.3:
|X|,(w,(= o, x]) =|F|(w, ¢,x), as.,

the negligible set being independent of ¢ and x, because of the right continuity of F
and X and o-additivity in E of X. Then, applying the first part of this theorem to | X]|
and IFI , we deduce that I|X| =I|F| = |Ipl - IIX | i

CoroLLARY 3.6: If X: Q X R, X £—E is a right continuous, adapted process mea-
sure with integrable variation, then X is 1-summable relative to any embedding

EcL(F, G).

The stochastic integrals (H-F) and (H-X) are in the same kind of relationship as F
and X:

CoroLrary 3.7: If X and F are as in the statement of Theorem 3.5, for
HelL} ¢(X)N L} ¢(F) we have

(H-F)(w, t,x) = (H-X)(w, t,(— o, x]), as.

for t=0 and xeL.

Proor: Consider H, F and X extended with 0 for £ < 0 or x < 0. Then we have, as.

(H-F)w, ¢, x) = j Hdl | (0) = Hdlz | () =
[0, 1 x [0, x]

(—o, ] x (-, x]

=( [ HdIX)(w)=(H-X)(w,t,(—w,x]).

[—oo, ]x(—w,x]

The following theorem gives the relationship between the measures Iy and uy.

THEOREM 3.8: Let X: Q X R, X £—E be a right continuous, adapted process mea-
sure with integrable variation |X| and let F: Q X Ry X L—E be a right continuous,
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adapted, two parameter process with integrable variation associated to X by Theorem
2.4 and satisfying
Flw, t, x)=X,(w,(—0,x]), as., for teR, and xeL.

Let also px: $Q £L—E be the o-additive measure associated to X by theorem 2.6 and
ur: PQ L—E the 0-additive measure associated to F by ([L], Theorem IV .2.1; see also
[D4], Theorem 3.1).

Then, for every Ce PQ £ we have

ux(C) =up(C) =E(Ix(C)) = EI(C))
and

[ Ix [(C) = |ux |(C) = |Ig |(C) = |up | (C) = 5 (C) = E(I| (C)) .
If in addition, X is pathwise o-additive in E, then
|Ix [(C) = |ux |(C) =% (C) = E(I ) (C)),
for Ce PR L.

Proor: Let C=A X (s, ] X (x, y] with Ae F, with s<¢in R, and x<yin L.
Then, by the definition of the Stieltjes measure in Sect. 2.4 we have

Ix(O) @) = 14(0) (X, (@, (x, y]) — X, (0, (x, y1)) =
= j1c(w, £, x) iy (dt, dx) = jlc(w, t, %) X(w, dt, dx),
therefore
4x(C) =E( [1c@, £, 0 X(w, dr, dx)) = E(I;(C)) .

Since both ux and E(Ix) are o-additive on $® £ and are equal on 'which generates
PR L, we deduce that

ux(C) =E(Ix(C)), for CePRL.

Similar considerations for F and ur to deduce that
ur(C) =E(r(C)), for CeP®L.

From Ir=1Iy on Q£ we deduce that

E(IF(C))zE(Ix(C)), fOI‘ CE5>®£,

and this proves the first series of equalities. To prove the second series of equalities,
we notice that from uy = ur we deduce that |ux | = |ur|. We have also |uF | =W |F-
Applying the first part of the theorem to |F|, we deduce that

#|F|(C)=E(I|F|(C))) fOI‘ CEg)@oe



— 125 —

Finally, from Iy = Iz we deduce that

|| =Ip | = |ur| = ux]| -
The last series of equalities follow from Theorem 2.6: |ux | = p x|, in case X is path-
wise o-additive in E. This completes the proof of the theorem.

We give now the relationship between the Bochner integrable processes with re-
spect to |Ix|, and the processes which are «stochastic» integrable with respect to

(T, e

TueoreM 3.9: Let X: Q X Ry X £—E be a right continuous, adapted process mea-
sure with integrable variation |X|. Then the family of measures
Ior, a o= {|Ix), | : ze L&, [l < 1}

is uniformly o-additive, and we have
LHP®L, jux|) =L @®L, |Ix|) cL} 11(X),
and
Fr, 18 (S(R X £), X) = Fp 14(X),

where the left hand side is the closure in Fr 1L(X) of the space of R X £ step
processes.

Proor: The first equality of spaces follows from |ux|=|Ix| and the inclusion
follows from (Ix)r. ws|Ik|.

To prove the uniform o-additivity, let ze L& with ||zl < 1. Then the variation
|(Ix), | of the measure (Iy), satisfies |(Ix), | < |Ix |, hence the family (Ix)f, 14 is uni-
formly o-additive. Then by ([B-D.1], A18a and b) we have F 11(8, C) = F 11(X),
where 5 11(B, X) is the closure in Fr 1L(X) of the bounded processes. From ([B-
D.1], AI 11b) it follows that

Fr, 16 (S(R x £), X) = T, 14(B, X),

and this proves the theorem.

3.4. The Stochastic Integral as a Stieltjes Integral.

One of the main results of this paper is the following theorem which shows that
the stochastic integral of right continuous, adapted process measures with integrable
variation can be computed pathwise, as a Stieltjes integral, like in the case of two par-

ameter, or one parameter right continuous, adapted processes with integrable varia-
tion ([B-D.1], Theorem 3.3 and [D4], Theorem 4.9).

TueoreM 3.10: Let X: 2 X R, X L= EcL(F, G) be a right continuous, adapted
process measure with integrable variation |X| and let X': Q X Ry X £—E be a right
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continuous process measure with integrable variation |X' |, pathwise o-additive in E
and a modifiction of X.
Let He ¢ g(X) be a process with separable range and with

[IH@, 2, 2] X' |(0, d, dx) < o .

Then HeLf g(X) and the stochastic integral H-X can be computed pathwise as a
Stielties integral (in the sense of Section 2.4):

(H-X),(w, B) = [ H(w, s, ) X(w, ds, dx),

[0,£1xB
for weQ, teR, and Be £.

Proor: Let F: 2 X R, X L—E be the right continuous, two parameter process
with integrable variation |F|, defined by
Flw,t, x) =X, (w,(,x]), forteR, and xeL.

(See Theorems 2.2 and 23). Then Ir=Ix.=Ix on P®L, hence F ()=
=J¢, clIx') = T, c(Ix). We have also

|Fl(w, t,x) = |X'|,(w,(—»,x]), everywhere,

hence
| Le | = Iz | = e | = Iipy = Ijx) -
Let Ce 2® L. Then
[1H@, ¢, )| |F|(@, dz, dx) = [1H@, t, )] 1X" (@, dr, dx) < o .
¢ ¢
By ([D4], Theorem 4.8) we have 1cHeL} ¢(F), hence fCHdIFeLé and the
stochastic integral H-F can be computed pathwise, as a Stieltjes integral:

JHa’IF=(1CH-F)w(w,oo)= j (1cH) @, ¢, x) Flw, dt, dx).
C

Ry XL
Since Iy =1Ir and 1cH e F ¢(Ix) = Fr, c(IF), we have

deIX = deIF= jH(w, t, x) F(w, dt, dx).
C C C

In particular, for C= [0, ] X B with te R, and Be £, we have

Hdly = j H(w, ¢, x) Flw, dt, dx) e L .

[0,¢1xB [0,21xB

The last Stieltjes integral is right continuous in # and o-additive in B on £. It follows
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that He L} ¢(X), that is, H is integrable with respect to X, and

(H-X),(w, B) = j H(w, ¢, x) Flw, dt, dx) =

[0,£1xB

= j Hw, ¢, x) X' (0, dt, dx) = j H(w, ¢, x) X(w, dt, dx),

[0,¢1xB [0,£1xB

according to Section 2.4, and the theorem is proved.
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