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AsstracT. — We consider the asymptotic behavior of the solutions of a quasilinear problem
associated with the Heisenberg group in a periodically perforated domain. We give the critical
size to obtain a shift of the spectrum using the energy method and explicit correctors.

Omogeneizzazione per il p-laplaciano
associato al gruppo di Heisenberg

Sunto. — Si considera il comportamento asintotico delle soluzioni di un problema quasili-
neare associato al gruppo di Heisenberg in un dominio con buchi periodici. Si ottiene la taglia
critica che comporta uno spostamento dello spettro usando il metodo dell’energia e i correttori
espliciti.

1. - INTRODUCTION

We are interested in studying the effects in homogenization with holes of the cou-
pled degeneracy of the Heisenberg p-Laplacian (the one due to the Heisenberg group,
the other one due to the structure of the operator).

Let us recall the definition of the left invariant vector fields associated with the
Heisenberg group in R’:
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We introduce the gradient Vy by
Vu=(X,Y) =0V,
where V is the standard gradient: V = (8/dx, 8/3y, 3/82)7 and o the following

matrix
1 0 2y
a=
0 1 -2«

Let us recall the following condition on commutator:

[X,Y]=XY-YX=-4 i;
Oz
that condition implies the subellipticity of the vector fields [Fo 1], [Ho] and a scaled
Poincaré’s ineqality of order 2 [Je].
Let us introduce now A%, the p-Laplacian associated with the Heisenberg group
in R? for pe [2, v[:

Ayu=X(|Vyu|?~2Xu) + Y(|Vgu|?~2Yu),

where v =4 is the homogeneous dimension of the Heisenberg group in R? (for the
Heisenberg group in R?”*!, v =2 + 2). To study this operator we use the Poincar-
é’s and Sobolev’s inequalities of order p, which are a consequence of the Poincaré’s in-
equality of order 2 as proved in [BM].

Let us recall the results obtained in [LP], in the euclidian framework, for the p-
Laplacian in RN: 4,4 = div (| V«|?~2Vu). We consider ¢ — periodically (for the eu-
clidian group) distributed holes J* of size 7, = ¢”" ~?), Let Q be a bounded open do-
main in RN and Q¢ = Q — J°; they consider the problem

—A,u*=f> in Q°,
(1.1)
ut=0 on 02 U 35°¢

and they proved that the zero extension on the holes J° of #¢, denoted again by #°,
converges to the solution # of the problem

—d,u+Cu=f> in Q,
u=0 on 92 U 3J°

(1.2)

where C # 0 is an explicit constant related to the p-capacity (cf. [LP], [MP] also con-
cerning some results on convergence rate).
Thanks to the results obtained for the pavage in Heisenberg group, [BMT], we
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can repeat here the construction of the periodic homogenization problem for the
Heisenberg p-Laplacian 4%. To obtain the shift of the spectrum, the critical size
changes and we have to consider a size 7, = £ 2, where v is the homogeneous di-
mension of the Heisenberg group (we emphasize that v acts as the effective dimension
of the problem).

We then consider the problem of the construction of correctors in terms of the
Folland distance (that is the distance associated to the Heisenberg Laplacian, [Fol],
[KV]).

2. - PRELIMINARIES

Properties of the operator AY.

Let us recall the definition and some properties of the Heisenberg group in any
odd dimension N =2# + 1, where # = 1.

Let £=(x', x2, ...x", 9!, 9%, ...9", 2) = (x, 9, 2), where x= (x!, x2, ...x")
and y = (y!, 9%, ...9").

Let us consider the operators: for j=1...n X’ and Y”:

2] )
Xj_ — +2y] i ,

ox’ oz
Y = —§— —2x7 L4 .

dy’ oz

We denote by o the 2# X 2% + 1-matrix such that
aVe=i( Xk, XML Xr, YL, X2, 0¥ =N,

The vector fields X/, Y/ for j=1...n, satisfy an Hormander condition of order 1.
For two vectors £ = (x, y, 2) and £’ = (x', y', 2'), we define the &’ right-transla-
tion of &

E+E =(x+x",9+y",z+2 +2x"-y—x9")),

where - stands for the standard scalar product in R% (here £=#), and the
homotheties

aok=(ax, ay, a’z).

where a is a positive real number, and ax is the standard homothety in R”.
Notice that £ + &’ # &' + &; we shall call £’ + & the &' left-translation of &, let us
remark that the Lebesgue measure is invariant with respect to these right or left
translations.
Let us recall that the operator Vy is invariant with respect to left translations, i.e.
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for fixed &',
Va(u(&' +&)) = (V))& + 8.
One can check that ao(€+E&') =aoc&+aok’ and
Vy(ulaok)) = a(Vyu)acf).

We call o*(&, £') the intrinsic distance between & and &' by:
o* (€, &) = sup [¢(§> -9 9 < GHRY, 3 (X/(9)F + (V(9))? < 1].
=

Let us also introduce the distance:
o0&, EN=((x—x" P+ (y—yp' PP+ (-2 —2(x"y—xy") )",
The following equalities are satisfied by o:
olaok, aoé') =ap(§, &'),
oln+&, n+&') =0l &),

These identities are also true for @*.

Using these properties, it is possible to check that these distances are equivalent
and then we will use ¢ because of its explicit form.

For any E€R", we define the «radius» o:

o=0(§,0).

Using some computations as in [CDG2] and [BMT] we can prove the following
identities:

() = = ¥ 5 (P + <y">2)+y’z)’ Yie) = ia(y"i ((x") + (yf)z)—xfz),
o i=1 o i=1
S+ 67
V()P = =

2

and
S0P + (YR =4(2n +4) 3 (P + 67P),

(2n+1)

3 (0%(0) + (Y(e) = V40P
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Let us introduce 4% the p-laplacian associated with the Heisenberg group for
pel2, o).

Ayu= 3 X (|Vaul? 2 X)) + Y/ (| Vuu|?~2 Y7 () dx
g

and the Sobolev spaces relative to Vy;, let 2 be an open bounded domain in R, the
space Wiy ? () is defined as the completion of the space C*(Q) for the norm:

lellwry; > = ledlie @ + Vi dlpe ()7

The space Wy 5(2) is defined as the closure of Ci° (@) in Wi ?(R).
For regular «radial» functions, that is functions depending only on g, using the
preceding computations (see [CDG2]):

(2n+1) f'(0)

4%f@) = (p—1)|Vuol? |f' (@) I”‘Z[f”(g) +
p-1 4

From now on, the Lebesgue measure which appears in the integral will be
omitted.

We recall (see [BT]) that there exists a constant C such that if ze W,;:’(’,(Q)
then

[lulp<c|Vau.
Q Q

We will say that a function « is a (weak) solution of

—AY{u=f in Q,
u=0 on 0%,

where fe W2’ (Q) (the dual space of Wi 5(RQ), 1/p+1/p' =1) if ue Wi H(R)
and

[|VHu|”“2VHu-VHv= (f,v) for any ve Wﬁ,’,’(’,(Q).
e

Pavace: Let us recall the construction of a periodic pavage associated with the
Heisenberg group defined in [BMT].

We shall denote by Q=[—1, +1)Y the usual cube in RN with edge of
length 2 centered in the origin. Let #/€Z for any j=1,...,N and k=
= (2k, 282, ..., 2k, 2k 28" 2 . 2k%" 2k%"*Y), Let Q,=k+Q, the
cube Q left-translated by £ with respect to translations of the Heisenberg group. Is has
been proved in [BMT] that for any &’ € RY, there exists a unique #e Z" such that
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&' € Q,. Consider now this pavage dilated by a small parameter &> 0:
Qf=¢eoQr=¢e0(k+Q)=(e0k)+ (e0Q).

It is easy to remark that this is a pavage, indeed the translations commute with the ho-
motheties. The number of Qf such that Qfc Q is of order |2|/¢%, indeed |2|=
~ | Qf |#{Qtc @} = |Q°|#{Qf c }, where we have denoted by |A| the Lebesgue
measure of A, by Q¢ the set £0 Q and by #{Qf c 2} the number of subsets Qf con-
tained in Q.

Let us denote by B the subset of Q: B= {&: o(&, 0) <1} (Korany’s ball); we now
introduce the notations:

B*={&: 0(£,0) <a} =aoB,
Bge=(eok) + B,
Ta,e___ UkBZ’E.

Let us remark that B ¢c Qf, if a<e.

For a given function v, defined in Q°, we can define a function denoted by v§ as
the periodic extension of »,, with respect to the intrinsic pavage Qf: indeed let
' e RY then there exists a unique k€ Z" (piecewise constant with respect to & '), and
a unique £ € Q° such that

E'=(eok)+E

and then, because the inverse of the left translation of a vector & by a vector e o & is the
left translation by the vector €0 © k, we define

(2.1) v*(&") = v§(&) =v5((co (O R) +E').

3. - HOMOGENIZATION OF A%

Let 4(-) be a positive real function a(+): (0, 11— (0, 1) such that a(¢) <¢. Let € be
a sequence €€ (0, 1] converging to zero and set JAey=tpiael

We wish to study the limit as ¢é—0 of the weak solutions #° of the following
problems:

_AP £ 3 QTa(s)
(3.1) { hut=f> in Q\T",

ut=0 on 3R U 3T*®,



~ 99
that is of the minimization problem
(P*) inf | [ |Veo|?dE—p [ fodgs ve WiH(@\T4)|.
Q\T® Q\T=
The main result is the following:
THEOREM 3.1: Let Q be a bounded open domain of RN, N=2n+1,n=1,v=N+

+1,v>p=2 and feL* ().
Assume that

a(e)’ P
(3.2) ) =ae[0, of.
e—0 2N£V
Let u* be the extension of u® in Q:
- u® in Q\T“®
u =
0 in T,

Then (u4¢) converges strongly in L?(R2) to u defined as the weak solution of the follow-
ing problem:

(3.3) { —AYu+aClulP"?u=f> in Q,

u=0 on 09,

where the constant C is the capacity related to the operator A%y given by

(3.4) C=inf | [ |Vao|?dE; veC(RY), 921 on BY.
RN
Actually, u is the solution of the minimization problem
(P) inf | [|Veo|?dt +aC [ 0|7~ p [fodt; ve WiE(2)|.
2 ) 2
Moreover
(3.5) lim [|Va# |Pde= [ |Vuu|?dE+aC| |ulrdk.
@ @ @

Proor oF THEOREM 3.1:

Step 1: Compactness of (z°).
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PrOPOSITION 3.1: The sequence (4°) is bounded in Wiy 5 (R2) and strongly relatively
compact in LP(RQ).

Proor: Since #¢ verifies
j |Viu® |P~2Vyut Vo dE = [ fodE
o\1® o\T®
for any ve Wi 5(2\T*®), we have in particular
[ \Vawrrde= | fuce.
Q\Ta(s) _Q\Ta(s)

Consider now the extension % of #°. The following estimate is true

f | Vea |? dE < |7 ||y | Allr ) -
2

From Poincaré’s inequality, we obtain

[|Vﬁ|?d§sc.
Q

Hence #° is bounded in Wy §(£2) and strongly relatively compact in L?(£2) from the
compact imbedding: Wé"%(.{?) s 12(2). =

ConseQUENCE: Let #° be the solution of (P¢). There exist # € Wiy 5(£2) and a sub-
sequence (#°#), . of (#°) such that,

#t—u weakly in Wh2(Q) as b— o,
(3.6) { .

u*t—y strongly in L?(Q) as k— x .
Our goal is to identify this cluster point .

Step 2: Test functions.

In order to characterize the limit function #, we will use a sequence of tests func-
tions w° defined as follows. Let us consider the sequence of capacitary potentials w¢
related to the nonlinear Heisenberg Laplacian, defined in Q¢ by:

—ALwE=0 in B¢\B“®,
(3.7) w§ =0 in B9,

w=1 in Q°\B".
Let us define w* as the periodic extension of w¢ to the whole space R (see (2.1)). Due
to of the invariance of the operator with respect to translations and homotheties, the
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sequence (w°®) verifies

—A%w®=0 in Bf\B{?,
(3.8) w®=0 in Bf®@,

wg = in QF\B.

Lemma 3.1: The sequence (w®) is such that:

(3.9) w®—1 strongly in L?(R),
(3.10) Vyw®—0 weakly in L?(R2),
(3.11) |Vaw® |? dE— aCdE *-weakly in m(Q),
(3.12) J.|VHw€|qd§—>0 for every 0 <g<p.
Q
Proor.

Proor oF (3.11): Let wC 2 and denote by K(w) the set of £ e Z" such that Q¢ c w.
Using the definition of the extension w® of wg, we get

[1Vawepde~ 5 [ |Vaw*|Pdé=
keK(w)
BE\BI(E)

w

= #{Bfcw} J |Vawé |?dE = Ell_\lw_lva:—l’ J |Vyws |PdE .
Bz\Ba(s) € Bc/a(s)\B

By (3.2) and since I | Vi |? d& converges to C, defined in (3.4), as e =0, we
obtain Beale)\B

“VHw"' |?dE—aClo)|.
This implies (3.11).

Proor oF (3.9) anp (3.10): From (3.11), Vyw© is bounded in L?(£2). Moreover,
from Poincaré’s inequality, w® — 1 is bounded in L?(£). Hence, using the compact-
ness of the imbedding W3 5(2) <s L?(Q), there exists we Wi 5(2) such that (w*)
(up to a subsequence) converges to w weakly in Wi 5(2) and strongly in
LP(Q).

Actually w = 1 and thus all the sequence (w¢) converge. For that, let us denote by
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x° the characteristic function Ek:ng\gf, then
&€ = XEwE.

We have (cf. Lemma 1 of [BMT]),

1
x°———|0Q\B| in L®-weak *.
Q|
For any ¢ € C*(Q),
[xwto=[xe.
9 o

Passing to the limit for e—0,

— [10\Blwp= — [|Q\BI,
|Q|Q Q

1%
|Q]
and therefore
Iw¢= I¢ for any p e C*(Q),
0 Q

which implies that w = 1. Hence (3.9) and (3.10) are proved.

ProoF oF (3.12): Let 0 <g<p. It is possible to write w¢ explicitely:

Q(p—v)/(p— 1) _ a(s)(”"')/(P_ 1)

: € a(e)
g®=Mp=1) _ 4(g)0-1/p=1) in B*\B*,
(3.13) ws =
0 0 in Ba(e)’
1 in Q°\B*,
and thus
6.14) AR A AR Lk ik 1

ag - (p__ 1) 8(p—v)/(p—l)_a(s)(p4v)/(p—l) ]
As in the proof of (3.11), we have
|2

Vyws |7dE .
2Ngv f |Viws |
Bf\Bf(‘) B‘\B"(‘)

[1Vawrlrde= 3 [ |Vawt|odg=
Q

keK(RQ)

But Vyw§ = 0Vws = o(dws /90) Vo = (dwg /30) Vyo. Hence (in the following, ¢ will
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denote any constant)

ow§ |7
[ |Vywé |7dE = j > | [Vael*ds<
Bs\Ba(s) B:\Ba(:) Q
3 < (1-v)g/(p-1)
ti I Iaﬂ ngscj ( 5( oy @ des
p=v/(p=1) _ (p=v)/(p— 9
Bz\Ba(E) 89 a(e) (ﬂ(e) b )

c

i hade O ((1-v)g/(p—1))+v7e
2l a(a)(p—v)q/(p—l) [Q ]“(E)'

We then easily deduce that

[IVaw|rde—0. m
Q

Step 3: I'-convergence.
The two following propositions are closely related to the I'convergence for the
strong topology of L?(R) of the functionals

[ \Vaolrde-p [ podk, if veWkH(®), =0 on T4,
FE(Z)) = _Q\Ta(e) _Q\Ta(c)
+ o otherwise

to the functional

j|vHv|Pdg+acj |ol?ds —p [fods,  if veWih(),
Q Q

F(v)=1* .
+ o otherwise .

They will easily imply the convergence of the minimization problems (P,) to (P) (see
step 4).

ProrosiTioN 3.2: For all ve Cy° () there exists v e Wé’,’(’,(!)) such that v€=0 on
T%®, (v°) converges to v in L?(R) and

lim ||Vt |7dE= [ |Veo|?dE +aC| |o]?dE .
Q Q 2}

Proor: Let us choose v = pw?. From lemma 3.1, we have =0 on T%®, (»*)
converges to v in L?(8), |Vyv*| is bounded in L?(£2) and Vyv* converges to Vyv
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a.e. on 9. Applying Theorem 1 of [BL], we get

113%([ |Vyo® |PdE - j |Vyot — VHv|Pd§) = j |Vio|?dE.
2 Q Q

But |Vyo®— Vyo|=|(w®—1)Vgv +vV4w*®|. Hence, since w® converges to 1 in
L?(R) and |Vyw® | dE converges to aCd§ weakly * in measure (cf. Lemma 3.1), we
get

lim [ |Vuo® ~Vyo|?dg = lim [10Vaw |7de = aC [ |o]?de.
o} Q 2

Consequently

lim [|vva|Pd§=jlvHv|Pdg+acj|v|Pd§. .
Q 2 Q

ProprosiTiON 3.3: Let u and w* as in (3.6). Then

lim inf [ 1Vuzee | de = | |Viu|?dg+aC | |u|?de .
Q 2 2

Proor: For simplicity, we denote in this proof #° instead of #**. Let ¢ € Gy~ (£2)
and ¢°¢= ¢w°®. Since the functional v+ J |Vyv|?dE is convex, we have

j|vHu8|Pd§>J|VH¢E|Pd§+pf|vH¢f|P—2VH¢€-VH(u5—¢f)d§,
[} Q (2}
that is

lim inf [ | Vyu® |7 dg
Q2

> (1 - p)lim inf [ |V * |7 dE + plim inf [ | Vi * |?~* Vi p* Vigue“d
Q Q
By Proposition 3.2,
[1Va0°17de— [ [Vug|7de+aC||p]7de.
Q 2 Q

It remains to find the limit behavior of

L= [ |Vug 1772 Vo= Vit df .
2
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Set I, = A, + B, with

A= [1Vu? P72 Vug-Vautwds  and  B,= [|Vug [P ?Vauw Vyu'pds.
Q Q

a) Let us first study the asymptotic behavior of A,. Using Holder’s inequality
and lemma 3.1, we have

|j|vH¢f|P-2vH¢-vHuf(ws— 1) d| <
Q

<|IVuo® k73 IVadll =@ IV at @l 0 = 1@ —0 -
It follows that
lim inf A, = lim inf [ |Vap® P 2Vyo-Vyusd .
2
We claim that |Vy¢®|? 2—|Vye|?~? strongly in L?' (). We then deduce
that
lim inf AE=J|VH¢|P‘2VH¢-VHud§
E—> s
since Vyu® converges to Vyu weakly in L?(9).
To show the claim, we will use the following inequality which was used in the

proof of [BL] : Let a € R, a > 0. For every 4 > 0, there exists C5 > 1 such that, for all
X, YeRY,

(3.15) ||X - Y|*— |X|*| <8|X|*+Cd|Y|

From this ineqality (with @ =p —2), we have

[ 1190t 172~ |Vug =2 | dg =
Q
= [11Va¢ + (.= 1) Vagp + ¢Vuw* P72 = | Vg |72 | de <
Q

< j(c5|vH<,1)|P-2 +Cy|(ws— 1) Vigp + 9V |P~2 ) dE .
Q

By lemma 3.1, |(w,—1) Vg + ¢Vyw® |—0 in L?~??'(Q) (noting that (p —2)
p' <p). It follows that

lim sup [ |[Vg* |72 = [V |? 2 |*'de< 0% [ |Vao|? 2#'dé.
e—0 o 0
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Since this inequality holds for every é >0, we deduce

lim [ V9% P72 [Vag|?~2|?'d =0
Q

£—0

and the claim is proved.

b) Let us now study the asymptotic behavior of B,. Applying (3.15) again, we
get

B, - J |pVyw® |P"2VHwE-VHu‘¢d§| <

Q

< [119u9® P72 = |¢Vaw |72 | |Vuw® || Vau® | |]d€ <
Q

<O [|@Vaw® [P7" |V |dg+Cy [ [Vug|P~2 (w772 | Vuw® | | Vau® [dE <
Q Q

< 8dIVyw® |8k o) Ve ut i) + CodlVaw® e Ve 2® (oo

where ¢ denote any constant. Since ||V |l (@) —0, it follows that

lim sup
£—0

Be—j|¢va€|P-2vaﬂ-vHu€¢dg <oc,
Q

for all 6 > 0. Therefore

lim inf B, = lim inf [10Vaw® |72 V0w Vaut g dg =
Q

= lim inf j |Vyw® [P 2Vyw®-Vyu® |¢|P 29 dE=
Q

e—0

fit inf( [ 1aw° 1P=2 V0 Vi u* | 9|7 2 ) d -
Q2

~ [ a2 Vaw - V(|92 9) utds ).
Q

But, choosing B> 0 such that the imbedding Wi ?(Q) s L?+#(Q) is continuous



et S

and applying Holder’s inequality, we get

[19hw |P-2va8-vH(|¢|P~2¢)u€d§| <
Q2

[}

$C( I |u€ |p+ﬂd§)1/(p+ﬂ)_( I |VHw‘ l(p—1)(p+ﬂ)/(P+ﬂ_l)d§)1—1/(p+ﬁ).
Q

By lemma 3.1, I|VHw8|(”"”(P+ﬂ)/("+ﬂ‘”d§—>0 since (p—1)p+8)/(p+B—

2
—1) < p. Consequently

lim inf B, = lim inf [ |Vgw® |P~2Vyw*-Vy(u® |$|?~2¢) d .
Q

¢) It remains to find the limit of

B* .= f |Vew® |P~2Vyws -V (u® |¢|? 2 ¢) dE .
(2]

For that, we will prove the following

LeEmMMa 3.2: Letvte WJ”IZ(Q) such that v° =0 in T“® and (v°) converges to v in
L?(Q). Let M, = [ |Vgw* [P-2 Vg Vyot de.

Q
Then M, converges to aC I vdE and
Q

v—p ! 1
(3.16) Gi=i2Y v Vyol?dE.
(p_l) |B|Bf' ue|

Applying this lemma with v*=#°|¢|?~?¢, it follows that

B* —>acf|¢|1’-2¢udg.
[}

Proor oF LEmma 3.2: Using regularity results in [CDG], Green formula and since
v¥=0 in B{?), we get

M£= |VHw8|P'2VHw‘-VHv£d§=

keK(2) I
Bi\Bt(E)

= 2 fv‘|VHw‘["‘2VHw‘~andHN‘l.
keK(Q)
aBf
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a €
But Vyw® = 2 Vyo and from (3.14)
Q
Ow*e (p—v) E(p—v)/(p—l)—l
30 lo-e (p—1) eo=?o=D _ 4(g)e-"/e-1)
and hence
£ -2 € . p—1 1-v | p-1
law P=2 Qw N £ _[(v-»r Ve
do 3 le=e \p-—1 a(ep~" p—1
Consequently

e p=1
MezsaZN(—;_—Z;) k%g) IvslVHg|P"2VHQ-andHN_1.
aBE

Since on = 0(Vo/|Ve|) = Vyo/|Ve|, we obtain

MzgazN ’V_——p ik 2 IUGMdHN_I.
£ p—1 IeEK(.Q)an |VQ|

In order to study the previous integral, we introduce a function ¢; defined in Q° by:

p' p'
_| & -= meB
9 =3 P p .
0 in Q%\B*

We have

3¢5 _[e"?™" in B,
0 in Q°\B*,

and therefore

‘ i \ g1,
9o
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Moreover (see [CDGI), g¢ is the solution of

Apqs =v|Vyo|? in B?,

O 2ett-1 on 3B,
9
Let g° be the periodic extension of g¢, (see (2.1)).
We have
a £
IVag®|= | 22 | |Vyo| scel? 1.

This implies that
lz®ll= + Vi g*l-—0.

From Green formula,

IlVHqE |?72Vyq® - VyvidE= 23 IIVHqEV‘ZVHqE-VvadE:
a keK(Q)Q

=-v 3 [v*|Vnolrds+ 3 [ v |Vug® 1P~ Vug®-ondHN -1,
kEK(Q)an

kEK(Q)Bf
But
> fv€|VHq"'|1’“2VHq5-andHN_1=
keK()
aBE
= E Ive ?q_e_ p—Z—a_q—E lVHglp HN—1= Ive |VHQ|PdHN—1
kRO do o |Vol heKial o | Vol
and
j|que 1P"2Vyq5-VyvtdE—0.
e
Consequently,
v—p 7!
M, = a2V v o2 Iv£|VHQ|Pd§+o(£).
p—1 /eex(me
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Let us now introduce the function Ag:

v|Vgeo|? in B°,
b=
0 in Q°\B*®

and call A€ its periodic extension (see (2.1)).
Thus

I3 P — A
v 3 [ 0% |Vnel?dt [orbe de.
BE )
We can prove (see Lemma 1 in [BMT]) that

bbvﬁﬁvﬂm%, -weakly in L ()
B

and then weakly in L? (2). Consequently, since (»,) converges to v strongly in
L?(Q),

- Pl
MgeaZN(ﬁ) |B| “VHQVJEIvdE

Moreover, for w, instead of v,, we obtain, since w,—1 in L?(Q),

v—p VP! 1
j|vaf|Pd§—>|9|azN( p) v [lVHQIPd&

But, from lemma 3.1, I |Vyw® |?dé—aC| Q]| . Hence, we get (3.16) and the proof of

Q
lemma 3.2 is completed. ®

d) Finally, we obtain

lim inf [ |V [P dE > (1 —-p)( [1Vuo?dz+aC| |¢|Pd§)+
Q Q Q

+0 [ V51?2 Vug-Vyuds +paC [ |9|?~* puds .
Q Q

Since this inequality holds for all ¢ € C5*(£2), it is also true for all ¢ & W;,’,%(.Q), in
particular for ¢ = #; thus

lim inf [ |Vyut |7 dE > | |Viu|?de+aC [ |u|?dé.
Q Q Q

Step 4: End of the proof of Theorem 3.1.
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ProrosiTiON 3.4: The function u is the unique solution of (P) and (3.5) holds.
Proor: Let ve Cy°(£2). By proposition 3.2, there exists (v¢) e WIX{”’(’, such that

lin%) F.(v®) = F(v). From proposition 3.3 and since #° is solution of (P¢) we

deduce

F(u) < ]ix/zl iglfFEk(ue") < lim sup F, (#%*) < lim sup F,,(v%) < F(v).
e k—0 k—0

Since Cy°(£2) is dense in W,;”’(’,, it follows that

Flu) < hin_)iglfFek(ufk) < lile_f(l)lp F, (4%) <F(v), e W;]I(,)

Therefore
F(u) < inf {F(v); ve Wi}}.

Hence # is the unique solution of (P) and then all the sequence (#¢) converges to
and we have

F(u) < lim iglfFE(ue) < lim supF,(4°) <F(v), VveWih.

e—0
In particular for v = u, we get

F(u) = lim F.(u®)

£—0

and (3.5) follows.
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