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Somssise. — Per un‘equazione zio di-
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e condizio.
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Wmmmmlmmmmmmww
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We study the nonautonomous evolution equation in a Hilbert space E:
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02) %+M-R«lnl
by the nenautonomous team e, (. 1),

Under some conditions on the linear operator Agw and the nonlincar operators
Rofu), Rylw.. :)mpouantanmmsnmmmhemdrarm
solution éun be représcntcd b(#) = U, T, where the two-parametric family of oper-
stors {Utr, 1|t 27, 1R} is called a process, corresponding 10 the problem
(0.1,

lnuxﬁ-p-noruum(slsa}wmn‘wﬂﬁdmmmaﬂ
equatien (0.1) in s neighbothood
equation (0.2) (ie. Aaz = Ry 2)). Under some spectral
med-ﬁlﬂu&mdmdmwﬂmnlﬂﬂM!:”wwl)(anmznm
vided that ¢ st £ are sufficiently small. This manifold in O, (z] is @ graph of u Lipschits
continuous function.

hs:«mm-mmﬁmunuimmw ttracts all the wajec-
taries wlf) = Ult, t)u, passing through O, (z). Precisely #ulr) & O (z) for re(r,T)
dmllknmhmﬁ"!wﬂ(zl,n(l!lﬂmhﬂmddﬂpmwu{f ) such
tha

(03} Tute) = (e} = Ce 077,

for £ [r, T £.> 0 we. can choose abitrary abitrary large by increasing the dimension of the
Miz) lCdnnmd:pmdmn(ll-odlU!)
h!4wnﬂdyﬁ:mﬂhﬂn‘mmﬂ‘lmﬂﬁ:ﬂbﬂz)mnmvb¢nxu-w
perbobic In §5 we investigate the dependence of Miz) on €.
hlh:mondp-taflh:pup«li?!l}!h«mmdlou‘twﬂmllw
mdumlu!!moombwdnm.ghhl approximation
UM, u)d&:ﬁmmwmﬂm‘:ﬂsm (2}, where M (z,)is an ex-
mth)M:ﬁthml}.Wthﬂummm
eqnnm(oliwmmbdmuumbuu(nqdhmmmn. .2y wnd all
these points z are hyperbolic. The “The gobal spproximation (r} of a soution a(e) £ = . of
[Dll s constructed in @ cluss of piecowise confinusus rajectories; ey ne

e Uu (5 the mumber of discontinuity of #f¢) i not more than N. i this case we

hvc(osafnnnrsr lwuﬂ:hzmludman:of(ui)mtwml:ummmh
initial data w, & B, B is & bounded set in £ The important condition for such conseruc-
tion is the existence of a global Lyapunoy function an an absorbing set for the au-
tanomous equation (0.2).

Al the main results of the present paper are formulatcd and proved fot the sbiruet
evolution equatians 0.1}, We dhustrate hiow these results can be applicd 10 the noalin-




-

differential equations by the simplest example of a nonlinear parsbolic
mm&amtssmsnmmmmumm
applied to more geacral exsmples of evolutionary systems that arise in math-
physice.

We assume that for any w, & E, T & R, the problem (1.1)-(1.2) possesses a unique
i) = e, ¥ in some functional spoce and u(f) & E W 2 . The two-para-
family of operators {Ulr, )¢ =1, re R}, Ulr, 1): E -+ E, is called a process,

g to the problem (1.1)-(1.2) fsee (14], [15], [4], [13], [5], [12], 121, [16),

).
1F =10 the equation (1.1} becomes autonamous:

&y hos= Rotu).

Letz be u suionary solution of (1.3) L. Az = R, (<), If we denote v = — z then
(LML) s equivalent to:

% +Av = Bylw) + eB, (o,1),

elimemw,

DRy (z), Bolw) = Rylz +v) — Rylz) = DRol2)w, Bylw,r) =Rtz +
—z. Here DR, is the Fréchet differemial of Ry, Notice that we

By(0}=0, DB,(0}=0.

For simplicity assume that A is a linear selfadjoint semibounded from below oper-

* tor with domain (0(A) = @, ) and with a compact reslvezt, If we choose a > 0 suff-

* ciently Large then the operator A + al is positive. For these a we can define the powers

LA 44T for @3 0. The space B = @((A +af)") is u Hilbert space with the scalac
‘product (u, 1), = (A + al)"w, (A + el P'e), [l = J0A + D"l where (-, ) and ||




—iiE
are the scalas product and the orm in £, We suppose that for all £ > ¢

7 Uttt e BA),  Wa,eE.

As for nonlinear operators By and By we assume that they are adominateds by 4. Morc
preiscly, Bo maps E into £ and B, maps £* X K, into E for some @, 0.2 < 1. Be-
sides we suppose that in a neighborhood O, = {v & £* [liel, < o}:

(1.8) IBie. ol =L, WeeO, Weem,

09 [Biber, ) = Bilos, M € Loy —wsle, Vor 0500, VieR,

(1.10) 1Bater) = Boley ) S Llles = sy Wy, w00,
mm&hmmhh(l.lwwuumlh-MwwuﬂinknﬁﬂmW

Ly L,=0, forg—0.
From (1.6) and (1.10) one obtains
112y Bl L0, Weo,.
Wcshdlnuh:w\mumo[ﬁ:munmlld)(l.’]h-nml
0,. Outside of wwm“mmmmsbmal
fallos
Ble)  #ld.se,
”‘”"{a.,(ﬁ;e] i blze.
Byto,r) if ol s e,
B"‘"-"-{a,('grg.f) i e

Namhlﬂ'uﬁul]lm (1.12) in the whole space E*, and B[ satisfics {1.8),
(1.9) for all v« E, 1€ R We denote

(114} Blv. 1) =B () + B (.10,
Insiead of (1.4) we shall study the equation

&=
(1.15) o tAr=Bin.o).




ol Lot lell=L, VoeE", ViaR,
[Btes. 1) = Bluy, D Ly + [elLs Moy - wol =

= Lo ek, Voo eEY, WeaR,
constants Ly and L ase asbitrary small when ¢ and g are suffciently small (see

mﬁ.,,...,m
A corsesponding to the spectral set
= P. The space P(E) is finite dimensional wider the

30 the speciral propercies of A yield the following starements:

bl = 1A + airgl = e} gl
ec,=i4d+a>0;
5) Vo @ PUE®) = BLE)

) Slrisleh <ol

=i=8+a>0,6m4 +a>0, 4, is the minimal cigenvalue of A
3 0,6 =4 eige f
¢ You PIE) Ve >0

le*pll = Coe™~ el
D Ve QE im0

le ¥l = {% + c,l';"""lqu.
Proof of the last estimation one can find, for example, in [8] and [3]
2. - CoNsTRUCTION OF THE INTEGRAL MANIFOLD
m«mmmmamwm;n enrrespond-
g 1o the the spectrum of the operstor A omo the parts o7 (A} wd
fm 14) = atAl\aj (A).
Under the

i fixed value of i defined earkicr we denote plt) = Pa), glr) = Onl),
where £ is an arthoprojector, eorresponding to 07 (A) and O — 10 0] (Al The prob-
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lem (1,15), (1.5) is equivalent 1o the following system of equations:

@ %4&-?504-7.".

22 @\ ag=0Bip 440,

Plice=pe=Pori  qliar=ge= Qe
(2I)-ud!’)})md‘n&mﬂiﬁm(llﬂmm?uﬂﬁwmlh
both sides of thi

Derminon 2.0 A set M(L), lving in the extended phase space E* % R,, Mid)c
CE" X Ry, is called an integral manifold of the process [Uir, )]s = r}, corresponding.
1o the system (2.1)422) if it satisfies the following rwo propertics:

1) M(4) consists of integral curves (vie), ¢ of the equation (1.15). Precisely if
{vg, 7) & M() then (u(¢), £) & M(A) for all £ 2 v, where #(#) = Utz, Tlv, is a solution.
the problem (1.15), (1.5);

2) M) is the graph of a function ®, defined on P(E”) X Ry

MR = [(p.4.00lg = @(p, 1), pePE"), 1eR, geQEM).

Here we aswme that for some b and J:
@3 lotp. 0l 56, VpePE), ViR,
@24 et 0= Pp ol sfle —ph,  ¥pupsPE'), VreR.

Class of functions @: PIE") % R,— QUE") satisfying (23)-(24) we de-
note FEy

Tugoren 2.1t Let liear operatar A satisfics (1.20)-(1.21) for some 0. 0 € @ < 1, and
nonlinear operstar Ble, 1) = By (v) + £B} lo, 1) satiffies (1161(1.17). Then for every
530,01 > 0 there exist @ > 0, 64> 00 such that the procers {Ulh, 1)}, comesponding io
(L1} with |&] <&y possesses an utegral maanifold M(3) = {{p,q, D)|g = @ip, 1)},
L L8

Construction of an integral manifold is carried out by the L

method
ey o constraction of an nceial musifold i te papers (1, 3, 7], 3. In con-
trast o inertal manifolds that e in the phase space E° an manifold depends

& nonuoAcHIO
tion (1.15) by the fact that the constants Lo and L in (1.16)-(1.17) are small when ¢ and
@ are small and a gap from 4 - & to 1 + & in the spectrum is fived.

Let us consruct the integral manifold M(A).
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an integral manifold M exists. Then for every T e &, p, & P(E" ) the sol-
ayarem (2.1)-02.2) s the pair (p2), (1)) = lp(n Dlpl), 1), where ple) is a
on of the ordinary differential equation in PIE®):
8p= ~Ap+PB(p + ®p, 1), 1), )I,..x.r
= ®lple), ) is  bounded (see (2.3)) solution of the equation;
G = =Ag + QBlpl) + Blpin) 1),1),  ¢EeQE").
operutor A is pasitive on Q(E* ) and the fanction QBlp(r) + P(pie), 1), 1) s

Q(E®) since (1.16), then the cquation (2.6) passesses the unique
Tt is given by

)= Blple). )= [ eHPOBE) + B, O, Bk =

= [ £ 0Bt~ ) + Blpit = s = n) i = whdn.
s

For functions  from 7}, we define u mapping J;
N@Ypeox) = [ e QBlptr = ) + Blple = ). v~ ) v~ mhdn,
i

2le) is a solution of (2.5) for ¢ < r. If we pur £ = v in (2.7), we obtain g(t) =
= JINp,, 7, where (p,, 7} is any point of P(E*) % R. Therefore the func:
n @ & 7, ; which define an integral munifold M has to be a fixed point of the map-
,ldeﬁuedbjlz.sl
It is easy the following fact: if J[#] = @, @ e 57, then the set M =
{(p+¢€pr).f})~tbﬁnrb=mu:mll of Definition 2.1 {see [3], [7]-
9] in an autonomous case or [10] in nonautonomous case).
Hence, the problem of construction of an integral manifold is reduced to the study
of the propertics of the aperator J.
Prorcsmios 2.1 lﬂ..n‘n(l 16) and L in (1171 are suffeiently small (v e, @ and |¢]
e suffciemly small)
) the epenator | neaps 5Ty into fielf,

b b) the aperator | is smicily contracting, ie. dy(JL®), JIB3]) % 64, (D, D41,
| O< L where
(@ @)= sp feiipr-@ipile, @ @88
peFE ek

The full proof of Proposition 2.1 is given in [10]. The similar statements for inertial
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manifolds for automomons equations are proved in (8], (9], (71, [31. This proposition
implies the existence of o fixed point for the operator [ and, i the exise
mdmmmwdmﬂfdddi:pmﬂltrlmwﬂhwﬂlil

Resuan 2.1; It follows from the construction of the integral manifold M(A) that
Mi4) consists of graphs of those and only those solutions of the equation (1.15) that are.
defined for all £ R und have bounded projection onto Q(E).

3. - EXPONENTIAL APPROXINATION OF SOLUTIONS
N A NIGHBORHOGD OF AN EQUILIRIUM FOINT

hmmmﬁxmﬂmmummmnmhmm-
ciently small neighbothood O, we construct an imegral curve, lying on the integral
manifold M(4) that approsches o bt} exponentially.

The kuegral manifold M = M(3) = {(p+ ®(p, 1}|p e PLE"), 1 & R} construcied

in §2 corresponds 10 the initil equation (14) only in the neighborhood O, = {r &
-E'Ilwl.<e} ind, consequonly, in the set V= {o e E* [lpl. = Pl =
<o lol = 0ol < 02} c O, .

Let s show that we can choose o and ¢ such thut [Qul, < 02 i (v, 1) 8 M,
ie
@1 sup I’lp.:lﬂ.‘g.

P

Indeed, as ® is a fixed point of the operutor | defined by (2.7), then

[@tp, 0 = W19Np, s [ e QBiptx—) + Bipir=nl, v=ip), £ = nldy.
q

From (1.16),(1.21) it follows for 4 3 0:

S R e )

62 Hat = [(% +CY' e M < +ataelo, 1,80,

’-’vﬂlﬂ!lﬂmndhhml.<lf4ldu)wd:ad:ﬂn le| <@/ 4kiail,, then
Li=Loe+ |e|L, < ¢/2ka) and we get (3.1).

Tuzomen 3.1: Let 0% a £ 112, @ and ¢ satiify the conditions above. There e
N0, C>0 and @y (0<g <) such tht fior every imjectary vif) =
= Ult, thutrh,ele) & Vy, for rel5,T] one con find t strazen 1) on M(A), ie
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L E) ), (540), 1) € MO, and
ote) =il S G090 o yefe, T
dition 511) & Vy when te [x, T]
proo is based on twn simple Lemmas. In these Lemmas we consider the sys-
ordinary differential incqualities:

["”"9’ y>8>0, Gyert.

Pety
bt cigemvalos of the matrix G = ( ‘)m.-,‘-w 7o
=~ < 0; comesponding eigemvectors we ¢ = (1, ) and e = (B, 1),

B=yi6 - V'l -1,
felfory>a>0.
%
Livesan 3.1 Let xte), yle) 2 O satisfy (3.4) for . [0, T) and x(T) & T, where p
 defined by (3.5). Then for ¢ < [0, TL

A & e l-ﬂ” W E=Y =g
Proor: Pusing 10 eigenvectons of G we get from (3.4):

iz -, where z=x—fhy,

@5 —pw,  where wey - fr.

n'n‘u then (3.6) implics £(4) € 0 for + £ T, ic. xl7} & i), From (3.7) and
=1 <0 it follows the cstmation for ¥{r) (sce (10]). W

Lewa 3.2 Let slt) 20, 510} 2 0 satihy for te [v, T1 the followoing sywem of
[ pry

3 {xac—nvh—oy. A

v FE(=h-yly+ox,
 Aume thar X(T) S BT), where i the same ar in Loomsa 3.0 Then for

telr, TL
xAeh = i), ,l.')i ”}(r)r"""“ e Rmyt=,
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Prooy: We apply Lemma 3.1 10 the functians x, () = x{x + £)e* and y, (5) = pls +
+1)e®, where s = s =t (sec [10]). ®

Prorosmon 3.1: Let 0% a % 172 (29, 43 (60} amd (g 1), 9 (2)) be o soluiones
af (2.04422), ple) = py (1) = pale), gle) =y (6) = g0} I 0 aond ¢ are sufficiontly smali
then for t> 1

d 4
(39 =122+ ool - Shalk,
.10 L1k = (-2 - d)lsE+ S1ok:.

Proor: Functions p(r) and g(¢) savisfy
3an Sp= —Ap + PIBipy + 1,0 = Blps + 41,01,
(3.12) Big = —Aq + QUB(py +4:.4) = Bloy + 92, ).
Taking the scalar product of (3.11) with (A 4 aIP*p and using (1.17), (1.19) we get

(38) i L in (1.17) is small enough (sce (101), Similarly raking the scalar peoduct of
13.12) with (A + &) ¢ and using (1.17),{1.18) we obtain (3.10) for sufficiently small o
and e

Rese 3,15 1f {3.9)-(3.10) hold, then Lerma 3.2 is applicable withx = bl y =

=l L, B=82 In this cue p=\y -8 = V3218, f=yi—
B

Thes i fpy () = p3(T)E = Blaa () — 2 (T, then
.13 lavi - st = I_“a:k,(.;_m,mfm'.-.rn

(3.14) s () = p2 0l = Bl )~ 0)E:
for re[r, T

Proor ar Timoma 3.1: Let the process {U(r, 1), 2 2 1} correspond to the equa-
tion (1.15), This equation is obtained by the stated above modification of the infisl
quation (1.4) owtside the neighborbood O,. Fer a given solution o(2) =, (1) + g, (¢}
af the equation (1. mmmuudyofnqm:zn(m.mmmm
ciendy small neighborbood of sero for + £ ¢ £ T, we shall construct its appeomation
2], The intciral curve (#(7), £} comesponding to this spproximation lies on the integral
manifokd M = Mi): (5(2),£) & M. Sometimes below for brevity we shall use «(r) bis
on M inszead of wthe integral curve (36), £} corresponding o the solution 7(¢) lies on

Ms.




—119—

" 1) o not leawe the
itt]ﬁxr‘fﬂfamdnﬂunm-dtbeﬁddmllll

put ¢ = 01 = VP /(1 + VB < 0. Leto(s) be a solution of (1.15) and e(1) €
D,irm[r T].vl’r)-p,-+.w Cunmdulnﬂ'dnemul,—hﬁ :_ﬂhf

B, wherc,

st M1 { tdrzlmrp,('”+ﬁ(7l-v(1)mdd=hmmmpl
),21€ M, ¢ & R, passing through the point (#(T), T). Tt follows from Remark
such & curve exisis, We denote pa (1) = Prie), qaie) = Qe).
that lg; (1)l % 72 since (3.1). Ase(t) = p, (1) + g, ) & V,,, then g, (0l =
This
bt -t € £58 e rere T,

nndumn-s.z-nplyuwuunrqudzmmuam
from {3,13)-(3.15) we ger:

= HellE = o) =~ 2O+ Do ) — g0l € O 4+ Bl () — (O %

S
= #}‘: =141 (7) = ga(p)Ee o=t g T fectoir 4""’;"”"""’.

account. that @, < ¢ we obain (3.3) with C = oV/1 -, n =2
l.qum-iwsm(r:uv whenre[r, T). thulmd.lﬁ(llﬂ_sqa.nwc
from (3.14),(3.15%

Tpatok < a0 + 1)~ pr0l < L+ VB a0 - ar ol s

"+V"”“'-p 1+W{c__e::vvg|+v" \[‘

Thus i) e V,c O, when s 1T m

Now we study the case when. a solution v{2) = Uls, £)e(r) of the cquation (1.4} or
hu)ldmmhmv for all £ & = Tr should be noted that in 4 auonomous case
Mubmfwnhmwﬂﬁum-h;wiﬂ:nqnﬂhﬂmmlz.

[1]. These lie on a finite di asi-

mmw;mwmmmhmmm

Tuwousm 3.2, Let the provess Ult,v) comesponding o the problems (1.4),(1.5)
 be continuous in E*; 1, 0,01, & are the some as in Theosens 3.1. If o(t) = Utt, totr) &
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Y, for all £ 2 €, then there exists an integpul curve (B(1), 1) & M(A) sk that
lote) = L € G170 for t3x
with ihe same constants 1 and C a5 in Theorews 3.1

Proow: Theorem 3.1 s applicable 10 the solution o{#) on the time interval
[5, 7+ w1 for every n & N becsuse () & V,, for all £ = r. According 1o this Theorem
we can find an imegral curve (5, (1), 6) & MUA), 5, () & Vy, such thar

ole) =yt S Ce~ %" ™="  for e fr, v 4al.
sequence of poims 7, (1) is bounded (since 7, (#) @ V,,) and finite dimensional
(since 7, (v) & M 11 {¢ = r}}. 50 we can choose # converpent subscquence L, (1) —
—Fl1) & M N [¢ = r} and define an integral curve (#(¢), /) € M, 7 & R, passing through
the point (#r), t). Since the process Ulr, t) is continuous in £* we have 7, (1) =
= Ute, )i, (1) =#(t) = Ulz, 1)3(r) when ¢ 2 v, Therefore
lote) =B, (M, € Ce™ @M=" when relr, 71,
i £ > T. Whenee
lele) = tele ® €449~ when ralr, T,
As T> 1 is arbitrary the last estimation holds for all 7. ®
o 33: Let constants | in (24) and J o (313), (L14) saibly
|\r<|mu ={{p + g0 6 E" X R g = Bip, 1)} & am imtegral the pro-
cess U, ¥) comespasding 10 (1.15). Thes there exists o constans €y = Coll, p)m&n&w’
vl = p ) + g (Ve V,, for telz, TL then
Taats) = Pipy16), 1 % Calaate) = lpytr), w42
Jor talr, TL y)ﬂ:}lﬁemain Theorene 3.%; 4 % 0.

Proar: Topether with o) let us coneder comespanding trafectory 1) = pa (1) +
# gz 6) defined in Theorem 3.1 As (1), 1) € M(&), thengy (¢} = {p,{¢), £). From (2.4)
sod (3.14) we get

0316 faytn) = Slpy o), O, % By () = aa (il + [@4py 160, 80 = @loatn), )l &
<t = ga oy + il 13 = a0l € (1 IVl t0) = galol s
Jas (0= g ()L % o) = @l e, el + [0l (2 1) = By (), Ty
& gy te) — Doy a0, 1l + VBl tr) = g trbl




WA <1 we ebiain
lavt) = gatola < 5 _‘N?lv.m - @yt ol
substituting (3.16) and (3.17) into (313}, we get

=l ) 0% = xrln.l!l-ﬂn.(ﬂ.rll.r"“““‘ voom

EvARs 3.2 Theorem 3.1 states the existence of integral manifolds. for arbitrary
120, i g and ¢ are sufficiently small. So /< 17V holds for small ¢ and £

4. - Tuy smwcTome oF M(0)

. Cansider the equation (1.15) in the case 1 = 0 ¢ 0{A ). Let P and Q be erthoprojec-
s oaio invariant subspaccs of the operator A, corresponding 10 o - (A) wd 0., (4)

positive and negative eipeavalues. of A

1.15), (1.5) posscsses an integral manifold M = M(0) provided that o snd e are suff-
semal. The aim of the present section is 1o study the structure of this manifold.
state the existence and the uniqueness of 4 solution » = 2(¢), £ € K, of the eqution
15) that is botnded in E*. Also it is proved that al trajectories bing on M(0) expo-
wially approach <i2) when 71— — .
One can find similar results for differential equations in Banach space with a
operator A in (6],

Tomomens 4.1: Let s > 0 be given. If L, L iin (1.36)-(1.17) are saqfficiently smeali, thew
. anigue solutian 1= 241) of the equation (1.15) sucb. thot
kol=s, 1er.

Proos: We reduce the problem of the cxistence of such solution to the problem of
the existence of o fired point of some openitor ¥ Let 2(1) be the required solution.
Then pit) = Pt} e PE®) is 2 bounded for 1 = ¢ solution of the lincar cquation

= —Ap + PR, 2)
As = Al g+ Is 8 positive operator and [PB(zir), 1)) £ Ly duc 1o (1.16), a bounded sol-




=R

ution pi¢) of this equation is unique and it is definced by the formula:

2t} =~ [ eMEORBEE) )k
i

Similarly the operator Algyes; 8 positive, so the equation
Ga= —ApH OB, g =00 QY
possesses o unique bounded when 1~ salution
gt = I:"""‘QB&(E}.E:JL
‘Therefore:

) =pln) +atn) = [ M HQBE. Bl - [ 0 paGEL B14.

If v =zir) is a bounded for ¢ & R solution of (1.15), then the function (¢} is 4 fixed
point of the operator ¥ Wz)1) = 2(2), where

Wialt)] = [ e HOOBGE D~ [ Xt PB(E) Bk =

= j‘e"'Qﬂ&h— bt = y)dy - ‘j--/"'PB(zEf )t +nldy
0

It is ensy 1o check the inverse sttement: if ¥1z) =z, then # = 2{s) s a solwiion of
(L13

Consider the opecator ¥ on the set Z, of all functions 1: B —» E£°, satisfying (4.1).
We define the metric on Z, by the formuls

(4.2) Cals, )= :u;;i-. () =2y

Provosmon 41: 1 Ly e (116) ir sufficiently small, then
4.3) wl%l[flir. VeeZ.




==

or: From the definition of the operator W, taking into account (1.16) and
J}(1.21) with 4= 0 we obtain:

ok < [ (% + C.)'e"u.,dﬁ I-z:.r'-m =

B T
@) is defined in (32). Thus we have (43) if L,€* 55, W
rosTion 4.2 The aperator ¥ is contracting on 2, with respect fo mpesrsc (4.2) of L
7) is sufficiendty ssell
= From (117}, (1.20)41.21) i follows:

)= Vln il € ]“(-:T +c.)'e"'|.k, =) =zylt = iy +
¢

+] Car U1+ ) =l + il = 2 40+ 5 oo

S0 if Lik{a) + C,/8) < 1 then ¥ is a contraction operwtor on 7, B

To complete the proof of Theorem 4.1 we have to note that the unique fixed point
:g-lﬂfﬂﬁm\’imﬂrlh'ﬂimdﬁlmzleﬂ,fzkoﬁkqum
-

R 4.0: lwe choose ptobave Ly % 142€° ) and pat [¢] /{20, €7 ), then
'JqsﬂzIL,twc‘ Thus 44) imples B0, = [WEXnl, < p for ol re &,
ie. the solution v = z(#) of (1.15) satisfes 247) & O, The equations (1.4) and (115} co-
- in 4 small neighborhood of zera O, 50 £l1) is also u solution of the initial equa-
Al

Thus, provided p and ¢ arc small enough, the equation (1.4) possesses 4 unique sol-
 ution £(¢), £ & &, lying inside O, for all 1e K.

Duc to Remark 2.1 the integeal curve (zis), £} corresponding 1o the salution z(2),
bounded for all £ K, lies on the inegral manifold M.

~ Now we shall study the behavior of other solutions bing on M = M{0},
 Twmons 42, For suffcicmily swwoll L in {(117) there exist o > 0, Gy > 0 such sbat
any. solations v (1), v (1), 1 € R, of the equation (115, lyimg on M(0), sutify

leste= £y =pate = )l € Gollosle) = watele™  We>o0.




T

I particuler, as (<(1), 1) & MOO), any solution v1¢) o MU0) apprsaches 3(1) exponential-
,

L,
Procr: 1f vle) is a solution of (1.15), ple) = Polr), gle] = Qulr), then
(4.3 Gp = ~Ap + PBivin).0),
(.61 Gig = —Ag + PQUlth 1)
A solution pi¢) of (45) with the inicial data p(r) =p, = Potr) is given by the
formulu

[E3) .M’tl»r"""’p,+Ir"""‘?ﬂlu!§). EldE.

1Fthe graph (141), #) of the solution o{¢) lies on the integsal eranifold M(01, thea g1¢)
s n bounded a3 £ — ~ = solution of the equation (4.6), The operator Af gy is positi-
ve, 50 such soluion i unique and

(a8 = [ et boBiuE), k.

From (47) and (4.8) we have
.

#lr =ty =plr — 1) + gl —2) = ¢ Ap, — j.‘""'Pa(mA nht—nldy +
¢

+ [ e M0 QBGlr — ) r — )y

Let 062, 63 (7) be two solutions of (1.15) lying on the integral manifold M(0),
At} =0y 14) = 1, 02). Then taking into account (1.17) and (1.201-01.21) with 4 = 0 we
obtuin for ¢ 3 0:

I =0k *lpi, ~pal + [ Coe™ Ll ~ it +
‘

+ [.(ﬁ +€.] ML~ pildy =

o
=c ¥l =pmllv L | Glenllr =il
;
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Glt, ) is w positive function

o2 Il for <y,
G, ) = (u{, +q)'e~'~~> for 05 2<y,

that any soluon () lying on M10) is bounded in E* for £ — . In fa
don o integral manifold [Qete), % 5 for all £ & R. The projection pls) = Pate)
d for £—» = % a5 a solutien of the linear nonhomogensous equation (4.5)
bounded function. PBlvis), /) and the posidve linear operator —Alpger
se gy} = |z — )l & 2 positive bounded funetion defined for y > 0. This
satishes the inequality:
S e oy ~pal+ 890, Gotn =L [ Gl patnidy
b
he intcgral perator § is bounded in the space C,£0, + %
i G
toistan | G an =i G +bial).

kla) is defined by (3.2).
I L is sufficiently small, then 5] < 1, and (sce [6])

FOEPN =T =) e T =palld,
ity e G0, + %1 is a solution of the integral equation

£.10) Vit =e Ml —prrl + S

Let us prove that yif) € Ge ™, 0 < ¢ < 8, Multiphying (4.10) by ¢~ and denoting

) = iz)e” we oblain
Ho=e iy, - pall+ 180,

$18) = §lEele 1 =L [ Git, )= " Endy.
i
1 s an integral operator with the kernel G, (¢, 1) = Gir, ) e ™, Gle, ) s defined
in (4.9). The norm of the aperator § in the space C3((0, + %)) & tnstnd el
Iy to the norm of §:

il <t [ 16,0l i 35 4al).

IFL s sufficienty small then B[ < 1.
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In such a case the equation (4.11) possesscs the unique solution.
800 = o = paeka (1= g0 'e " < Gollon = paclle
in €400, + =, because the function ¢~ ~* is bounded for ¢ > 0,
Consequeatly, we:get for 2> 0:
#40) 5 1) = ek = = Colpre = purllae ™,
By (e =) = iyl = ), = ln) < Colloy (2) = wpdrdee ™,
where vy (¢}, 52 (1) are two solutions of the equation (1.15) lying on M(0). ®
Resuar: 4.2: Tt is casy to show that if g and ¢ are sufficicntly small then any solution
U8} of the equation (1.15) lying on M(0) with sufficiently. small initial data does not
keave the neighborhood of zero O for all # £ v, Thus, in such a case 12 is also u sol-
ution of the initial equation (1.4). Therefore the result of Theorem 4.2 holds also for
salutions of (1.4) with small norm [v{7)]l, at the initial moment ¢ = 7. Remind that
=1 s an equilibrium point of the limit {when ¢ = 0 equation (14),

5. - Esmwamon oF Distascs serwies M, ano M,

In the present section we study how the integral manifold M, = M, (2), 4 = 0, de-
pends on r.
We consider the equation (1.15), replaciag B(v,#) by (114):

(5.1 %+M=B,’l-]+tﬂ,‘lu.r}.

(5.2) Blime=wy .
The functions B7 (v) and B (o,), defied i (113) satsly the following
propertiess
5.3} 183 00) = B (o)l & Loy = ol Vi, vie B,
moeeover the constant L, can be chosen arbitrary small when ¢ —» +0;
(5.4} 87 tw, 0l €Ly, WweE". WesR.
Togerher with (5.1) we consider the wutonomous equation.

5.5} %umna;m,

All constructions of the integral manifold M, (4) evidently hold for ¢ = 0, The inte-
gral manifold My = My (4], & 2 0, for £ = 0 corresponds to the autonomous equation
(5.5). Tn this case My is invariant with respect to the substitution s — + T for all T & R,
50 My= MR, where M= [p+ ®oiplp e PE"), Polp)e QET N} CES The




olpe) = Jolelp) = [ e QB ok = 81+ ol (r = ENGE,
‘

polt) is 0 solution of the following Couchy problem:
Supa + Apa = BB (pa+ Datpal) .
Pulier=pre PE)
finite dimensional space P(E*) = P(E). Notice that Jo [y 1(p, ) does not depend
ce the eqm‘man autonamons.
was proved in § 2 the equation (3.1) under small ¢ and @ possesses the imgral
M, ={tp+@,(p.1)t)pe PE*), &,(p,) e QIE*} s e R},
| The function @ = @, satisfies (23),(2:4) and the equation

®,(p. )= [®1pe 1) = rz"‘ﬂlﬂ.'lln.lr-el @l ir-EhT-§)
i

+eB7 ((py(x = &) 4 @, (polr = E) v = §), v - £)]dE,
Pt} is a solution of the equation
510)  Bp+ Ap = PBIp, + b Ap, 1) + BB (p+ @, (p,)0)
i the space PLE®) with the inital dara (5.8).
Teseomess 5.1: The integral neanifolds M, and My are close in the followong sewse: there
@ comstamt € > 0 such that
deyens up [0, (o €1 = P (el < Cle]

Lre
At first let us prove an awiliary proposition.
Denote rit) = p, (1) — pau).wincp,(r)-.ﬂumn(l!mlnndhi-‘)unml-
wtion of (5.7) with the same inicial data (
Provosmion 3.0: I L, in (53) & suffciently snall, then

@)+
Iﬂ(‘”‘n‘cab_-"'% o

Jor £ =0, where €, and | are the wme as o (1.20) awd (24).
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Puooe: Subtracting (5.7) from (5.10) we have:
5.1} = —Ar+PLIN+PLU,  rler=0,

L) = B¢ (p () + @, 0p, (7). 1) — B (pole) + Dolpets))),

B2 L) = B (o 0) + 9, (20, 1,

From (24), (531, (3.4) it follows
(5.13) 0l < JelLs
.14} [0 = Lyl () = putolla + @, 6o 1h, 1) = @ (o), 1)l +
+0 (o), 1) = B lp (1ML € Ly(1 + DAL + Loda (@, By).
Solution of (5.11) is given by the formula:

it = e~H10 4 [eAI-BGPL (8) + Bl (£t

A=) = [0l = )+ Plate — uhld.
i

Substituring the estiomstes (5.13), (3:14) foe I, and I and raking into account {1.20),
we obtsin:

Trie = 0l €€, [0 WL (1 4 Dlke = 0l + Lyda (9, o)+ [elLy 1y <
b

i 3
€ e L,um]' ""“"iﬂr-q)l.dqﬂfu.‘n{.(ﬂ“\hlflelL,]J,ﬁq]‘
¢

Mubiplying the last inequalizy by ¢ =~ and denoting gi7) =[x — )flue "2 0
s gt

o @) + 2l
e e e

] )
HH G, L0 h‘)nguh‘q +, el
‘
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, is samall then we have CuLy(1+/) < 8 and by the Gronwall inequality we

I = L, = gle) e = we get the required estimation.  ®
or Thnowns 3.1 Subtracting (5.6} from (5.9) we obtain
B (po, T = Bolp) = [ e EQUL (- 81+ Dytr- 84,
4
Iy, Iy are defined by (5.12).

1.21) 10 essimate Qe " and also (5,13)15.14) we get:

12 (pe, v - ol <
= j-(g +c.]"e-"""u,u £ e = Bl + Loda (@, o) + |e|LyJd5.
‘

 Now we esiimate [[Ar — 1), due 1o Proposition 5.1 and obtain

e e

x[l'.,ll +0C, ";‘f;_;:‘i;cl:"" + L, (,, @)+ 14:.,]‘

8
‘ﬂ«!mﬂ.d’. (B, o) + [[Ly),

C‘I;MM Ka) is defined in (3.2). So
Jla)

i :.n N,

dy( B, Py) &

T

OL k{a)
oL+ IG do (@, Po) + [e]
(3= L(dka) + (1 + DG da (b, By) % SLika)e] .

1 ¢ is sufficicntly small, then L, (8k(a) + (1 +4)C,) < & and

oLk}
I+ G CT I,(wunuusc.:h! Clel.

oy, By} €
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6. - INTEGHAL MANEOHD FON A NONAUTOROMOUS PARABOLIC EQUATION
I bounded doin ' i Sorublis the pooblem:
61 Gu=dn—fln) +g) b el Al +pinn),  xe@. 135,
©2) alaa=0,
®9 =), weLyl),
We suppose that gLy (2), gy @ L, Ly (20, .
o) bl kColeG, wer.
Lot the followng nequaliies be satisd for [e] < ric
1631 Lip+dnz-c.
(6:6) )+ sl V) = =€,
1 IR ETATEN IR

8 |f'c~|:,|%}.u.u| €Cin# fufr 1y,

weR, reR Hercg=n/(n—2) whenn = 3 and g is arbitrary for w = 1, 2. Assume
that the following Holder condition is satisfied

691 1ty = Gy 0] S Gyl d + Jirg |+ Jug | ¥ oy —wz |,

where sty =g—1=2/(n—2) when n 23,720, y> 0.

Tt s well known that under these conditions the problem (6.1)-(6.3) possesses the
unique solution #(f, %) & L ((r, 7 + T), L (@) 0 Lfir, v+ T), HE{2)). This fact is
mwmwmaammwmm-mmm
that will be given below in Theorem 8.

kldemt&mﬂml&lN&!!M&:m&thil
The considered problem is a particular case of {1.1)-(1.2); the lincar aperator —Aq in
(1.1) i now the Laplace aperator under the Dirichlet boundary conditions ( ~ Az =
= dn, u] 55 = OF; the nonlinear operators Ry fu) = —flu) + g, R, e, 1) = ~F (u,8) +
4 (x.2); the phase space E = L (2). We denoze ks = ] s a nomm in E.

2 be an equilibrium point of (6.11(6.2) with £ = 0:

de-f) b =0, e HHURINH Q).

e sl sy b of e eoblem (6163} sluos i 4 neigborhondof
the paint 3. Denoting # = u — 2 we

o= ld =)o = (flz o) =flz) =f (2ho) + el =filz + 0,00+ g s, 0).
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equation cormesponds (1.4), where Ay = (4 4 " (2))v, #| 3= 0 s a linear
- opemtor; By ) = =(fiz +0) = )~ lzle); Byle,s)m ~f Gz 4w 0+

e choose @ > C (Cis & constant from (6.3)), then (A + al)o, ) = [Vol? +
+a}w, o) 2 [V, Using (6.8) weakso obtainthat (iA + al)e, #) € Cla)|Veff
& H} (). Whence if ¢ > C then the linear operator A possesses a compact re-
the degrees (A + al)® > 0 are well defined, We shall conseruct an integral
in the space £ = {14 + al1") for & = 112, In such 2 case E'? = H} (D),

- [Vl is 4 sorm in Hi(),
apply 10 the considered problem the theorems of § 1.5 5 we have to check

(L6M(1L11).

o 612 If the conditions (6.4), (67)-16.9) are satisfied then

- DBk s L for s, te R

2 B = Bulen ol S Lillos = ealha for s [ealie S 00 re s
3) By(0) = 0;

Paoor: Inthis proof we often wse the fact that accordi the Sobolev embedding
ns we have Hj (@) € Ly, (@) when g =n/(n—2) (n 23).
By b= Witz 4o, 0+l n 00k S
i
GCA[J(H-lmHu(:)\‘Yé] +CEC0+ k4ol ) ®

SCL+ [P+ Vel s L, for Vel =g,

.
= [j(f:.(nv. + 8o - ),.m]’u. P
als

sc;[nm;u|s.|+|n;|r")=(-q—=,)*¢,
]
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mkmwﬁmm exponents g =n /2, g =g =n [l = 2), we
[T TGRS Nt
ﬂ:,[]uul;ﬁ Jal |n,l)"""v-exr]”"(J'Iv.-m"’-h)"",
a
As 2lg — Vg =20/ tn = 2) = 1n f2) = 2a / (x — 2} = 29 we have
1B, (v 2 = By e, O % G (0 + [l + ol + Bos ey Y0~ Ml — o, =

Gy 0+ 9]+ Vo | + [V - 90— 00 )F <

S Coll + [Vl + 200 V[Vley — el
3) It is evident tha By(0) =

4 BB = Bt = [Ufic + ) = fle + vad =1 oy = e =
s

\ . :
.j J."(:-)-ll—s)-.+h,)dﬂv,—n,!-jfrzld’l(uruzl &
als 5

SC;’I(v:-thli'zlxl ]+ L [ ey |+ e | Frde.

Let us use the Holder inequality with the exponcnis g, = ¢ =n/in = 2), g1 =
= fsln =29, =n/vin - 2% ugnl,f;.u,'g,u[;,-((.—z:/n)(un
+ ¥} =1, Comsequently

[Batey) = Botes )i <

sc.[ [1..-u,|~u]”'[ j(l+2|x!+|u‘|+kv,|)"d'x]"[Il]u.|+]u|)“n§r]rns
i s 4

= Ciall + 2% + 20 (200 V0w ~ o)

when lnh‘rﬂvmﬂ‘m !ﬂa&r‘. sVl =ce.
Thus we statement wil

with Ly=Cel, Ly—0 for 0=
Soom

Consequently all theorems proved in the previous sections can be applicd to the
problem (6.1)-(6.3).
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7. - THi UNIFORM GLORAL FXPONENTIL APPROXDGATION
(1;¥) B—+E be a process, corresponding 1o the problean
% + A = Ry(u) + eRy 1, 1),

Wy =,
wle), wif) s solution of (7.1}, (7.2); w, € E, ult}  E, Vi 7. Notice that
write Utr, 7) instead of U, (1, 7).
0 the equation (7.1) is autonomens;

s pon=Rata,

process Uis, v) becames o semigroup Uy, ) =

(6.1046.31) these spaces coiacide with FJ (€2).
“mdmuuau|z|<“.nmm.rhmwwdh
5ﬂmﬁod|nlq.—m.,!\buhmd every point 1, Thmﬂ.mh;-ndnqm

hsnszmm:wammurn-m‘.hj:
there exist Jocal cxpancntial approximations lyingon M, (4,1 of the sal.
of the problem. (6.11-(6.2) (see §3).

integral 55 £ + %, Prociscly we
the sets M* u)zsxx,.m-u,):muh»auwu HeMzO)
re exist 1% £ and w € E such that u = U(r, 7k, and (,, 7) & M,(2,). The set
P(4) i semiinyaiont in the following sese: for all %4 we have
. BIMP R D e =0} eMP ) 0 {r=0)
Thus if (s, 7) & M (4, then (ul0), 1) = (Ulr, 7ha 2} € MP (A,) for all = 7. We
2, = {ut)| (wi¢), £ € M7 (2,), wle) = U, T), | i set of the sokutions a(r) of
(7.1147.2) such thar ulz), )& M7 u,)
In the proscnt bl ial i) for any
wlnonnrno(uwpwbimumulkmuithhsl-wmnm-mn
; and their prolongations ss  increases. We present the strict definidion of

/ thuﬂn:hﬂmshmuodaw:wdmulﬂywnlmm
) cannot twice approsch 1o the same point z =38 .
For |e] < ¢, consider M, (0) = Miz,z, O)—an intcgral manifold flocall, corre-
 sponding o the split of the spectrum of A = Ay — DRy (z) onto pasitive (@, (A))
and negative (0 ()] cigenvalucs (remind that 0'¢ oA} since the equibehum
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point z is hyperbolic). Doe to results above, M, (0) € Vi, () X R,, where Vi, (z) =
-(uz'|mu—z}|,.<p,fz lQtu = 2l < @12}, Vi, (2} €0y, (2], Op,(2) = {ue
iy':un 2l < ga }i P and Q are arthaprojectons anto ivariant subspaces of the oper.
wor A mwmdh.wu (4) and 0., (A) respestively. As earlicr we denote p =
=Pl —z), ¢.= Qu ).

Remind that for |¢] < ¢ the integral manifohd M, (0) in Vi, () graph of a fune-
ton g = @, (p.t), lpki < 0ei2, t € R The functions @, (p, ), |¢] < o, uniformly
with respect 10 £ satisfy the Lipschitz condition:

(74 [LAPEES APRES e M

For £=0 the manifold M, (0) does not dspendonflndﬂ,iﬁ)“M‘ﬁlK!,
where M (2} = {olg = ®u(p), lph £ 0272} is the unstable manifold, passing
through the hyperbolic zquﬂh-m mzufv}me-ﬂpvw{&} mspun&uwdx
amenomous equation (7.3). This
<7.1u|m-nmd.=-u--wh=nn szlM <g|a=uw,(m n.ndsmm
(7.4) & follows

3 [®atei = Alpll .
Theorem 5.1 states: for ol = 0c/2, 1eR:
76 [, tp.0) = Botp)le = Cle] .

Assume there exists & bounded, uniformily with respect to 7 & R and £ & (€, £o)
absorbing set Ky € E* foc the process U(r, 1) = U, (¢, 7). I means that for any bounded
st KcE there exists T(K) such thar Uiz +4,71KcKy, ¥ T(K), TeR,
retcot).

Every trajectory ult) = U, (2, Tk, of the process U, (1, 1) lies in K; after a cerain
pesiod of time tha depends anly on the narm i, | of the inital data. Below we consid-
er only waicctories uit) € Ko, Y2

Drsvmos 7.1 A continuous functional F: £ — R is called a global Lyspunov
function of the semigroup {5} if
1) Ve B, Wt =4, 2 0, FIS, w) % FS,0).
201 FIS, wh = FIS,u) for amy ¢y # ¢, then S =w for all £ 2 0, e, w is an cqui-
fibirium point of the semigroup {5, }.

Durisivions 7.2 F is called a relative Lyspusov function in the set K;, Ky ¢ E", of
the process Ufr, r)if foc any £, 2 fy and any wlt) = Uls, 1, )wlty ) such thatw(f) € K, for
+e . 15] it follows that Flulr;)) € Flalry ).

Desivmos 7.3: T > 0 s called a time of arrival of the process Ulz, 7) (unifoimly
with fespect to 7 & R) from the bounded set K, K CE, to the set V, VO E*, i ¥re R,
Vi eK Jele v+ Tk Ulr, thuye V.
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| Ldi Let Vibe aset in E® and Ko, Ky CE*, be o baundad absorbing set for the
(e, ¥)). Let Flw) be o bounded function on Ky . Suppase there cxists v > 0 such

Flule)) - Flult, )} € —vit = 1)
r;:l. and for any trgectory w(8) = Ult, b dalty ) i Ky\V, ie alt) e KAV for
the time T of arrival Jrum the set Ky o V. is fimte
As K is an absorbing set, there exists T(K, ) such that Ulr, 1)Ky ¢ Ky for all
- T(Kq ). We denote Ty = (1/v) Flu) = lnLFhJ-rl)-mIplr.-ri‘
Jty =ty + Ty, For all u e Ky we huve: wlt) = Ult, the, e Ko, Vo, ]

uir) o V for 1 1y ). Then ) = U, 1oty & Ko \V ot 1 13),
10 the hypothesis of the lemma:

Flae)) = Fluln ) &€ 3Ty = MHI:* m%ﬂir)fl.

inequality contradics Flate; ) 2 inf Flu), Flutt,) = up Pl So ute) e V for
-t (1, 42| v the time of asrival of the process Ule, ) from Kq to V s not more
Get=TK)+T,. ®

}l?km {5} corvespanding 20 (7.3) possesses @ global Lyspumos function

2} ihe set Tof the equilibrinns povsts of the sewmigroup 5, i finite: = {2y, . an}
all the paints 3, are byperbolic;
3} forany @ > 0 there axastr & (0) > O such that under |¢] < ¢* the functions Flu)

- #xa pelative Lyapuno function in the set Ko \O, (30) (0, (01} = UIO,(r,)ld'b:m
Uy, 1), comespanding to (7.1)47.25
A Ut vy &5 o contimaons in B with respect 10 1 function for sl u e K.

- Then jfor any fixed and sufficiesily small @o > 0 there exist @3, 0< 04 < @o, amd €5,
OSey < eo, uch that for amy e e ey, e,) and oy trajectory i) = U, Lr, thu, e Ky
W21 che following satement bolde i uln) &V, (2) = {wllPlu — 2l €
0,02, 1000 — oM, T @2} amd wie) 8 Vi, ) for >4 2T, thew alt) @V, ()
,ﬁuliu s

Restnioc 7.1: The statement of Theorem 7.1 can be reformlated in such 2 way: for
o> O there exists ¢, < 0o such that if u(r, ) & Vy, (2), aley ) & Vy, (2) for sone 13 > £y,
then wlth & V,, (z) for all te lr. 61
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Proor oy Treones 7.1: For simplcity we suppose Fiz,) = Fiz) for # . Proof of
the case Flz ) = Flz, ) s smilar {sce [1]). Let Flzy) > Flay) > ... > Flay). If s suffi-
ciently small we get F(V,, () > .. > F(V,, (z)).

Let [e] & €= (ou/2), wl-enezxndeﬁmdnbwc Then Fla) s o relative Lyspunay

functon in the set Ko\V. V= U, Vi (5) for the process U i1, ). I any solusion

i) = U, (1, 7hel £) w Ky leaves Vi, (z;), then later u(¢) does not enter closed neighbor-
‘hoads V, u.:... Vool )

Now we nudfmnmdcuklhbdumohmm\f (2} =V, (z). We.
shall show that if i) passes through the and ot lewvs e
bigger neighbobood V, mmmmm,.mmn,w-hummar
in ¥, {2l

A:ﬂu)nnmuwmhmmdummls}mdwmbkm
fold M * () consists of trajectories of this semigroup that approach £ as £ — — =, then
Fin) < Fiz) forw e 3M* = M " (1) {u][Ple = 2l = 0/2}. The st 8M* s e
dimensional, closed and bounded, Thu:huem:y}ﬂmd)bhu

Fla)|ooau+ < Flz) =

mmaﬂu)am.nma.swmewéwmmn
M which we denote by Op(M ') such that

an Flu)<Flz) =20 for weOu(dM* ).
Besides there cxists @y > 0 such that
a8 Fl)>Fiz) —p  for eV, (z).

6, %.6% (031,03 = /2 then for [e] < ey we gt that Pl i relative Lynpuno
function in the st K\V, V= U V(513 U O, (z,) of the process Ustr, 7).

Let wle) = U,(r, () € Ko, 2 i wlty) €V, d2) and 4 is a time moment when
the trujectory wit) leaves ¥, (2), thus ais) € V,,, (z) for r & [#,,#,]. From Theorem 3.3,
(7.5) and (7.6) we obuin for 1& [, )
Tates — o plenl = Bate) — @, (ptn), 0 + |0, pla). 1) — o (plo}l £

< Colgles) = @ (ples )t )l + Cle| =

= Colllgtay W + [@apte e + I (ol )1} = @olptr ) + Clel <

% Gt My + flotes Ml + Cle)) +Clel .

As aln) =z +ply ) +gln) & ¥y, (s, L. Tplell € 0072 Rates o S 0012, we et
19 Tt} = o (e € €00 + G el relt,n).




if i) eV, ) then
Lt < il + Cog, + G o] S fpel2 + Croy + Celel
e invegral montfold M, is canstracted under | < 1 (it is possible f g is small
then we choose @y and € 10 have (7.8) and also
Gt G <@,
a2+ Cres ¥ Gty < 0l2,
a<etlo2)

under || < & due 1o (7.10), (7.12) the solution u(e) = U, (¢, 1, Ints, ) sutis-
)i, = J0Mu(s) — 21l < @a/2 for 16 121,131, So the comrinuous in E* usjectory
ws V, () through the cylinder faflPw -2l = g2}, ie. lptell =
)~ 2l = 0ul2.
(79) and (7.11) we get lglts) = Polplr)a < 8, 50 ulny) = 2+ plrs) +
Ve Oy (3M* ) and Fluliy)) < Fiz) = 20,
the value Fla(s, ) of the relative Lyspunov function F on ulr) in a time
! 1 (when ulf) leaves V,, (3)) i not more than Fiz) = 2 since (7.7). From
(7.3} it follows that Flelz)) does not increasc outside the set V= U, Vi, (5;). Come-
ult) cansot retum into Vi, (z) beeause the value Flult)) since (7.8) has o be
than F(z) - s when uit) enters V,, (2.
denate the séts constructed in Theorem 7.1 by Vi, (z,) = ¥ and V, (2] = W
W,cV,, V, NV, = Blocs =, As it is proved in this Theoem the following state-
takes. place:

A i) atr) = UGt tha e Ky for all 127 and uiey) e W, wit) e V) for some
>4, 2 7, then ulr) @ W, for all £ > 4.

| This property means that tution alt) of the sation (7.1)
ot (in some smse) twice pass near any eduilibrium paint 3, of the sutonomous

pation (7.1)
‘Besidles the condition i) we sssume also that the following conditions are salisfed:

%
Eliﬁlﬁmﬂilmﬁuﬁujﬁuﬂnm[ylw‘,)

5
IT>0 VreR Vi ek, 31e(0,Th Ulr 4, r)u.u’l_J'W,.
i) (exponential rae of divergence of solutions in £ for some f a [0, al)
Lu>0, C>0: ULy = Uie, gl & Ol = sl
ot 2. for all Te R, by, upe EY sk that Ul Dl e K forall e 7, i =1, 2
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Let us notc thar seme sufficient conditions for i) and i) are given respectively in
Theorem 7.1 and Lemma 7.1. These conditions claim the existence of & relative Lya-
N
punay function £ in Ko\ U, Wi.
an,ﬁv.nnmmn-ndﬂnm)znblo“dmﬁrmmqﬂn

passing through the neighborhood V, we can define its exponential approximation
irace) (1), lying an the integral maviiohd My (1), be. () e 3, Preciscly

i) there exist y, > 4,2 0, €, > 0 such that if it e V, forre (. T) (T € +=)
then there exists 5, (+) & K,

llete) = & (0l & G ™™~ for re(r, T) (B a).

Dirermons 7.4: A combined trsjectory of the process U, t), comesponding 1o
the problem (7.10(7.2) s & piecewise continuous ﬁmcuun wir), telr, + =), with
values in E if there exist time moments r=/f <7 < ... <42, ;= + @ such that
00 = 5,00 for e & 2, 9, ), where (e} = UGe,19Y5, UP) Ilmjmnﬂ)(l o)y
mm-mwmwu-(xn fe. #(+) 6 2 (the st X, = {4, ()} is defined

Tiawomns 7.2: Let the process Ulh, the, pasieser a boundad in E* absorbing st Ky ond
the comditions 1) bold. Then for any solvion wis) = Ule, Thuy € Ky for 12 5, there
axists & consbined. trajectony 1) such that
7.14) fett) =My £ Cle ™ =0, 1 S N)

Jor 2 (a7 a5 b where =y :f(r'hh \+-)>0 -'. s[r,“ wtll =T
Maoreover 1y > 0 can be arbiteary and C' do ot depend on

The consiruction of the combined trajectory Is deseribed i [11. This construction is
based only on the conditions i)-iv) and holds without any changes for the process
Ut v).

Resass 7.2: We can get estimation (7.14) for every solution wlz) = Ult, vlu, of
(7.1)-(7.2) uniforsmly with respect to s, € K, where K is any bounded set in E, becavse
ultye Ky for + 2 vy = v + T{K), and T(K) infiuences only on the vahies of the con-
stamts €,

Rosamc 7.3: In the neighborhood of every point 7, we can construct the integral
‘manifolds Mz, z,, 4, ) for acbitzary lasge 2, > 0. If we put A, and 19, large, then ., are
.L., large (as y;>A,) and we can construct a combined trajcctory (utfj..t)ﬁ
u‘y‘M‘Er.L.A,I such that

Ity - Es s G ™1, gz,
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= . =minin,, .., 7.) >0 is arbitrarily large. In this case dimensions of
dimenssonal manifolds M(s, 2, 4,) increass.

er the problem (6.1)-(6.3). We assume (6.4)-(6.9) and also
ghely (R LD} [A{n.d)] S €01+ [u]f)

g=n/ls=2) s e e s s (67681
mzmnﬁ:-rml\mu(j’)uhhepnhhn:&l) {6.3) we shall construct 2

hed trsjectory i(r), :u(-).n)-mM (), that exponentially anracts a(z) in the
of EV? = HI(£2), Q¢ R*_ Tt will be done under some additional conditions on
the case when # < 4, For atbitrary s @ N we shall prove the auraction oaly in the
c of E = L,(f2).

first Jet us state some propertics of the process U, 7), comespending to the
n (6.1046.3).

Tozokes B.1: Let she comitions (6.4)-46.9)(8.1) boid. Then the process Ul ) car-
follosing properttes.

2 (6.1)46.3) stisies the
1) Ut 1) s & consinnons mapping from L3(Q) 0 Lyt82)
2) Uity ¥} posesies a anifornely with respect 1o T absorbing 35t K. boundod in
Q).

3) Ule + 1,70 & (Ly (), HI(@)-bomnded wniformly with. respect o 7.
4 Ule + 1,20 i (HIQ), H () bwsnded wniforndly with respect o ©.
5) Ulr, 1) s a consinnous mapping from HE(Q) ta HY(Q), 12 1.
(a? Ult, v porsesser @ wniformly with respect to © absorbing 1et Ko bonnded n

T) Ult, e, 5 a continnons i H}{Q) with respect to 1, ¢ > x, function for all
ek
Buoor: The following formal computations. can ensily be justified using Galerkin
spproximations (see [11).
1) Let i, and u be rwo solutions of (6:1)116.2), Then o= a, — u; suisfies the
equation
8.2) G = de = (flwg) + ghtag, 1) + (Mlug) + ofy Gz, 1))
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Multiplying this equation by v and using (6.5) we obtain
(83 Y23+ IOt sl el < el o,

“This implics the stawement of rem 1). Let us note that (8.3) implies alsa the unique-
ness of the salution of the problem (6,1)6.3).

2) Multiplying (6.1) by w and inwegrating with respect to , taking into account
16.4), (6.6}, we deduce
(84) letn)F + ¢ [ [Wa(@Pdo < Jatr P + €t 1),
Hence [t < futr)lFe %" 4 Cy/y,. Therefore K = (Wi = 2C, /1 } i an ab-
sorbing set

3} Multiplying (6.1) by —(f — 7). Ax und integrating with respect 1o , from ¥ w
T+ 1, using (64), (6.5), we obmin

i
Ellv-(r-& W= C,[l + I i?ulr)?d-)‘

Estimating the integral by (8.4) we get
[Nutr+ 1) £ €, iz
Thus Utr + 1, 7) is (L{@), H) (R))-bounded uniformly with respect to 1.
4) Mubiplying (6.1) by —du similadly to the provious item we obuin for
relnT+1)

®3) [Pato)f + J’M-I*de = Cu([Vutz)])

Differentisting (6.1) in ¢ and denoting o = & we have
e =dv =" by = ef, (w0, 000 = i, (u, 0) + g b, 2).
Muhiplying this equation by (# = r)e, using (6.5), (8.1) and integrating in ¢ from 1 10
T4 1 we deduce

P
®6) Fhete+ DE< G [ (14 [0 + [Futo)f )ds.
43
It ollows from (8.4) that [ [V is bounded. To esimase the incegsal of Joff




ininial equation (6.1
llol = 3 = sl + WAt + ofs b )] + G
from (6.7) and (8.5):
)+ of, Lo, )l = Go1 + i, ) = G (1 + [Wutedf) < Co([¥miel])

i
elr, 411 J 14ufPd0 is bounded since (8.5). Using these estimasions we con-

flete + 1) < G ([Futo)ly .

Au =g+ flu) + (e, 1) —gle) = egle, 1), ©=8u
the terms in the right-hand side for £ =t + 1 are bounded in L, (2] if
inHJ(RQ). et + 13 = CllI¥wt )], char proves

5) Consider the 4,() —alr) in H{(Q) as.n— @ and the sequence
{¢) = Ult, t)a (r). Since Uls, £) is contimaous in L;(RQ) we have w, (1) —ult) =
Aulr) in Ly ().

From the ftem 4) we dedhuce that u, {¢) is bounded in H*(£2) 1 H} (2) for ¢ > 1.

any subsequence of u, (#) has a convergent in H{ (2) subsequence, and its limit

¢ with wit) us an element of L(2). It means that , () —ult) in

HI@).
6) I the item 2) the uniformly with respect 1o v sbeorbing set K is comstructed.

- Th muhwndadhbtuﬂﬁ&lbnﬁomd-em!!dmdxmux

= U Utr + 1, 10K is bounded in H{ (), and

iy~ LIU(:H 11K, is bounded in H*(2) and also it is an absorbing set.

‘:'JA- it is proved shove u(t) € Lo ((r +35, T H*(2) N HI(Q)) for s > 0 and
auL {{r -+, T); Ly (). Then after changing the values of 4 on s set of scro mea-
Clle 45, THH D). =

As any solution u(1) of the problem (6.11-(6.3) enters K, in a certain period of tme
shall consider only solutions u(¢) that lie
. For these solutions the norm |du(7)] is bounded
and from (6.1) we deduce that [&u] is abso finite.
To determinate the relative Lyapunov function for the problem (6.1)-(6.3} we con-
sider the limit equation (as ¢ = 0) for (6.1):

(87 Bumdu-fiu) tglx) = Aln),  wlspm0,  wlmo=mpely(2).




i
This sutcoamots problem i « Lyspiinov function Flu) defined an H} (@)
Fla) = Ll + @), 1) = (3,00 ’J[%-EI 2 |es wtaten f]lx).n&i]dx-‘

where B*=f.
Provosmon 81
1) Fin) ir contiirucas ix HA(Q)

2) Flu) i boanded on Ky
3) Flule)) decroates fn ¢ for any solution aks) of (87).

Proor: 1) It is evident that 12 ¥4l is continuous in 3 (2), and (g, ) is continu-
ous even in L, (Q) since ge L;(Q), Let us check the continuity of (Plu), 1)

|jm~.un - ot = | ] |",~u. + 0=y Ol =, V| &
3 4

cc[ju ol + |~,|M]"‘In--.umx«»mr«m,i-mwr-.u.

2) The continuous function Ffa) s bounded on the compact in H3(2) set K.
3} Siendlar 1o Theorem 8.1 we can show that wir) & H{ L) N H?(2), Gue
& Ly(2) for ¢ > 0. Then

L Fult) = 1, a0 + (), 30 ~ 45, 80 = ~JawlF, 1>,

5
Fle) = Flute ) = = [laelPd,  Wa>n>0. m

"

Prososmmion $2: Porm,qwatmmasnmbw feaiwil = & for
we KN, (1) {deo,(mumwm HD) of the et R of
equlibrinne points of the problem (8.7)).

Proor: Suppose that the statement is wrong. Then there are 00> 0 and
4 sequence 1, € KAO, () that 2l )| =0 o8 n— =, Since iy} €K aod K,
is bounded in 12(22) we can choose a subsequence w,. —+ in H} (@) and m,—z
weakly in HY (). Passing to the limit in the equality l(o, ) = du, = fla ) + gtx)

A, ) 0 in L(Q), flu. )=+ flz) in Ly(2) fas wy-—z in HE(2) and
) is a continuous mapping from H{(2) 1o Ly(®)), gx) € La(0). Thus the
it of o i Eo(2) 1 deioed o eyl to e (i Mbymrilz 10 Ly(E),




.

we get 0= dz — flz) + gix) and consequently e X The kst starement
cts 1, 4.0, (%) for al m.

N 83 For awy p > O there exist £* (@) > 0 and v > 0 saech hat wmier
@) and 13> ;¢

Flutt)) = Flairy)) € ~vies = 1,)

 salnaion 1(t) & Ko\ (1), £ 12y, 43 It means dbat Flu) i a relative Lyapnco:
i the set Ko\ (R) of the process U, (1, 7) for [¢] < c*1p)

+ 16 wis) satisfics (6.1) then

LRt = = [ a2+ e [ 00,00~ ) At e,
d

Flaty)) ~ Flte, ) < ~ & [t + £ [t + o),
W i

ks u(r) & K, O, (%) Propositon 8.2 implies Jita)] > 8 > 0. I fllows forn (6.7) nd
s 0f ur) in Hi () that £, (u, £) is bounded in Ly (2) uniformly with respect
As g Lo (R, [,(2)) we obrain from ($.9)

0 = Flalry ) %
= —lé‘fr,—l‘nc.:’u,- B) = =872 =GNt - 1) = M=),

'(D.‘r>ﬂ-uﬁﬂ(d’t‘z Ce* (P ) > 0 vhen (8.8) holds under || < £* (g) with
= (372 - Ce'} > 0.

Assume that the set ¥ of the equilibrium points of (8.7) is finite: % = {z,, ..., 2y}
all the points 7, are hyperbolic. Let us check tha conditions i) i, and iv) of Theo-
7.2 hold for the considered problem (6.1)-(6.3).

The condition il takes place duc to Theorem 7.1, Propositions 8.1 and 8.3,

i) s that the time of sl from K,y t0 U 0,12, & finie s

of scry equilbrium point 5 exponen-
ulw.ﬁnnE'-pmudnhmhnnm Sad:em.mﬂnmmplm
- with fEa=12
It remains 1o check the condition i) of the exponential rate of the divergence
éu‘ulnnsl’mﬁ'unul.'ﬂnihlwmuh:luu‘wﬂtepnblﬂn(ﬁ.lb(h)!m
QR n %4, under some suppkmentary conditions ((8.11)-(8.12)).




B

Reuk 8.1: The condition i) with f# = 0 i in the metric of the space Ly (52)) is
abtsined in (8.3). Thus Theorem 7.2 and Remark 7.2 with = 0 state: for uny solution
#i#) of the problem (6.11-(6.3) there exists combined trajecory a(¢) lying on the union

"
of the finite dimensional integral manifolds (’y‘wu,; such that
Jule) = EeM = Ce ™",

where € = Cilutelly); 7> 0 does pot depend on ulr).

Prorosmon 8.4: Suppose instead of the Holder condition (6.9) we bave the Lipichitz
conditian:

(810} 1 ) = )| S L oy | 4 Jag 1977 g = |
with g —2=nfin=21=2%0 Let the simlar condition on f, alio bolds.
(LT VAT A T =TI RS P R P L TR |
frall iR

Then

®12) Weie] = [etrlfe=

Jorwlt) =y 1) = sy (1), wibere , (2) dnd s () ane s sltions of 16.1)-(6.3) byimg e Koy
frexr

Resuns 8.2: Notice that g — 2 3 0 is possible only in spaces with dimension # not
more than 4. Then in (8.10)-(8.11)g ~ 2= Oforn = 4,9 — 2= Lforn = 3,andg - 2
is aebircary for = 1,2

Proor on Prosostricn 8.4 Muliplying the equation (82) by ~ d and using
(B.1018.11) and (6.5) we et

Lapeep + bt -

--E_[[-g-:ﬂn.ua‘.u..n)v«.— 2 n~,)+q1|.,..:nv;.,]<wa-

- —J £ty + o o, )| ok~

-J[{%mm ) = Pl 410, T B €

=Cinf + €01+ |an(= Al |+ Jea |2 o] [V | | Ve
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‘estimate the last integral by the Holder inequality. For brevity let n = 3, We

|+ L2 l)le] 19 | [Felds € Catd + oLy + ol 29 e Rl 19 <

G501+ Wy | + Vo Dkt |1Vl & GV,
ek, for t21.0=1,2 and K, is bounded in H*(2). Thus we

L3P < alvel?
implics (8.12). The cases # =1, 2, 4 are considered similarly, ®

8.4 imply the condition i) with § = 1/2. Thus all the condirions of
7.2ﬂuﬂllﬂnﬁdﬁﬂd‘kﬂmﬁmﬂaid:mmlﬂdh|&12

- every solution u(t) of the problem (6.11-(6.3) there cxists a
mmmmdmamﬂhmmm( U Mea) i
Theted = @elin = [¥0ute) = Ml % Ce v v,

€=tz 5> 0 does not depend on uts).
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