

Rendiconti Accademia Nazionale delle Scienze detta dei XI. Memorie di Matematica e Applicazioni

Memorie di Matematica e Applicazioni 114º (1996), Vol. XX, fasc. 1, pagg. 175-192

RENATA SELVAGGI - IRENE SISTO (*)

Differential Forms in C1-Domains (**)(***)

Summary. — Some results related to differential forms of L^p -class on the boundary of a C^3 -domain are here investigated. The paper prepares the background for [9] and [10] too.

Mathematics Subject Classification: 58 A 10 (14FXX, 13 D 05).

Key words: (Co)-homology theory, differential forms.

Forme differenziali in domini di classe C1

SOMMARSO. — Si studiano alcune questioni relative a forme differenziali di classe L^p sulla frontiera di un dominio di classe C^1 . Il lavoro fornisce anche le premesse ai lavori [9] e [10].

INTRODUCTION

This work presents some results obtained for differential forms of class $L^{p}(\partial \Omega)$, where Ω is a bounded and connected C^{1} -domain of R^{n} .

To this purpose the definitions of the interior and enterior nontangenist intere d = d d f ferrotal form are first introduced and Sobels formula is proved. The spaces of boundary forms bere analysed are the $W^{ij} + 0.020$ spaces of differential forms of class IJ^i with distributional enterior derivative of the same class. As a consequence both of the Poincaré duality (see [21]. Chap VIII, 8.11 and of the de Rham theorem (see [14]. Chap IV, 29) the cycles associated with a differential form are next defined. Through this notion the regard of a class of space anomalous as a seption of $\partial \Omega$ is defined. Then we give the defini-

^(*) Indirizzo degli Autori: Remata Selvaggi: Dipartimento di Matematica, Università di Lecce, Via Arnesano 75100 Lecce, Itene Sisto: Dipartimento di Matematica, Università di Bari. Via E. Orabona 4, 70125 Bari.

^(**) Memoria presentata il 26 luglio 1996 da Mario Troisi, uno dei XL. (***) Lavoro svolto nell'ambito dei progetti MURST 60% e 40%.

tion of fundamental system of system of $\partial\Omega$ and we prove that the dual base of a fundamental system of cycles of $\partial\Omega$ is also a fundamental system of cycles of $\partial\Omega$. Finally consequently one of the system of cycles of $\partial\Omega$. Finally consequently one of the system of the system of $\partial\Omega$. Finally consequently one of $\partial\Omega$ is a system of $\partial\Omega$ in the system of $\partial\Omega$ in the system of $\partial\Omega$ is a system of $\partial\Omega$ in the system of $\partial\Omega$ in the system of $\partial\Omega$ is a system of $\partial\Omega$ in the system of $\partial\Omega$ in the system of $\partial\Omega$ is a system of $\partial\Omega$ in the system of $\partial\Omega$ in the system of $\partial\Omega$ is an interpret of $\partial\Omega$ in the system of $\partial\Omega$ in the system of $\partial\Omega$ is an interpret of $\partial\Omega$ in the system of $\partial\Omega$ in the system of $\partial\Omega$ is an interpret of $\partial\Omega$ in the system of $\partial\Omega$ in the system of $\partial\Omega$ is an interpret of $\partial\Omega$ in the system of $\partial\Omega$ in the system of $\partial\Omega$ is an interpret of $\partial\Omega$ in the system of $\partial\Omega$ in the system of $\partial\Omega$ is an interpret of $\partial\Omega$ in the system of $\partial\Omega$ in the system of $\partial\Omega$ is an interpret of $\partial\Omega$ in the system of $\partial\Omega$ in the system of $\partial\Omega$ is a system of $\partial\Omega$ in the system of $\partial\Omega$ in th

The results established here are the background for to approach Dirichlet and Neumann problems, already solved in [5] in open sets of class $\mathbb{C}^{2,n}$ and hölderian boundary data, in the same context of this work. These extensions will be reported elsewhere.

1. - NOTATIONS AND DEFINITIONS

Throughout this work Ω will denote a bounded connected C^1 -domain of R^* . Thus $\delta > 0$ exists such that corresponding to each point Ω on the boundary $\partial \Omega$ of Ω there is a system of coordinates of R^* with origin Ω and a sphere, $B(Q,\delta)$, with center Q and radius δ , such that with respect to this coordinate system

$$Q \cap B(Q, \delta) = \{(x, x_n) \in \mathbb{R}^{n-1} \times \mathbb{R} : x_n > \xi(x)\} \cap B(Q, \delta)$$

where $\xi \in C_0^1(\mathbb{R}^{n-1})$, $\xi(0) = (\partial \xi / \partial c_i)(0) = 0$ (l = 1, ..., n-1). For any $Q \in \partial \Omega$ and $r \in (0, \delta)$, we define B(Q, r) a coordinate neighborhood of Q, while the function

$$\widetilde{x}=(x,\xi(x))\in\partial\Omega\cap B(Q,r)\,{\to}\,x\in R^{n-1}$$

is called the coordinate function of B(Q, r). The pair $(B(Q, r), \bar{x})$ is named a coordinate pair. Furthermore, (see [13]) there exists an increasing sequence of C^* domains, $Q_b \in \Omega$, such that $\Omega_b \to \Omega$ in C^* according to Nečas (see [7]: pag. 85) and a sequence of diffeomorphisms, $A_b: 3Q \to \partial\Omega$, such that

(1.1)
$$\lim_b \sup_{Q \in JQ} |Q - A_{\delta}(Q)| = 0.$$

There is a finite covering $(B_r)_{1 < r < m}$ of $\partial \Omega$ by open spheres $B_r = B(Q_r, \delta)$ with center $Q_r \in \partial \Omega$ and radius δ , such that

$$(1.2) \quad B_r \cap \partial \Omega = \{(x, x_r) \in \mathbb{R}^{n-1} \times \mathbb{R} : x_r = \xi_r(x)\} \cap B_r$$

an

(1.3)
$$B_r \cap \partial \Omega_b = \{(x, x_e) \in \mathbb{R}^{n-1} \times \mathbb{R} : x_e = \xi_{sb}(x)\} \cap B_r$$

where $\xi_r \in C_0^1(R^{n-1})$, $\xi_r(0) = (\partial \xi_r / \partial x_l)(0) = 0$ (l = 1, ..., n-1), $\xi_{sh} \in C_0^{so}(R^{n-1})$ and

(1.4)
$$\lim_{\Gamma} \|\xi_{ab} - \xi_{r}\|_{C_{F}^{1}(\mathbb{R}^{n-1})} = 0.$$

(1.5)
$$\tilde{x}_r = (x, \xi_r(x)) \in \partial \Omega \cap B_r \rightarrow x \in \mathbb{R}^{n-1}$$

(1.8)

$$(1.6) \hspace{1cm} \overrightarrow{x}_{ab} = (x,\,\xi_{ab}(x)) \in \partial \Omega_b \cap B, \rightarrow x \in R^{n-1}.$$

For l, i = 1, ..., n - 1 it results that

(1.7)
$$\lim_{k} \frac{\partial (\widetilde{x}_{ab} \circ A_{b} \circ \widetilde{x}_{c}^{-1})_{j}}{\partial x_{i}}(x) = \delta_{d}$$

uniformly in $U_r = \tilde{x}_r (\partial \Omega \cap B_r)$, where $(\tilde{x}_d \circ A_d \circ \tilde{x}_r^{-1})$, is the *i*-th coordinate of the function $\tilde{x}_d \circ A_d \circ \tilde{x}_r^{-1}$

For any $Q \in \partial\Omega$, N(Q) will denote the unit inner normal to $\partial\Omega$ at Q and $N_{\delta}(Q)$ the unit inner normal to $\partial\Omega_{\delta}$ at $Q_{\delta} = A_{\delta}(Q)$. It is easy to see that $N_{\delta}(Q) \rightarrow N(Q)$ uniformly in $\partial\Omega$.

Throughout this work, if s = 1, ..., n,

$$N_i^n = \{i = (i_1, ..., i_r) \in \mathbb{N}^t : 1 \le i_1 < ... < i_r \le n\},$$

Further if $i = (i_1, ..., i_r) \in N_r^n$ then i' will denote the unique element $(i_{r+1}, ..., i_n) \in N_r^n$

 $\in N_{\sigma-1}^d$ such that $(i_1, \dots, i_r, i_r, i_{r+1}, \dots, i_s)$ is a permutation of $(1, \dots, n)$. Let U be an open set of R^n . We will denote by $C_1^k(U)$, $C_{\sigma_1}^k(U)$ and $L_1^k(U)$ the spaces of all differential forms of degree s whose components belong to $C^k(U)$, $C_0^k(U)$ and $L^k(U)$ respectively. If $\omega_s = \sum_{\alpha, \beta} a_\alpha dX_i$ is a differential form defined in U, where,

for $i = (i_1, ..., i_r) \in \mathbb{N}_+^n$, $dX_i = dX_i \wedge ... \wedge dX_i$, then we set

(1.9)
$$\|\omega_s\|_{L^p(U)} = \sum_{i \in N} \|a_i\|_{L^p(U)}.$$

We will denote by $C_i^*(U)$ the space of the regular forms in U, according to Whitney (see 1-161; Chap, III, 161 and by $C_{ii}^*(U)$ the space of the regular forms with compact support in U. Furthermore, for any ω_i a $C_i^*(U)$, $d\omega_i$ is the exterior derivative of ω_i . $C_i^*(3D)$ and $L^1(3D)$ will denote the spaces of all differential forms in 3D such that for any coordinate function $S_i^{\infty}(V)$ (ω_i) belongs to $C_i^*(U)$ and $L^1(U)$ respectively (see [14]: Chap, II, 17], where U is the range of $S_i^{\infty}(V)$ finally, according to Whitney (see [14], Chap, III, 17], the space of the regular forms in 3D will be denoted by $C_i^*(G)$ and for any $\omega_i \in \widetilde{C}^1_i(\partial \Omega)$, $d\omega_i$ is the exterior derivative of ω_i . We set

$$\|\omega_{I}\|_{L_{t}^{p}(2\Omega)} = \sum_{l=1}^{\infty} \|\bar{x}_{l}^{-1^{+}}(\varphi_{l}\omega_{I})\|_{L_{t}^{p}(\mathbb{R}^{n-1})}$$
(1.10)

where $(\varphi_I)_{1\in I \in m}$ is a partition of the unity of class C^1 , subordinate to a fixed cover $(B_I)_{1\in I \in m}$ of $\partial\Omega$ and (B_I, \bar{x}_I) is a coordinate pair. It is not difficult to see that using a different partition of unity subordinate to the cover will give rise to a norm equivalent to the one we have defined. $U_I(\partial\Omega)$ is a Banach space.

2. - NONTANGENTIAL TRACES AND STOKES' FORMULA

By the definitions of interior and exterior nontangential traces of a function, (see [8]), we give the following

DEFINITION 2.1: Let $\omega_i = \sum_{i \in \mathcal{N}_i} a_i dX_i$ be a form defined in Ω (or in $R^* \setminus \overline{\Omega}$). We say that ω_i has interior nontangential trace (exterior respectively) in $L^p(\partial \Omega)$ if, for any $i \in \mathbb{N}_{+}^n$, a_i has interior nontangential trace a_i^{-n} (exterior a_i^{+n} respectively) in $L^p(\partial \Omega)$. The form $C^{(1)}$

(2.1)
$$\omega_i^- = \sum_{i \in K_i^*} a_i^- dX_i(Q)$$

(the form

$$\omega_i^+ = \sum_{i,j} a_i^+ dX_i(Q)$$

respectively) is called the interior nontangential trace (exterior respectively) of ω_{ij} .

Theorem 2.1: Let $\omega_s = \sum_{i} a_i dX_i \in C_s^0(\Omega)$. If ω_s has the interior nontangential trace in $L^p(\partial\Omega)$, then $\omega_s \in L^p(\Omega)$.

PROOF: It is sufficient to observe that for any coordinate neighborhood $B=B(Q,\delta)$,

$$\begin{split} \|\omega_t\|_{L^2(\mathbb{R}\cap\Omega)}^2 &\leqslant \sum_{i\in N_t^*} \int_0^{2\delta} dt \int_{|x| < \delta} \|a_i(x,\xi(x)+t)\|^p dx \leqslant \\ &\leqslant \sum_{a \le t} \int_0^{2\delta} dt \int_0^{-\delta} \|M(a_i)(x,\xi(x))\|^p dx \end{split}$$

where $M(a_i)$ is the interior nontangential maximal function of a_i (see [8]).

(*) $dX_i(Q)$ is the restriction to $\partial\Omega$ of dX_i , hence $dX_i(Q)=j^*dX_j$, where $j\colon\partial\Omega\to R^*$ is the inclusion map.

Theorem (of Syokes) 2.2: Let $\omega_{n-1} = \sum_{l=1}^{n} a_l dX_{l'} \in C_{n-1}^1(\Omega)$. If ω_{n-1} has interior nontangential trace in $L_{n-1}^1(\partial\Omega)$ and, for any l = 1, ..., n, $\partial a_l / \partial X_l \in L^1(\Omega)$, then

(2.3)
$$\int_{\Omega} d\omega_{n-1} = \int_{\partial\Omega} \omega_{n-1}^{-1}, \quad ||u|| \leq 1.5 \quad ||u|| = 1.$$

PROOF: If $V = \sum_{l=1}^{n} (-1)^{l-1} a_l(\partial/\partial X_l)$, then $\int_{\partial} d\omega_{n-1} = \int_{\partial} \operatorname{div} V dX$. From Theorem 2.1 in [8] it follows

$$\int \operatorname{div} V dX = \sum_{l=1}^{n} \int (-1)^{l-1} a_{l}^{-}(Q) N_{l}(Q) d\sigma_{Q}$$

where $N_I(Q)$ is the I-th coordinate of N(Q). Since $(-1)^{I-1}N_I(Q)\,d\sigma_Q=dX_{I'}(Q)$, the proof is complete.

THEOREM 2.3: Let $\omega_i \in C^0_c(\Omega)$. If ω_i has interior nontangential trace in $L^p_c(\partial\Omega)$, then

(2.4)
$$\lim_{k} A_{k}^{k} \omega_{k} = \omega_{k}^{-} \quad \text{in } L_{k}^{k}(\partial \Omega)$$

where ω_{ab} is the restriction to $\partial \Omega_{a}$ of ω_{a} .

PROOF: Let $\omega_s = \sum_{i \in N_s^s} a_i dX_i$. Since a_i belongs to $C^0(\Omega)$ and has interior nontangential trace in $L^p(\partial \Omega)$, from (1,1) it follows that

$$\lim a_i(\Lambda_k(Q)) = a_i^-(Q)$$
 in $L^p(\partial \Omega)$

Hence by (1.7) the theorem follows.

3. - The space $W_r^{1,p}(R^*)$

Let U be an open set of R^s . From Stokes' theorem it follows that for any $\omega_s \in \tilde{C}^1_t(U)$ and $\Phi_{s-s-1} \in \tilde{C}^1_{0,s-s-1}(U)$

(3.1)
$$\int d\omega_s \wedge \Phi_{\pi-s-1} = (-1)^{r+1} \int \omega_s \wedge d\Phi_{\pi-s-1}.$$

By (3.1) we will extend the definition of exterior derivative to forms of class L^p . For this we prove the following

Lemma 3.1: Let $\omega_i \in L^p_i(U)$. If for any $\Phi_{n-1} \in C^0_{0,n-1}(U)$ it is $\int \omega_i \wedge \Phi_{n-i} = 0,$

$$\omega_i \wedge \Phi_{x\sim_i} = 0$$
,

then w, = 0 a.e. in U.

PROOF: Let $\omega_i = \sum_{i \in N_i^a} a_i dX_i$. For $\tilde{i} \in N_i^a$ and $\Phi \in C_0^b(U)$ set $\Phi_{n-1} = \Phi dX_i$.

$$\int_{\Omega} \omega_{1} \wedge \Phi_{n-1} = \int_{\Omega} \sigma_{1} \Phi = 0,$$

Hence $a_i = 0$ a.e. in U.

Depending 3.1: Let $\omega_r \in L^p(\mathbb{R}^n)$. We say that ω_r has distributional exterior derivative $d\omega_i \in L^p_{i+1}(\mathbb{R}^n)$ iff, for any $\Phi_{n-i-1} \in \widetilde{C}^1_{0,n-i-1}(\mathbb{R}^n)$, (3.1) is verified. $W^{1,p}_i(\mathbb{R}^n)$ is the space of all forms $\omega_i \in L^p_i(\mathbb{R}^n)$ with distributional exterior derivative $d\omega_i \in L^p_{i+1}(\mathbb{R}^n)$. We

$$\|\omega_{\tau}\|_{W^{1,p}(\mathbf{g}^{*})} = \|\omega_{\tau}\|_{L^{p}(\mathbf{g}^{*})} + \|d\omega_{\tau}\|_{L^{p}_{\tau}, (\mathbf{g}^{*})}.$$

THEOREM 3.1: Let $\omega_i \in L^p(\mathbb{R}^n)$. Then $\omega_i \in W^{1,p}_i(\mathbb{R}^n)$ iff there exists a sequence $(\Phi_{\pm})_{b+N}$, $\Phi_{\pm} \in C_{0,r}^{\infty}(\mathbb{R}^{+})$, such that $(d\Phi_{\pm})_{b+N}$ is a Cauchy sequence in $L_{l+1}^{p}(\mathbb{R}^{+})$

$$\lim \Phi_{d} = \omega_{s}$$
 in $L_{s}^{p}(\mathbb{R}^{n})$.

PROOF: Let $\omega_s = \sum_{i \in \mathbb{R}^n_s} a_i dX_i \in W^{1,p}_s(\mathbb{R}^*)$ and $\omega_{sb} = \sum_{i \in \mathbb{N}^n_s} a_{ib} dX_i$, where $a_{di}(X) = \begin{cases} a_i(X) & \text{if } |X| \leq b; \\ 0 & \text{if } |X| > b. \end{cases}$

Furthermore let (χ_{λ}) be a sequence of mollifiers and

$$\Phi_{\pm} = \chi_{\lambda} * \omega_{\pm} = \sum_{i \in N^*} \chi_{\lambda} * a_{\Delta}$$

where * is the usual convolution product between functions. Then

$$\Phi_{\dot{\alpha}} \in C_{0,t}^{\alpha}(\mathbb{R}^{n})$$
 and $\Phi_{\dot{\alpha}} \rightarrow \omega_{t}$ in $L_{t}^{\beta}(\mathbb{R}^{n})$.

By Lemma 16b in [14].

$$d\Phi_{\pm} = \chi_1 * d\omega_{\pm}$$

hence $d\Phi_{\pm} \in C_{0,r+1}^{\infty}(\mathbb{R}^{n})$ and $d\Phi_{\pm} \rightarrow d\omega_{r}$ in $L_{r+1}^{p}(\mathbb{R}^{n})$. The proof of the sufficient condition is trivial. Theorem 3.2: If $\omega_s = \sum_{i \in S_s^+} a_i dX_i \in W_s^{1,p}(\mathbb{R}^n)$, then for any $i \in N_s^n$ and j = s + 1, ..., n, the partial derivative in the sense of distributions $\partial a_i \int \partial X_i$ belongs to $L^p(\mathbb{R}^n)$ and

$$d\omega_s = \sum_{i \in N_s^n} \sum_{j=j+1}^n \frac{\partial a_i}{\partial X_{ij}} dX_{ij} \wedge dX_j.$$
(3.3)

PROOF: From Theorem 3.1 it follows that there exists a sequence $(\Phi_{sb})_{b \in N}$, $\Phi_{sb} \in C^1_{0,s}(\mathbb{R}^n)$, such that

 $(3.4) \qquad \varPhi_{sb} \rightarrow \omega_{z} \quad \text{in } L^{p}_{z}(R^{*}) \quad \text{and} \quad d\varPhi_{sb} \rightarrow d\omega_{z} \ \text{in} \quad L^{p}_{t+1}(R^{*}).$

$$d\omega_j = \sum_{i \in N_i^j} \sum_{j=j+1}^n \alpha_{i,j} dX_{ij} \wedge dX_i$$

an

$$\Phi_{ab} = \sum_{i \in N^*} a_{ab} dX_i$$

then, from (3.4), it follows that $a_b \rightarrow a_i$ in $L^p(\mathbb{R}^n)$ and $(\partial a_b / \partial X_{i_i}) \rightarrow \alpha_{i,j}$ in $L^p(\mathbb{R}^n)$. Hence $\alpha_{i,j} = (\partial a_j / \partial X_{i_j})$.

From properties of the regular forms and Theorem 3.1 further theorems follow:

THEOSEM 3.3: If $\omega_i \in W_i^{1,p}(\mathbb{R}^n)$ and $\omega_i \in W_i^{1,p'}(\mathbb{R}^n)$ with p' the conjugate exponent of p_i then $\omega_i \wedge \omega_i \in W_i^{1,p}(\mathbb{R}^n)$ and

$$d(\omega, \wedge \omega_i) = d\omega_i \wedge \omega_i + (-1)^i \omega_i \wedge d\omega_i$$

Theorem 3.4: If $\omega_i \in W_i^{1,p}(R^*)$, then $d\omega_i \in W_i^{1,p}(R^*)$ and $dd\omega_i = 0 \ .$

4. - The space
$$W^{1,p}(\partial \Omega)$$

Lemma 4.1: Let $\omega_i \in L^p_i(\partial\Omega)$. If for any $\Phi_{n-i-1} \in C^0_{n-i-1}(\partial\Omega)$

$$\int \omega_i \wedge \Phi_{n-i-1} = 0,$$

then $\omega_i = 0$ a.e. on $\partial \Omega$.

PROOF: It is sufficient to show that if (B, \bar{x}) is a coordinate pair and $\phi \in C^1(\partial \Omega)$ with $\operatorname{supp}(\phi) \subset B$, then $\bar{x}^{-1o}(\phi \omega_s) = 0$ a.c. in R^{o-1} .

Let $G_{n-i-1} \in C_{0,n-i-1}^0(\mathbb{R}^{n-1})$ and $\Phi_{n-i-1} = \widetilde{x}^n((\varphi \circ \widetilde{x}^{-1})G_{n-i-1})$. Since $\Phi_{n-i-1} \in C_{0,n-i}^0(\partial \Omega)$, then it results

$$0 = \int\limits_{\mathbb{R}^d} \omega_s \wedge \Phi_{\pi - \tau - 1} = \int\limits_{\mathbb{R}^d} \widehat{x}^{-1s} \left(\omega_s \wedge \Phi_{\pi - \tau - 1} \right) = \int\limits_{\mathbb{R}^d} \widehat{x}^{-1s} \left(\varphi \omega_s \right) \wedge G_{\pi - \tau - 1},$$

and, from Lemma 3.1, the proof is complete.

Lemma 4.2: If
$$\omega_r \in \widetilde{C}^1_r(\partial \Omega)$$
, then for any $\Phi_{r-r-2} \in \widetilde{C}^1_{r-r-2}(\partial \Omega)$

(4.1)
$$\int d\omega_{s} \wedge \Phi_{n-s-2} = (-1)^{s+1} \int \omega_{s} \wedge d\Phi_{n-s-2}.$$

PROOF: It is sufficient to use (3.1) and to observe that for any coordinate function $\tilde{\chi}$

$$(4.2) d(\widetilde{x}^{-1*}\omega_z) = \widetilde{x}^{-1*}d\omega_z$$

(see. [14]: Chap. III, 17).

It is now justified the following

DETERMINE A.1: Let $\omega_i \in L_i^p(\partial \Omega)$. We say that ω_i has distributional exterior derivative $d\omega_i \in L_{i-1}^p(\partial \Omega)$ iff, for any $\Phi_{--1-2} \in C_{i-1-2}^p(\partial \Omega)$, (4.1) is verified. $W^{i,p}(\partial \Omega)$ is the space of all forms $\omega_i \in L_i^p(\partial \Omega)$ with distributional exterior derivative $d\omega_i \in$ $\in L_{i-1}^p(\partial \Omega)$. We assume

$$\|\omega_s\|_{W_s^{1,p}(\partial\Omega)} = \|\omega_s\|_{L_s^p(\partial\Omega)} + \|d\omega_s\|_{L_{s+1}^p(\partial\Omega)}.$$
(4.3)

Remark 4.1: $W_s^{1,p}(\partial \Omega)$ is a Banach space.

Remark 4.2: Let $\omega_i \in W_i^{1,p}(\partial \mathcal{Q})$. For any coordinate pair (B, \overline{x}) and $\varphi \in C^1(\partial \mathcal{Q})$ with $\operatorname{supp}(\varphi) \in B$ then $\overline{x}^{-1s}(\varphi \omega_i) \in W_i^{1,p}(\mathbb{R}^{s-1})$, and $d(\overline{x}^{-1s}(\varphi \omega_i)) = \overline{x}^{-1s}d(\varphi \omega_i)$.

Definition 4.2: Let $\omega_i \in W_r^{1,p}(\partial \Omega)$. Then ω_i is called closed iff $d\omega_i = 0$.

THEOREM 4.1: Let $\omega_i \in L^p_i(\partial \Omega)$. Then $\omega_i \in W^{1,p}(\partial \Omega)$ iff there exists a sequence $(\Psi_{d_i})_{h \in \mathbb{N}}$, $\Psi_{d_i} \in \tilde{C}^1_i(\partial \Omega)$, such that $(d\Psi_{d_i})_{h \in \mathbb{N}}$ is a Cauchy sequence in $L^p_{i+1}(\partial \Omega)$ and

$$\lim_{i} \ \Psi_{ib} = \omega, \quad in \quad L^{p}_{i}(\partial \Omega) \, .$$

PROOF: Let $w_i \in W_i^{1,p}(\partial \Omega)$. Let $(B_i)_{i \in I \neq w}$ be a cover of $\partial \Omega$ formed by coordinate neighborhoods and $(\varphi_i)_{i \in I \neq w}$ a partition of unity subordinate to this cover. Then, from Remark A_i we have $\widetilde{x}_i^{(1)} = (\varphi_i w_i) \in W_i^{1,p}(R^{n-1})$. By Theorem 3.1, there exists a sequence $(\Phi_B^i)_{b \in X^i}, \Phi_B^i \in C_b^i(R^{n-1})$ such that

$$\lim \Phi_{sl}^{j} = \widetilde{\chi}_{l}^{-1o}(\varphi_{l}\omega_{s})$$
 in $L_{i}^{p}(\mathbb{R}^{s-1})$

and

$$\lim_k d\Phi^l_{ik} = d\widetilde{x}_l^{-1*}(\varphi_l \omega_t) = \widetilde{x}_l^{-1*}(\varphi_l d\omega_t + (-1)^l \omega_t \wedge d\varphi_l).$$

0...

$$\Psi_{ab}^{i} = \begin{cases} \vec{x}_{l}^{*}(\Phi_{ab}^{l}) & \text{in } B_{l} \cap \partial \Omega; \\ 0 & \text{in } \partial \Omega \backslash B_{l}. \end{cases}$$

Then $\Psi_A^I \in \widetilde{C}^1(\partial\Omega)$, Finally, set

$$\Psi_{\pm} = \sum_{i=1}^{n} \Psi_{\pm}^{i}$$
,

the necessity of the condition is established. It is easy to prove the sufficiency: \blacksquare

From Theorem 4.1 and properties of the regular forms on $\partial\Omega$ the following theorems can be deduced: Theorem 4.2: If $\omega_r \in W^{1,p}(\partial\Omega)$ and $\omega_r \in W^{p,p'}(\partial\Omega)$ with p' the conjugate expo-

nent of p, then $\omega_i \wedge \omega_i \in W_{i-1}^{(i)}(\partial \Omega)$ and

$$d(\omega_t \wedge \omega_t) = d\omega_t \wedge \omega_t + (-1)^r \omega_r \wedge d\omega_t.$$

Theorem 4.3: If
$$\omega_j \in W_j^{1,p}(\partial \Omega)$$
, then $d\omega_i \in W_j^{1,p}(\partial \Omega)$ and

Theorem 4.4: If $\omega_{n-2} \in W_{n-2}^{1,1}(\partial \Omega)$, then

$$\int_{\partial \Omega} d\omega_{n-2} = 0.$$

PROOF: Let $\omega_{\pi-2} \in W^{1,-1}_{\pi-2}(\partial \Omega)$ and $(\omega^b_{\pi-2})_{b\in N}$ a sequence such that $\omega^b_{\pi-2} \in C^1_{\pi-2}(\partial \Omega)$ and (see Theorem 4.1)

$$\lim_{\lambda} \ \omega_{n-2}^{\delta} = \omega_{n-2} \quad \text{in} \quad W_{n-2}^{1,1}(\partial \Omega).$$

Then, since $\partial \Omega$ is a non-bounded C1-manifold, by Stokes' theorem we have

$$\int d\omega_{s-2} = \lim_{s} \int d\omega_{s-2}^{k} = 0. \quad \blacksquare$$

Theorem 4.5: Let $\omega_i \in C^1_i(\Omega)$. If ω_i and $d\omega_i$ have interior nontangential trace in $U_{i+1}(\partial\Omega)$ and in $U_{i+1}(\partial\Omega)$ respectively, then

$$\omega_i^- \in W_i^{1,p}(\partial \Omega)$$
 and $d(\omega_i^-) = (d\omega_i)^-$.

PROOF: Let $G_{n-2-j} \in \widetilde{C}_{n-2-j}^1(\partial \Omega)$. As a consequence of Theorem 2.3 and properties of regular forms it can be obtained that

$$\begin{split} & \int_{\partial \mathcal{Q}} w_i \wedge dG_{s-1-2} &= \lim_{i \downarrow 0} \int_{\partial \mathcal{Q}} \mathcal{A}_i^s w_{\beta} \wedge dG_{s-1-2} = \\ &= \lim_{i \downarrow 0} (-1)^{s+1} \int_{\partial \mathcal{Q}_i} \mathcal{A}(w_{\beta}) \wedge \mathcal{A}_i^{-1s} G_{s-1-2} &= \lim_{i \downarrow 0} (-1)^{s+1} \int_{\partial \mathcal{Q}} \mathcal{A}_i^s (dw_i)_i \wedge G_{s-1-2} = \\ &= (-1)^{s+1} \int_{\partial \mathcal{Q}_i} \mathcal{A}(w_{\beta}) \wedge \mathcal{A}_i^{-1s} G_{s-1-2} &= (-1)^{s+1} \int_{\partial \mathcal{Q}} \mathcal{A}_i^s (dw_i)_i \wedge G_{s-1-2} = \\ \end{split}$$

where $(d\omega_s)_b$ is the restriction of $d\omega_s$ to $\partial\Omega_b$.

THEOREM 4.6: Let $\omega_i \in C_i^1(\Omega)$. If ω_i is a closed form with interior nontangential trace in $L^p_i(\partial\Omega)$, then ω_i^- belongs to $\in W_i^{1,p}(\partial\Omega)$ and is closed.

5. - Some properties of closed forms in $W^{1,p}_i(\partial\Omega)$

Since Q is a \mathbb{C}^1 -domain, in virtue of Theorem 12 A in [14], there exist a finite simplicial complex K and a \mathbb{C}^1 -triangulation f of K conto $\partial \Omega$ with the following property; for each simplex α of K, $\alpha = f(\alpha)$ is a \mathbb{C}^1 -differentiable simplex in $\partial \Omega$ and there is a coordinate neighborhood B such that $f(\alpha) \in B \cap \partial \Omega$ and $X \circ f(\alpha)$ is affine in α . The \mathbb{C}^1 -simplexes $\alpha = f(\alpha)$ form a f-pitic contributor complex.

We will denote by $\mathcal{H}_{\epsilon}(\partial \Omega)$ ($\mathcal{H}^{\epsilon}(\partial \Omega)$) the s-th C^{1} -differentiable singular homology (cohomology respectively) space of $\partial \Omega$ with real coefficients. In $\mathcal{H}_{\epsilon}(\partial \Omega) \times \mathcal{H}^{\epsilon}(\partial \Omega)$ is can be defined the Knowcher product

$$\langle [\sigma_i], [\sigma^i] \rangle = \langle \sigma_i, \sigma^i \rangle = \sigma^i(\sigma_i)$$

while in $\mathcal{K}'(\partial\Omega) \times \mathcal{K}'(\partial\Omega)$ is defined the bilinear map

$$[\sigma^\iota] \cup [\sigma^\iota] = [\sigma^\iota \cup \sigma^\iota]$$

where $\sigma' \cup \sigma'$ is the cap-product of σ' and σ' (see [2]: Chap. VII, 8) and in $\mathcal{K}'(\partial \Omega) \times$

 $\times \mathcal{K}_{++}(\partial \Omega)$ is defined the bilinear map

$$[\sigma^t] \cap [\sigma_{t+t}] = [\sigma^t \cap \sigma_{t+t}]$$

where $\sigma' \cap \sigma_{t+1}$ is the cap-product of σ' and σ_{t+1} (see [2]: Chap. VII, 12). By the definition we have

$$(5.1) \qquad \langle \sigma^{i} \cap \sigma_{i+i}, \sigma^{i} \rangle = \langle \sigma_{i+i}, \sigma^{i} \cup \sigma^{i} \rangle.$$

Given the s-form $\omega_s \in \overline{C}_t^1(\partial \Omega)$, the function $\int_{\Omega} \omega_s$ of C^1 -differentiable s-chain σ_n defines an s-cochain $\psi_s(\omega_s)$. The linear transformation ψ_s defines the following linear transformation

$$\Psi_{::}[\omega,] \in H^{i}(\partial\Omega) \rightarrow [\psi_{:}(\omega,)] \in \mathcal{K}^{i}(\partial\Omega)$$

where $H^{\prime}(\partial D)$ denotes the regular differential cohomology space of ∂D . As a consequence of de Rham's theorem (see [14]: Chap, IV, 29) the functions Ψ , are innon-phisms and defines a ring-isomorphism Ψ of $H^{\prime}(\partial D)$ and $0.0^{\circ}(\partial D)$, where $H^{\prime}(\partial D)$ and $0.0^{\circ}(\partial D)$ reportively. Since there exists a ring isomorphism of $0^{\circ}(\partial D)$ renth defires und 0° 4 singular cohomology spaces of ∂D 4, from the Poincaré duality (see, [2]: Chap VIII, 8) it follows that

$$\overline{\Psi}_{::}[\sigma'] \in \mathcal{H}'(\partial\Omega) \rightarrow [\sigma' \cap \partial\Omega] \in \mathcal{H}_{n-1-s}(\partial\Omega)$$

is an isomorphism. Setting $\Theta_i = \overline{\Psi}_i \circ \Psi_i$, it is immediate that Θ_i is an isomorphism of $H^s(\partial\Omega)$ onto $\mathcal{R}_{s-1-s}(\partial\Omega)$.

DEFINITION 5.1: A closed regular form $\omega_i \in \tilde{C}_i^1(\partial \Omega)$ and a C^1 -differentiable cycle σ_{--1} , in $\partial \Omega$ are associated iff

$$\Theta_{-}([a_{i}, 1) = [a_{i-1}, 1],$$

Definition 5.2: If σ_i and σ_{n-1-i} are C^1 -differentiable cycles of $\partial \Omega_i$ then we assume

$$I(\sigma_i,\sigma_{n-1-i})=\int \omega_i$$

where ω_i is a s-form associated with σ_{n-1-s} . Then the integral $\int_{\omega_i} \omega_i$ is called the intersection number of σ_i and σ_{n-1-s} .

It is immediate that

$$I(\sigma_i, \sigma_{n-1-i}) = \langle \sigma_i, \psi_i(\omega_i) \rangle,$$

THEOREM 5.1: If ω , and $\overline{\omega}_{n-1-i}$ are closed regular forms in $\partial \Omega$ associated with σ_{n-1-i} and $\overline{\sigma}_i$ respectively, then

$$(5.3) \qquad \int_{\partial D} \omega_{s} \wedge \overline{\omega}_{s-1-\epsilon} = I(\overline{o}_{r}, \sigma_{s-1-\epsilon}) = \int_{\Delta} \omega_{s},$$

PROOF: It is enough to observe that

$$\int_{\Omega} \omega_{s} \wedge \overline{\omega}_{s-1-s} = \langle \partial \Omega, \psi_{s-1}(\omega_{s} \wedge \overline{\omega}_{s-1-s}) \rangle =$$

$$=\left\langle \partial \mathcal{Q},\psi_{z}(\omega_{z})\cup\psi_{n-1-z}(\overline{\omega}_{n-1-z})\right\rangle =\left\langle \psi_{n-1-z}(\overline{\omega}_{n-1-z})\cap\partial \mathcal{Q},\psi_{z}(\omega_{z})\right\rangle =$$

$$=\langle \Theta_{n-1-r}([\widetilde{\omega}_{n-1-r}]), [\psi_r(\omega_r)] \rangle = \langle \widetilde{\sigma}_r, \psi_r(\omega_r) \rangle$$
.

REMARK 5.1: It is easy to see that

$$I(\overline{\sigma}_s, \sigma_{n-1-s}) = (-1)^{i(n-1-s)}I(\sigma_{n-1-s}, \overline{\sigma}_s),$$

Theorem 5.1 suggests a way to define $\int_{0}^{\omega} \omega_{i}$ for any closed form $\omega_{i} \in W_{i}^{1,p}(\partial \Omega)$. A preliminary Lemma will thus be proved

Lemma 5.1: Let ω , a closed form in $W_i^{1,p}(\partial \Omega)$. If ω_{n-1-i}^1 and ω_{n-1-i}^2 are cohomologous regular closed forms in $\partial \Omega$, then

$$\int_{\partial \Omega} \omega_i \wedge \omega_{n-1-i}^1 = \int_{\partial \Omega} \omega_i \wedge \omega_{n-1-i}^2.$$

PROOF: It is enough to observe that from Theorem 4.4, if $\omega_{n-1-s}^1-\omega_{n-1-s}^2=d\omega_{n-2-s}$, then

$$\int_{\partial D} \omega_{i} \wedge (\omega_{\pi-1-i}^{1} - \omega_{\pi-1-1}^{2}) = (-1)^{i} \int_{\partial D} d(\omega_{i} \wedge \omega_{\pi-2-i}). \quad \blacksquare$$

It is now justified the following

Definition 5.3: If ω , is a closed form in $W_i^{1,p}(\partial\Omega)$ and if σ , is a C^1 -differentiable cycle in $\partial\Omega$, then we assume

$$\int \omega_i = \int \omega_i \wedge \overline{\omega}_{n-1-i}$$

where $\overline{\omega}_{n-1-s}$ is a form associated with σ_i ,

Remark 5.2: Since forms associated with homologous cycles are cohomologous, it is easy to see that, for any closed form $\omega_i \in W_i^{1,p}(\partial \Omega)$,

$$\int_{\sigma_i} \omega_i = \int_{\sigma_i} \omega_i$$

if σ_z , σ'_z are homologous C^1 -differentiable cycles in $\partial \Omega$.

Let R_i , R_i and R_i denote the s-th Betti number of $\partial \Omega$, $\overline{\Omega}$ and $\overline{R}^a \setminus \Omega$ respectively. Since $\overline{\Psi}_i$ is a isomorphism of $\partial C^i(\partial \Omega)$ in $\partial C_{n-1-i}(\partial \Omega)$, then

$$R_{-} = R_{--1--}$$

Let $0 \le j \le n-1$. From Alexander duality (see,[2]; Chap. VIII, 8,15) it follows that there is a isomorphism of $\mathcal{H}^*(\overline{\Omega})$ onto $\mathcal{H}_{n-1-j}(\overline{R}^n \setminus \overline{\Omega})$. In virtue of Theorem 20 in [11] (see,[11]; Chap. VI, Theorem 20), if j is the convenient inclusion map,

$$j_{+}: \mathcal{K}_{r}(\Omega) \rightarrow \mathcal{K}_{r}(\overline{\Omega})$$

and

$$(5.5) j_*: \mathfrak{R}_r(\overline{R}^n \setminus \overline{\Omega}) \rightarrow \mathfrak{R}_r(\overline{R}^n \setminus \Omega)$$

are isomorphisms. Hence

$$R_a^- = R_{a-1-1}^+$$

Since (see[2]: Chap. VIII, 6.28; Chap. III, 8.6)

(5.6) (j_{2s}, −j_{2s}): ℋ_i(∂Ω) → ℋ_i(\(\overline{Ω}\)) ⊕ ℋ_i(\(\overline{R}^s\\Q\))
(where j_i is the canonical injection) is an isomorphism, then we obtain that

$$R_{*} = R_{*}^{-} + R_{*}^{+}$$

and there exists a base $([\tau_i^I], [\gamma_i^I])_{1 \le I \le R^-}$ of $\mathcal{K}_i(\partial \Omega)$ such that

(7)
$$\tau_i^l \sim 0$$
 in $\overline{R}^* \setminus \Omega$ and $\gamma_i^l \sim 0$ in $\overline{\Omega}$.

From (5.4) and (5.5), there are $([t_i^i])_{1 \in i \in \mathbb{R}_i^-}$ and $([c_i^i])_{1 \in i \in \mathbb{R}_i^+}$ bases of $\mathcal{H}_i(\Omega)$ and $\mathcal{H}_i[\overline{R}^s \setminus \overline{\Omega})$ respectively such that t_i^i and c_i^i are C^s -differentiable cycles and

$$(5.8) t_i' \sim \tau_i' in \ \overline{\Omega} and c_i' \sim \gamma_i' in \ \overline{R}^a \backslash \Omega.$$

Definition 5.4: Let $([\tau_1^i], [\gamma_1^i])_{1 \le i \le R_i^i}$ be a base of $\mathcal{H}_i(\partial \Omega)$. We say that $i \le i \le R_i^i$ $(\tau_1^i, \gamma_1^i)_{1 \le i \le R_i^i}$ is a fundamental system of $\partial \Omega$ if the conditions (5.7) are satisfied. $i \le i \le R_i^i$

DEFINITION 5.5: Let $\{(x_i^i)_i, (y_i^i)\}_{1 \le i \le R_i^*}$ be a base of $\Im C_a(\partial \Omega)$ and let $\{(x_i^i)_i, (y_i^i)\}_{1 \le i \le R_i^*}$ be the dual base of $\Im C^*(\partial \Omega)$. If

$$[\overline{\gamma}_{i-1-\epsilon}^i] = \overline{\Psi}_{\epsilon}([\tau_i^i])$$
 and $[\overline{\tau}_{i-1-\epsilon}^i] = \overline{\Psi}_{\epsilon}([\gamma])$,

then

$$([\widetilde{\tau}_{s-1-t}^j], [\widetilde{\gamma}_{s-1-t}^i])_{t \le t \le \beta_{s-t-t}^*}$$

 $1 \le t \le \beta_{s-t-t}^*$

is called the dual base of $([\tau_i^t], [\gamma_i^t])_{1 \le t \le R_{n-1-1}^{-1}}$.

We have the following

Theorem 5.2: Let $\{(\Gamma_i^t), \{\gamma_i^t\}\}_{i=1}^t$ be a base of $N_i(\partial\Omega)$ and let $\{(\Gamma_{i-1-1}^t), (\Gamma_{i-1}^t), (\Gamma_{i-1}^t), (\Gamma_{i-1}^t)\}_{i=1}^t$ be the dual base. If $\{(\tau_i^t, \gamma_i^t)\}_{i=1}^t$ is a fundamental $\{(\Gamma_{i-1-1}^t), (\Gamma_{i-1-1}^t), (\Gamma_{i-1-1}^t)\}_{i=1}^t$ by $\{(\Gamma_{i-1}^t), (\Gamma_{i-1-1}^t), (\Gamma_{i-1-1}^t)\}_{i=1}^t$ is a fundamental system to.

PROOF: Since $\overline{\Omega} \in \mathbb{R}^n$ is a C^1 -manifold with boundary, it follows from VIII, 9.1 in [2] that the following diagram is commutative

$$\mathcal{K}^{i}(\overline{\Omega}) \xrightarrow{\beta} \mathcal{K}^{i}(\partial\Omega)$$

$$\downarrow_{i=1/100} \qquad \qquad \downarrow_{i}_{0}_{00}$$
 $\mathcal{K}_{n-1}(\overline{\Omega},\partial\Omega) \xrightarrow{\delta_{i}} \mathcal{K}_{n-1-1}(\partial\Omega).$

All vertical acrows are isomorphic, $j_1:\partial\Omega\to\overline\Omega$ is the inclusion map, δ_{+*} is the connecting homomorphism of $(\overline\Omega,\partial\Omega)$ and $\delta_{+*}(O_1)=\partial\Omega$, where $O_1\in\mathcal{K}_*(\overline\Omega,\partial\Omega)$. Since the inclusion map $j_1:(\overline\Omega,\partial\Omega)\to(\mathbb{R}^*,\overline{R}^*\setminus\Omega)$ is a map of pairs, (see [2]: Chan. III. 3) it follows that the following diagram is commutative

$$\mathcal{K}_{s-1}(\overline{\Omega}, \partial \Omega) \xrightarrow{\phi_0} \mathcal{K}_{s-1-i}(\partial \Omega)$$

$$\downarrow_{j_0} \qquad \downarrow_{j_0}$$

$$\mathcal{K}_{s-1-1}(\overline{R}^s, R^s \backslash \Omega) \xrightarrow{\overline{\delta}_{j_0}} \mathcal{K}_{s-1-i}(\overline{R}^s \backslash \Omega).$$

where $j_1:\partial\Omega\to\overline{R}^*\setminus\Omega$ is the inclusion map and $\overline{\delta}_{1x}$ is the connecting homorphism of $(\overline{R}^*,\overline{R}^*\setminus\Omega)$. As a consequence of [V,Z] in [Z], $\overline{\delta}_{1,1}$ is an isomorphism. We remark that $\overline{K}^*,\overline{R}^*\setminus\Omega$ and $\overline{\Omega}$ are ENRs and $\partial\Omega$ separates $\overline{R}^*\setminus\Omega$ and $\overline{\Omega}$. This implies that $(\overline{R}^*,\overline{R}^*\setminus\Omega,\overline{\Omega})$ is an excisive triad (see [2]: Chap. VIII, 6.28). From III, 8.1 in [2], it

follows that \tilde{j}_{1*} is an isomorphism. Consequently the following diagram is commutative

$$\mathfrak{H}^{s}(\overline{\Omega}) \xrightarrow{R} \mathfrak{H}^{s}(\partial \Omega)$$
 $\downarrow h$
 $\downarrow h$
 $\mathfrak{H}^{s}(\partial \Omega) \xrightarrow{f_{2s}} \mathfrak{H}^{s}(\partial \Omega)$
 $\mathfrak{H}^{s}(\partial \Omega) \xrightarrow{f_{2s}} \mathfrak{H}^{s}(\partial \Omega)$

where $f_1 = \overline{\delta}_{1+} \circ \widetilde{f}_{1+} \circ (-1)^t \cap O_1$; f_1 is an isomorphism.

Applying similar arguments for $\overline{R}^* \setminus \Omega$, we obtain that the following diagram is commutative

$$\mathcal{H}'(\overline{R}^* \backslash \Omega) \xrightarrow{f_1} \mathcal{H}'(\partial \Omega)$$

$$\downarrow_{f_2} \qquad \downarrow_{\cap \partial \Omega}$$

$$\mathcal{H}_{s-1}(\overline{\Omega}) \xleftarrow{f_{1s}} \mathcal{H}_{s-1-1}(\partial \Omega)$$

where $f_2 = \overline{\delta}_{2\pi} \circ \overline{f}_{2\pi} \circ (-1)^n \cap O_2$, $\overline{\delta}_{2\pi}$ is the connecting homorphism of $(\overline{R}^*, \overline{D})$, $\overline{f}_{2\pi}(\overline{R}^*\setminus \Omega, \overline{\partial}\mathcal{Q}) \to (\overline{R}^*, \overline{D})$, is inclusion map and $O_2 \in \mathcal{H}_{\pi}(\overline{R}^*\setminus \Omega, \overline{\partial}\mathcal{Q})$; f_2 is an isomorphism

Hence, in virtue of (5.6), the following diagram is commutative

$$3\mathcal{C}^{i}(\overline{\Omega} \oplus \mathfrak{S}^{c}(\overline{\mathbb{R}}^{n} \setminus \Omega)) \xrightarrow{(\mathcal{I}_{n} - \mathcal{H})} 3\mathcal{C}^{i}(\partial \Omega)$$

 $\downarrow f_{i} \oplus f_{i} \qquad \downarrow_{f_{i} \otimes f_{i}} \qquad \downarrow_{f_{i} \otimes f_{i}} 100$
 $\mathcal{H}_{n-1}(\overline{\mathbb{R}}^{n} \setminus \Omega) \oplus H_{n-1-1}(\overline{\Omega}) \xrightarrow{(\mathcal{I}_{n} - f_{i})} 3\mathcal{C}_{n-1-1}(\partial \Omega)$

All vertical and horizontal maps are isomorphism.

Finally, we suppose that $(\tau_i^i, \gamma_j^i)_{1 \le i \le R_i}$ is a fundamental system of $\partial \Omega$. Then $(j_{1:k}([\tau_i^i]))_{1 \le i \le R_i}$ and $(j_{2:k}([\tau_i^i]))_{1 \le i \le R_i}$ are bases in $\partial C_i(\overline{\Omega})$ and in $\partial C_i(\overline{R}^n \setminus \Omega)$

respectively. Let $\{[\tau_i'], [\gamma_i']\}_{1 \leq i \leq R_i'}$ be the dual base of $([\tau_s^i], [\gamma_i^i])^{1 \leq i \leq R_i'}$ in $\mathcal{H}'(\partial\Omega)$,

 $([\tau_i^{p_i}])_{i \in I \in \mathbb{R}_i^+}$ the dual base of $(j_{\tau_i}([\tau_i^t]))_{i \in I \in \mathbb{R}_i^+}$ in $\mathcal{X}^{\epsilon}(\overline{\Omega})$ and $([\gamma_i^{p_i}])_{i \in I \in \mathbb{R}_i^+}$ the dual base of $(j_{\tau_i}([\gamma_i^t]))_{i \in I \in \mathbb{R}_i^+}$ in $\mathcal{X}^{\epsilon}(\mathbb{R}^n \setminus \Omega)$. Since $j_{\tau_i}([\tau_i^t]) = 0$ and $j_{\tau_i}([\gamma_i^t]) = 0$, we obtain that

$$j_{1}^{+}([x_{1}^{+}]) = [x_{1}^{+}], \quad j_{2}^{+}([y_{1}^{+}]) = [y_{1}^{+}].$$

Then (see Definition 5.5)

$$[\overline{\gamma}_{s-1-i}^{i}] = \overline{\Psi} \circ (j_{1}^{*}, -j_{2}^{*})([\tau_{i}^{*i}], [0])$$

and, using the commutative diagram (5.9), we obtain

$$(j_{2n}, -j_{1n})([\nabla_{n-1-r}^{r}]) = f_1 \oplus f_2([\tau_r^{sc}], [0]) = (f_1([\tau_r^{sc}]), [0]).$$

Hence $\overline{\gamma}_{s-1-t}' \sim 0$ in $\overline{\Omega}$. Similarly we prove that $\overline{\tau}_{s-1-t}' \sim 0$ in $\overline{R}^s \setminus \Omega$.

It is now justified the following

Definition 5.6: If $(x_i^i, y_i^i)^{1 \le i \le R_i^i}$ is a fundamental system of cycles of $\partial \Omega_i$ then

$$(\overline{\tau}_{\pi-1-s}^{l}, \overline{\gamma}_{\pi-1-s}^{i})_{1 \in l \in R_{n-1-s}^{-1}}$$

is called a dual fundamental system of $(\tau_i^i, \gamma_i^i)_{1 \le i \le R_i}$

Theorem 5.3: Let ω_i be a closed form of $C_i^{\dagger}(\Omega)$. If ω_i has the interior nontangential trace in $L^2(\partial\Omega)$, then

$$\int \omega_{\tau} = 0$$

for all C^1 – differentiable cycle γ , $c \partial \Omega$ such that γ , ~ 0 in $\overline{\Omega}$

PROOF: Let \overline{w}_{x-1-j} be an associated form with γ_r . As a consequence of Theorem 2.3 we have

$$\int \omega_s^- = \int \omega_s^- \wedge \overline{\omega}_{s-1-s} = \lim_k \int A_k^+ \omega_{sk} \wedge \overline{\omega}_{s-1-s}.$$

It seen that $\omega_{,0}$ is a closed form in $\partial \Omega_{,0}$ because $\omega_{,i}$ is a closed form in Ω . Hence $A_{,i}^{\alpha} \omega_{,0}$ is a closed form in $\partial \Omega_{,i}$ since $A_{,i}$ is a diffeomorphism of $\partial \Omega$ onto $\partial \Omega_{,i}$. Then

$$\int \omega_r^- = \lim_b \int A_k^* \omega_{ab} = \lim_b \int \omega_{ab}$$

where $\gamma_{ik} = A_k(\gamma_i)$. Using the Mayer-Vietoris sequence, we see that $\gamma_i = 0$ in $\overline{\Omega} \setminus \Omega_k$, since $\gamma_i = 0$ in $\overline{\Omega}$ and Ω_k is an open set such that $\overline{\Omega}_k \in \Omega$.

Further there exists a diffeomorphism $F_k\colon G'\to G_k$, where G' and G_k are collars of $\partial\Omega$ and $\partial\Omega_k$ respectively, such that $F_k(G'\cap\overline{\Omega})\subset G_k\cap\overline{\Omega}_k$ and $F_k=A_k$ on $\partial\Omega$. Hence $y_{,k}\sim 0$ in $\overline{\Omega}_k\cap G_k$. Thus, there is a cycle $\sigma_{x+1}^x\subset \overline{\Omega}_k$ such that $\partial\sigma_{x+1}^x=y_{,k}$ and this implies

$$\int_{T^{\mu}} \omega_{sb} = \int_{S^{\mu}_{s+1}} \omega_{s} = \int_{S^{\mu}_{s+1}} d\omega_{s} = 0$$

because ω_i is closed in Ω .

Theorem VII of [5] is now extended to forms of class $W_i^{1,p}(\partial\Omega)$.

Theorem 5.4: Let $(T_{n-1-j}^i, \widetilde{\gamma}_{n-1-j}^i)_1 \leqslant i \leqslant K_{i-1}^i$, be a dual fundamental system of a fundamental system $(\tau_i^i, \gamma_j^i)_1 \leqslant i \leqslant K_i^i = 0$ for Let $o_i \in W_i^{1,p}(\partial \Omega)$ and $\Phi_{n-1-j} \in \widetilde{C}_{n-1-j}^i(\partial \Omega)$ If o_i and $\Phi_{n-1-j} \in \widetilde{C}_{n-1-j}^i(\partial \Omega)$ If o_i and o_i and o_i are closed forms, then

$$\int\limits_{\partial D} \omega_{z} \wedge \Phi_{n-1-z} = (-1)^{(n-1-z)} \Biggl(\sum_{i=1}^{k-1} \int\limits_{t_{i}^{2}} \omega_{i} \int\limits_{\mathbb{P}_{n-1-z}^{2}} \Phi_{n-1-z}^{k-1} + \sum_{i=1}^{k-1} \int\limits_{\mathcal{V}_{i}} \omega_{i} \int\limits_{\mathbb{T}_{n-1-z}^{2}} \Phi_{n-1-z} \Biggr).$$

PROOF: Let $\overline{w}'_{n-1-\epsilon}$ and $\overline{w}^i_{n-1-\epsilon}$ be forms associated with τ'_i and γ^i_i respectively. Then

$$([\overline{\omega}_{n-1-t}^i], [\overline{\omega}_{n-1-t}^i])_1 \in i \in \mathbb{R}_{r-1-t}^*$$

is a base of $H^{*-1-r}(\partial \Omega)$. Hence

$$[\phi_{s-1-i}] = \sum_{i=1}^{R_s^-} c_i [\overline{\omega}_{s-1-i}^i] + \sum_{l=1}^{R_s^+} b_l [\overline{\omega}_{s-1-i}^l].$$

Thus

$$\int\limits_{\partial \mathcal{Q}} \omega_{i} \wedge \Phi_{n-1-i} = \sum_{i=1}^{K} c_{i} \int\limits_{\partial \mathcal{Q}} \omega_{i} \wedge \widetilde{\omega}_{n-1-i}^{i} + \sum_{j=1}^{K} b_{j} \int\limits_{\partial \mathcal{Q}} \omega_{j} \wedge \widetilde{\omega}_{n-1-i}^{j} = \\ = \sum_{i=1}^{K} c_{i} \int\limits_{\partial \mathcal{Q}} \omega_{i} + \sum_{j=1}^{K} b_{j} \int\limits_{\partial \mathcal{Q}} \omega_{j} \wedge \widetilde{\omega}_{n-1-i}^{j} = \\ \sum_{i=1}^{K} c_{i} \int\limits_{\partial \mathcal{Q}} \omega_{i} + \sum_{j=1}^{K} b_{j} \int\limits_{\partial \mathcal{Q}} \omega_{j} \wedge \widetilde{\omega}_{n-1-i}^{j} = \\ \sum_{i=1}^{K} c_{i} \int\limits_{\partial \mathcal{Q}} \omega_{i} \wedge \widetilde{\omega}_{n-1-i}^{j} = \sum_{i=1}^{K} b_{i} \int\limits_{\partial \mathcal{Q}} \omega_{i} \wedge \widetilde{\omega}_{n-1-i}^{j} = \\ \sum_{i=1}^{K} c_{i} \int\limits_{\partial \mathcal{Q}} \omega_{i} \wedge \widetilde{\omega}_{n-1-i}^{j} = \sum_{i=1}^{K} b_{i} \int\limits_{\partial \mathcal{Q}} \omega_{i} \wedge \widetilde{\omega}_{n-1-i}^{j} = \\ \sum_{i=1}^{K} c_{i} \int\limits_{\partial \mathcal{Q}} \omega_{i} \wedge \widetilde{\omega}_{n-1-i}^{j} = \sum_{i=1}^{K} b_{i} \int\limits_{\partial \mathcal{Q}} \omega_{i} \wedge \widetilde{\omega}_{n-1-i}^{j} = \\ \sum_{i=1}^{K} c_{i} \int\limits_{\partial \mathcal{Q}} \omega_{i} \wedge \widetilde{\omega}_{n-1-i}^{j} = \sum_{i=1}^{K} b_{i} \int\limits_{\partial \mathcal{Q}} \omega_{i} \wedge \widetilde{\omega}_{n-1-i}^{j} = \\ \sum_{i=1}^{K} c_{i} \int\limits_{\partial \mathcal{Q}} \omega_{i} \wedge \widetilde{\omega}_{n-1-i}^{j} = \sum_{i=1}^{K} b_{i} \int\limits_{\partial \mathcal{Q}} \omega_{i} \wedge \widetilde{\omega}_{n-1-i}^{j} = \\ \sum_{i=1}^{K} c_{i} \int\limits_{\partial \mathcal{Q}} \omega_{i} \wedge \widetilde{\omega}_{n-1-i}^{j} = \sum_{i=1}^{K} b_{i} \int\limits_{\partial \mathcal{Q}} \omega_{i} \wedge \widetilde{\omega}_{n-1-i}^{j} = \\ \sum_{i=1}^{K} c_{i} \int\limits_{\partial \mathcal{Q}} \omega_{i} \wedge \widetilde{\omega}_{n-1-i}^{j} = \sum_{i=1}^{K} b_{i} \int\limits_{\partial \mathcal{Q}} \omega_{i} \wedge \widetilde{\omega}_{n-1-i}^{j} = \\ \sum_{i=1}^{K} c_{i} \int\limits_{\partial \mathcal{Q}} \omega_{i} \wedge \widetilde{\omega}_{n-1-i}^{j} = \sum_{i=1}^{K} b_{i} \int\limits_{\partial \mathcal{Q}} \omega_{$$

Similar

$$\begin{split} & \int\limits_{\mathbb{R}^{n}+1-\epsilon} \Phi_{n-1-\epsilon} = \sum_{i=1}^{K} c_{i} \int\limits_{\mathbb{R}^{n}+1-\epsilon} \bigcup_{i=1}^{K} \int\limits_{\mathbb{R}^{n}} b_{i} \int\limits_{\mathbb{R}^{n}+1-\epsilon} \widetilde{w}_{i}^{i} = \int\limits_{\mathbb{R}^{n}} c_{i} (\widetilde{\varphi}_{n-1-\epsilon}^{i}, \tau_{i}^{i}) + \sum_{j=1}^{K} b_{j} (\widetilde{\varphi}_{n-1-\epsilon}^{i}, \tau_{j}^{i}) + \sum_{j=1}^{K} b_{j} (\widetilde{\varphi}_{n-1-\epsilon}^{i}, \tau_{j}^{i}) \end{split}$$

Further

$$I(\widetilde{\gamma}_{n-1-s}^i, \tau_s^i) = (-1)^{6n-1-s}I(\tau_s^i, \widetilde{\gamma}_{n-1-s}^i) = (-1)^{(n-1-s)}(\tau_s^i, \psi_s(\widetilde{w}_s^i))$$

where \widetilde{w}_s^i is a regular form associated with $\widetilde{\gamma}_{n-1-s}^i$. Since

$$[\overline{\gamma}_{n-1-i}^j] = \Theta_i([\overline{u}_i^j]) = \overline{\Psi}_i([\psi_i(\overline{u}_i^j)])$$

and

$$[\overline{\gamma}_{n-1-}'] = \overline{\Psi}_i([\tau_i']),$$

it easy be seen that $\Psi_{r}([\overline{u}']) = [\tau]$, where $([\tau]), [\gamma])_{1 \le r \le R^{-}}$ is the dual base of $([\tau'_i],[\gamma'_i])_{1 \le i \le R^-}$ in $\mathcal{K}^i(\partial\Omega)$. Thus 15/58*

$$I(\overline{\gamma}_{x-1-s}^{j},\tau_{x}^{i})=(-1)^{(n-1-s)}\langle \tau_{s}^{i},\tau_{s}^{i}\rangle=(-1)^{(n-1-s)}\delta_{j}^{i}.$$

Similarly we obtain $I(\vec{y}_{n-1-1}^{j}, y_{n}^{j}) = 0$, hence

$$\int \Phi_{x-1-z} = (-1)^{(x-1-z)} c_j.$$

 $\int\limits_{\mathbb{R}^{n}-1-\varepsilon}\Phi_{\kappa-1-\varepsilon}=(-1)^{(\kappa-1-\varepsilon)}c_{\varepsilon}.$ In the same manner we prove that $\int\limits_{\mathbb{R}^{n}-1-\varepsilon}\Phi_{\kappa-1-\varepsilon}=(-1)^{(\kappa-1-\varepsilon)}b_{\varepsilon}.$ This concludes the proof. \blacksquare

REFERENCES

- [1] W. M. Boottesv, An Introduction to Differentiable Manifolds and Riemannian Geometry. Academic Press, New York, San Francisco, London (1975).
- [2] A. Dold, Lectures on Algebraic Topology, Springer-Verlag, Berlin, Heidelberg, New York (1972).
- [3] P. Gillin, Sur les formes différentielles et la formule de Stoker, Mêm, Acad. R. Beleique, Coll. in 8", t. 20, f. 3 (1943).
- [4] W. V. D. Honge, A Dirichlet problem for harmonic functionals with applications to analytic va-
- rieties, Proc. London Math. Soc., Ser. 2, 36 (1934) 257-304 [5] C. Miranda, Sall'integrazione delle forme differenziali esterne, Ricerche di Matematica, 2
- (1953) 151-182 [6] I. R. MUNKRES, Elementary Defferential Topology, Princeton University Press (1966).
- [7] J. NECAS, Les méthodes directes en théorie des équations elliptiques, Masson et C., Ed., Paris-VI (1967).
- [8] R. Servagge I. Sisto, Problemi al contorno per sistemi ellittici simmetrici del primo ordine a coefficenti costanti in aperti di claur C1. Note di Matematica. Vol. I (1981) 155-185. [9] R. SELVAGGE - I. SESTO, A Dirichlet problem for harmonic forms in C¹-domains, to appear.
- [10] R. Servagge I. Serto, A Neumann problem for harmonic forms in C¹-domains, to appear. [11] E. H. SHANIER, Algebraic Topology, McGraw-Hill Book Company, New York, San Francisco,
- etc. (1966). [12] N. TELEMAN, Combinatorial Hodge theory and signature operator, Inventiones Math. (1980), 227-249
- [13] G. Vericuota, Layer potentials and regularity for the Dirichlet problem for Laplace's equation in Lipschitz domains, J. Func. Anal., 59 (1984), 572-611.
- [14] H. WHITNEY, Geometric Integration Theory, Princeton University Press, Princeton, New Jersey (1957).