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FLAVIA LANZARA(")

- Optimal .” Estimate for Harmonic Functions (**)

r. — A method to computc the best constant for a L? extimate for harmenic func

Maggiorazione L ottimale per funzioni srmoniche

S, — do per il caleolo i ki n |
WL’WWM

0is a bounded domain of R with a smooth boundary 9, for every function
in 0 and continuous in 8, the following L7 estimate holds:

J.’A :e,,Jn’d'q. | i

€o 8 8 constant enly depending on 2.

c (1) They have un increasing degree of

i) To prove that some co exists such that, for every u, estimate (1) holds.
ii) To explicitly compute some ¢ such that, for every &, estimate (1) bolds.

i) To compute the minimum constant cg such that, for every w, estimate (1) /5
holds.

Salving problem i) implies an cxplict comrction (1) of twe sequences {cf } and '

() Indlizzo dellAutors: Dipartimctio di Matemarics, Universich degh Stodi di Roma «La
Sapienzas, Piaszale A Mora 5, 0015 Roma.

(**) Memoria, preseniata i 16, maggso 19% da Gaetano Fichers, uno dei XL

{1} To consmct explicity a certain constant ¢ means repeesenting ¢ by a formula such that
from this, the numerical valus: of ¢ can be computed.



{ef'} such that
o Eep€d,  lmef = lme=ca.
hmm‘{o)ﬂf:(]h:mﬂmhmmﬂﬂnduh

Pmbhmﬂm-b-oluedby simple arguments of Functions] Analysis. Sev.
eral Authors have considered problem i) (see [31, [4]. (31, (1], (21, [12), [14, pp. 19-
311) presenting various solutions.

The aim of the present paper s to propose a solution for problem i)

< Posmon OF THE PROBLIM

Let 2 be a bounded domain (ir. an open set) of the real cartesian space R” such
that R” ~ 71 i connected and its boundary 5 = 30 is s Lyspounay hypersurface, i
X has o uniformly Halder continucus field v, of some exponent @, 0<a € 1; v, =
—lv.w.-,m..,,, (%7} is the imward unit nommal on 5.

We denote by L (@)L (£1] the space of all measurable real functions a such that
iy integruble over D[], Let (u, ) [, 1] and Julg [laf]) be the scalar product
and the norm, respectively, in L2 (@)L ()L

Let s(x, &) be the fundamental solution for the Laplace equation:

=1

S Jolx = &l m=2
il = 1 2=

Fa=cs L i

where @, represents the hypersurace arca w,, = 22"/ / Iim / 2) of the unit sphere
of R™.
Define the space U formed of all functions w of the form

nn alx) Jd{lf!bﬂi)dﬂ.. e,

where g L7(X).
We consider the following estimate.

(120 j.*as:,i-‘ia. Veall.

ﬂgca‘k-hlu{r-imkt}mrg-ﬂfn We shall give , in 4 more gencral
bounded domain £, a method to compute the optimal constant ey in (12).




(g 2Ax =gy,
Kz, §) z&‘ﬂz.é) s EI'ﬂ'

Kix, g)=ollx=E|'"""*"), xfeZ.
the aperators

(Egha) = [Kix, E1g(Ehdoy
E

(Ko = [ Kig.x1 &) doy
i

operators K and K* are lincar and compaer operators of the space L¥() into
1Z) (see [16, p. 32911
Hva U, s i sher cuiss () swch ot 1= (1/2)Kg i, e wel
own. thar  is solution of the following integeal cquation on

¢+ Kp=2u.

ve that if u e 11, from (14) and (1.2), it follows that we L*(2).
ider the eigenvalue problems

Ke=&z=0, zel*(E)
Kec—h=0, zal*X).

o bigaer kit E: ‘......n
_5)wi|h(h=a-memm:dcmdnplm; Mmmni-lkndpumh::llui
is not e for (1.5) (see (9, pp. 510-
'su! 110, pp. 309311, [11, ppyszmlwselhwsdm For any &8 L?(Z), there
exists one and anly one solution € L*(Z) of equation (1.4). Denote by

17 =25
this solution. 5= ([ +K)™" is n linear and continuous operator of L(E) into
self.




Serting
08 Tix, &) = J Kt x)Kln, E)dn,
we comsider the operator
s (mm-J Tix, ) g(Elda;, geli(E).

T is & lincar, scll-adioint and posisive operator of the space L¥(Z). Since, i
x ek,

M,,,{«H\hslx—sill m=2,

olfx - £ 2,

et 806]) the operator T is a PCO (Pasitive Compact Opersior) of the space
1F wel, from (11, (18), (19) and (L7} we obtaine

W10 (wwlp= im@. Kela= lu‘q-.v:x (15w, Su) = (5° TS, u),

e 5 e e o ot of 5. Honce nuly (1 21 sivlen 10 she

(5 TS, a) S eplaul,  weli(2).
Consider the elgenvalue problem:
121 S*TSu=pu,. well(Z}

Since §* TS is a PCO) of the space L7 (), (1.12) has  decreasing sequence of positive
eigenvalues tending o zero. 1, is the greatest cigenvalue, from (1.1} we have:
o=y
: the optimal. coin (1.2) ik e fgenvalic of the PCO of the

space L¥(Z): $° TS,

Lover bounds of cg can be casly obtined wmumwm
method (see 6, pp- 112-113), 18, pp. nun To this end consider a
of homogencous {@u(0))sa . For a fixed (21, o
(8% TSuy. ) = (s, wy)p, the relovant detcrminant equation is
(113 det{lwy, wudo = plws, @alliims, = 0.

Denote by «f s greatest root. Then: & cf, % cg and lim of = cg.
Of course, we are iserested in upper bounds for cg asbitrarily lose o e, Tn onder
1o obtin that we shall consruct the operator S.




cxists an index = (e) such that
Ik -K)<ets,

|
Kr. \
denotes the inverse matrix of the non singular  marrix |
, we have ‘
@3 Po= Eipmin,
[
@4 a= 5 pum, Betn

Setting wy = P,K*ay, b= 1,...,, from (22) and (23} it follows that
@31 K= 3 @t
Equation (1.4) can be rewritten in equivalent way
26) P+ K-Klp=s-K¢
where » = 2u. Then, if e consider v ~ K,  us the koown term in (2:6), equation (2:6)

—1F (K- KF e - Ke).

() K3 denotes the nom of K: L*(E) == L)




From (2. 1} it follows thar
El-nx-rrizSe-

Therefoe the seres. 5(~17(K - K.Y unifornly comverges to the operaior
@n M= - K=Ky = U4 K=K

M9 i o lines and consinusos pesator of the space L?(} sach that
@8 Imis L <2
Hence cquation (26} can be transformed into the equation: ¢ = Me — MK, . Tn-
sening (2.5) we
29 wuuufélrv. PRITCR
which is cquivalent 10 12.6) i the scnse that ¢ i soluon of (2:6) i and only f g is sol.
ution of (29).
Scalar maliplcation of (29) by wy in LX) gves che symem of slgebesk
equations.
@10 Bl (M= ), k=1, ),
n which
2. b=lpw), b=1..n
Consider the matrix Q = {gu ;.. .« whose elements are
(212) g ut M), hok=1,on
Seting
(@13) yom (Mo, b=1
the systera (2.10), by means of the substitution (2.12), becomes
214 i R S T

mfp-mmd:zs).n-me {8182, . £} whose compo-
nents are defined in (2.11), is solution of (2

() Since ¢ is & fixed consiant we don't explicitly write M = M(z).
) By is the Kronecker deba.




——
cly, lev & be solution of (2.14). Se¢
w=to= 5t
muhiplication of (2.15) by w; in L7(Z) gives

T, wa) +‘§_£.(Mi|.m! =¥,

k=t n

(2.16) from {2.10), by using (2.13), we obtain (2.11). Substituting (2.11) in
15) we deduce that @ s selution of (2.9), that is (26).
Thus we have proved that, if £ is solution of system (214), then @, defined in

.n\.)ﬂelwrb wd:pendwl fune-

. Saz= IEM-« Sm(n,.u,,.
tioms, {if;, '}M(Mu. Mis, .., Mii,} are lincarly independent 100, Then
= 0. Morcomer £ -ﬁmg(nj)bynmx-—lm-wm
= =1 it not an eigomvaluc for problem (1.5).

Denote by @' = {ug} -1, the inverse marrix of O

@ B bas b= ln \
‘Hence, in view of (2.14) and (2.17), we obtain: )

|
(2.18) E.-.%mrk-. b=1,m.

Inserting (2.18) into (2,15), using (2.13), we have that @ i solution of equation
(26), Le. (L4), if amd andy if

s
=S = Ma = B s (M, w00 Ml

wbere v =20 |
Thus we have constructed the operator §. !

3, - APROXIMATION OF TIEK OFERATON §
Setiing, for £2 1
: =
(E3H] M= Z-1HK =KX R;x';“(-lrutfx.r‘
from (27) the operator M = My + K. Morcoscr, from the inequality (2.1), since



0<e1/2, we deduce that

o2 IMi=2;

33) IRE=2e st .

Then the elements {gu} of the matrix @ can be written in the form:

u=oll+al, bk=1...n

where
olf' = b+ KPM ), B k=1, m,
ol = (KPR, m),  bk=1 .0

For any ke =1, we have: | % | = VA, Then, from (3.2), we deduce the fol-
Towing estimste for the elements of the # X 4 matrix &= [l }y1ny .:

34 Il | = 20KR b 1VBRe! " Bok=1,.0m

Then, i we denote by s 8 = 3, f the trace of the matrix # = {#iuhy 4. ., from
(3.4) we obtain the following estimate for the Frobenius norm | &)y of &

o0 ol (Sre)” <o $ ) vamen.

Consider the w % n matrie Q*Q. T has A, 2 4,2 ... 2 2, positive cigenvalues,
&mhmhmlgﬂ’}u.. »- We have Q= Q+ &, Let Al 2402
241 be the cigenvalues of O (. Since
36 138~ 41 = 108 0~ QI = | &l L2121 + R,
we have that
Jlim A=,
Assume [, 2 | such that, for /3y, we have:
0n > da.
Set
re= (KP.My )=yl v, bh=1,..,n

() Notice dhat, for o % n mateix A, we have |A] % A],, where




S
yF-(x.-u.- ) and o = (KP, Row,u). 1 0 -mx o) r=

4 7'} wnd v-{h. #al, we have y =y "+ 0¥
X Fm(n.‘rmd(ulnﬁ:ﬂwnhu

1o = [ o7 <2 £ ] “otets s
1991 =y £ o7 e 2k |

solution of the system (2.14), that is Q& = y. Anal- ‘
system. ‘

I

|

) the
B} (13 4y) be the solution of the
Qi =y,
e s the scalar product fn R We have
e jo-= __M(QM'_'*)'" oy E_E!) =G,

x w0\ 0

 Anslogously, assuming | by, if Q" s the Iwverse matrix of Q, from (37),
Jort| = ()12 < VB

Let us write
33 =24 (- EM =gt A 4 ),

where A{! = 01y — y) and AP = n Q- f.m" L5
Hnl}.lnan;'if.!)nm following estimate for the a-vector

a0 1491 = 100%) 510 a & 2L (S o) "o
and for A9 = {AY,, .., AL}, from (3.11), (3.12), (35) and (35),
615 AP =@ ' RQ " = Q7 IR0 1Y) <
< DERPL( 5 1) eme,

Set MO ={Ma,..M&} M= {Mi, ..Mz} =d RO=
= [Ryiiy, oo, Ry, . Lnserting (3.13) in (2.15), since M = M, + R;, we obuin

@ =50 = Mo + R = 87 MU — 80RO = AP MT A MU,



Setting
S =M~ £0:M,0

and

3171 pr&,-—;"’-n,.D =AM -AP-MT

we have: § = §; 4+ Ny, N is 4 livear and continous operutor of the space L(X),

_ From (33), (3.10), (nz:. (39) and (28) we chun e following incquali-

tics:

Wl = 2l
beokol< £ lstiimal< 1ol £ 1ma) - tor o) $ pra] <

S s W e

lafugis 5 1agiwa < e $ i) <21ap v,

batn0 e £ 14 v < g (3 ] <2049 Vi,

Because of these incqualites, from (3.17), and keeping in mind (3.14), 3.15), we
have, for /24,

B Il s et
where

010 =208 LS ) v S (5 ),

4 - THE oFmaL consTaRT cg v (1.2)
The operuor K, admits the integral repeesentation:
Kl = [K.tx, EhgtE)day,
4




11—
in view of (2.2), (23), (2.4) und (13), the kemnel K, (x, &) has the form:
et
Kb £)= 2 Bu o Elon ) } ntx)h.JK(».r)n(yJ-b,

Define

HY i, )= [ B e H Yt £dog, 121
F

Hi" (x, §) = Kix, £~ K, tx, 8).

B (5, £) is the b ternted kemel that is the kemel of the operstor (K — K.Y

n(u,E)-‘é(—er."‘Lmil.
operator M, in (3.1) can be writien in the form:
I xti’ti (M) = oin) + [r,ca.;m;ua,.
Denote by {aif ) the clements of the mrix 0 ' The operstor 5 in (316), by
teats of the substtution £ = Y, a the
(21 m-m-p_-&’(m._mma.
Set, forbh=1, ...,

alf ) = (M e = ) +Jﬁtr.£l-'ul£)lﬂ,:
143)
W) = (P g)i) = oy 1+ [ FE 0D (B
i
Consider the integral operator

(@i} -‘[ﬂi‘&?)vﬂllﬂ,.

@y lx, &) = Fytx, §) = Zallal’ inf (2)

“Tie operatar §; in (4.2), by means of (4.1) and (4.3}, is given by Sy =1+ @ where |




—2—
denotes the identity of the space L2(E). Then
(44) S=l+m+N;.
Hence we have:
SIS = AL+ @) TO + @) + NFTU + @) + (1 + ©F) TN, + NFIN;.

From (3.16), (3.10], (3.2), (5.12) and (3.9) we deduce the following estimate:
143} Bt ol =5l < el + sp 107y "M D <.,
where

46 d=2+ ’ﬁ-'f" \ﬁﬁi‘ﬁ.hl‘)m

The first cigenvalue of (1.12) is characterized by
“n = sup (5 TS, ).
iny

=1
Let uf" be the greatest eigenvalue of the PCO: 57 T5; that is

(4.8 b= =p 57 TSpar, ).
e

From (47), (4.4) and (4.8} we deduce
oy ({1 + @f + NF YT + @+ Na, ) &
ot

< ul’ + 2N T+ @ + [N
Then, from (3.18) and (4.5),
(4.9) e
where
(410} 2 =ul + 2Tl el Tl
Since lim uf =1y, we have
Jlim =y

W:hmmmmmmmmn).amud(w 149) gives
upper approsimation of 4 = ¢y arbitrarily close ta the optimal 5




—153—

W rematk that all the terms in the right-hand side of (4.10] are known or they can
< explicity computed, In order 10 do that let us recill some definitions.
APCOG of the space L2 (2) belongs to the class B if and only if G adruins the fol-
Jowing insegral representation:

Gu= |‘ Stx, Eluthdoy;  gx ) -J Sx.m) S, E)do,

and §lx, &) is » hermitian kemnel belonging to L (X % ), Then cvery Orthogonal In-
mmmmls} [81) s finite for p = r. Moreover 3 (G) admits the following in-
tegral representation

RGY =J glx, x)do, = Jdo.jlélx»éll‘da.-

‘of Ortivogonal Invariants permits to compute upper approximations of
ﬁ:mof-moﬁwmnmmmmamc-m
(for details on the method we refer to (6, pp. 139163, [8, pp. 27:35).

Consider the right-hand side in {4.10), ogeher with (3.19) and (4.6).
|7 is the gremest cigenvalue of the PCO- T of the space L? (). Upper bounds to
Il can be compused by applying the Mcthod of Orbogonal Invarianis. In fact, if
T,(x, £) denotes the r-th iterated kemnel of T, (x, £) = Tlx, &), it is well known (se
113, p. 806)) shas, for x, § e E,
ofjx— &’ ") mEr+l,
Tlx, gy = do(1 + |loglx - E]|) m=r+1,
a1l m<r+l.
u“mpb.-n,rzmrue)z:.'tzxz: Werkdlloelulf’bdw
10 the class T forr > (m — 1)/ 2. Fors = 1, lec 8 =  be the roots of the de-
terminant equation det{(Tws, wi) = Bos, oalhin -ﬂ {ay} have the same
‘meaning as in (1.13), Fix r > {m = 1)/ (4} and set

7= [ Jan [ 170 000 o &
J

We have 3§ €| T1 <5 and lim 3 = bim 7 = 171
JIEH is the greatest cigenvalue of the PCO of the space L (E): K* K. Denote by

Aix, &) =JKly.x)K(v‘ £)do,

the kermel of K* K. If 5, (x, &) is g-th irerated kernel of X, (x, §) = X(x, ) we have,
forx, § € 5, X, (x, £) = 0= &]1*#2°7), (1 S ¢ < (mw — 1) /(2a)). Then (K"K}




= /T
‘helongs o the cless T for g > {m — 1)/ (4] and upper spproximations of [K|* can
be computed by applying again the Method of Onhogonal Invariants. Assume
g> (m=1)/(4a) and p > 1. St

= [ J“”'JJ"V"'E"‘”‘ ,,éa[w.];, it
5

where v = ... # v are the roots of the determinant equation det {(K* Kas;, @) —
-u{chu.mb)}..‘,, =0 We bave vit s [KIP s @ i o = lim 3% =
=K|F.

Assume 5 and p are fixed and set 9% = 7¥; N =37 We have
@ ITlisam; [KE<x.

For any fixcd posttive ¢ it I possibl to findw = ale) such that (2.1) holds. Assume,
for example, ¢ = 1 /2. The operator H, = K K, has the followio integral represen:
tation

()= [ H G EoutElday,  HMx, 8) = Ktk §) - K, G, B).
Fy
Then [|H, 1 is the greates cigemvaluc of the PCO of the space LY () H H, . H2 H,
admits the integral represcatation
(H2 Hoale) = [ 30 (5, $ut§)da x‘-'m;)=anca.=m‘"w,e:a’v.
F

and (H2 H, Y belongs to the same class B of (K*K)?. Let us ficg > (m — 11/ (4a).
We have

1K~ K2 = D = G B = [ jdu:j Iot‘."u,exwa.]"".
¥

where N7 (x, §) Is the g-th iterated ketnel of 21" (x, £) = 30"/ (x, &), Morcover
lim, dw.ljlsd-'u.e:\woe-m

Therefore (2.1), assuming £ = 1 /2, is cerminly satsfied if n is such thay
Idﬂ.f\-"'."(’-i)l’ﬁ,]"”< %
Pt
Once we have determined #, we consider 4., which is the lowest eigenvalue of the
% matrix Q* Q. Because of (3.4, (3.5) and (3.6 it is easy to explicily compute up-

per-and lower bounds 1o 4, as well as we wish, Suppose, for sdke of simplcty, tha
.}, introducerlin Section 2, is an orthonormal system in L2(£), The 1 matrix




S
ihat |@lr € a1+ 20K]). From (36, (3.5} and (4.11) we deduce that
|ia - A0| € K20 + 20 IKD + 21 =
o = F 2 [ 4 2R+ 21
) = 0. Assumefy > 1such that 7, = 2" = %! > 0, We have X, < A, and L.

explicitly computed.
fus a5 4 s concerned, notice that the operator S TS, = I + G T( + @)
lits the integral repeescntation:

18 TSy -jgs"’u.z)»ma..

(s, 8) = Tix, 51+ [ Tiz,3) @l 14, +
{
+ [ng.yml,.am; + jaa,u.xwo,]n,.u)m,(-,,;ua..

ﬂ‘.i}n\dﬂhlx,ﬂn)ww 'h:lmnd&'“!x &), ie. the operatos 57 T8,

-uaum 5 TS bekomgs to the same class 5" of the opezator T, arbitrarily close

upper bounds of tf? can be computed by applying the the Method of Orthogonal Invari-

ants. To this end, gven un inieger ¥ > 1, Jet 1712 17 2 . 2 e the roots of
the determinant. equation:

dex{(S7 TS o, wido = oy oplhisr, o =0

471 = i) Forr > (m — 1) /2, denote by §"(x, £) the
(s, §) = 7 (x, §). Setting

Wi atns L]du.xj o, )t~ .?,"""‘1’]’”

we have: il = "7 lim oV =gl
Amv-v(nm‘nuual'«*"'—z*w"u“ Then 076 gl = peift < 277
nd'ﬂlno““'“-hmm =pe

@ e
@) = [‘[dw. [ 1587, &) dre = .5-:=L:1f—~ﬂ'-r] +
F

+§[I+Z(J+V3WV'_X:&M‘5XE




T

{4 z,‘, +1\F(‘V§j;‘ +1\ﬁ)ﬁ+n§!{}‘J

Al ities in the right-hand side of (4.13) can be explicitly computed.
From (4.9), (4.10), (412), (3.19), (4.6) and (4.11) we have
casel; !I_nl_:, =tg.
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