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Lt E be a separsble real Banach space, % < E, a 10, + . Given a multfunction
F:10,a] % E— 2%, consider the Cauchy problem
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In dealing with the existence of solutions 10 this problem, mmﬂymﬂm
kind of continuity of F with respect to x and, accordingly, some suitable propertics of
the values of F. For a thorough account on the subject, we refer 1o (1] and [4],
In this paper, on the contrary, we deal with a class of multifunctions F which are
able to satisfy none of the most usul continuity conditions, namely lower semicontin-
iy and upper semicontinuity. At the same time, the values of our F's can be non-con-
wex, non-closed and unhounded. But, the best way of ntroducing our cxistence result
s 10.state here two of its consequences which cannot be directly obtained from the
other known existence theorems for problem (1)

Tisorex A: Let V be a compact, connected, locally connected metric space, /i V — E
a contimuous function, and g: V — R & contineons funcrion such shat it (g r)) = 8 for
m.-,um(;wn

Then, for every Cansthéodory function 210,41 % E — R such shat [0, -M:c
CalV) and cvery 0 E, dheve xists a measurable function v:10, a] = V. such thet

w(f.Xw £ rf(lv(z))n{r) = glolr))

Jor almost every te [0, 2],

Teamoms B: Let (5, 3, 4) b o fonite momatomic complete messure spoce, 8 s linesr
Eamo L'(S), and f: § X R— R « Constbdodory funciton such that
the function 3 ink { |r|: s, r) = O} belongs o L (5) and
supfreRefls,r) =0} = + =, inf{reRefirr)=0}=-=

Jor e 5 €5,

Then, for every x, € B, for every W & E*\{0}, every continuous function: g R —
— R such that int (g~ (7)) = 0 for all r & R, and rvery bounded
:10,a] X E— R such that @{[0,a] % E) g g(R), shere exicte w @ AC([0, a], E) mch
that

PN} = gle,ult)) for ae. rel0,8],
u(0) =

The present paper is arranged as follows. In Section 1, we give some preliminaries.
In Section 2, we establish our existence theorem for Problem (1), that is Theorem 2.1.

lf(x. SN =0 for ar teld,a)and for se. 165,

functions of the same kind considered in connection with Problem (1),




L - Preinanasmes

Let X and Z be two nonempty sets. A multifunciion @ from X into Z (briefly,
®: X —2%) is a function from X into the family of all subscts of Z. The
of @, denoted by gr (@), is the set {(x, 2} e X X Zize Blx)} MACK, DG Z, we
pudid) = U, @Gx1and @ (@)= [xe X: Dlx) N 2 # 0] When (X, J}isames-
surable space, Z is u topoloical space and for every open set 2CZ one has
@~ () e, we say thar the multifunction  is measurable. If X and Z are two
topological spaces and for cvery open (resp. closed) set 2 ¢ Z the set &~ (2) is
open (resp. closed) in X, we say that ® ds lower (resp. upper) semicontinuous. If Z
is 8 metric €pace and if P(X) is a bounded set in Z, we say that @ is n bounded

multifunction.

Let I, Vg R, with 1< V. We denote by inty (7} the inveriorof Lin V; if V = R we
m&wmwwm Moreover, if T is a subset of a topological space X we
denote the closure of T by T.

Let (5, 3. 4) be-a fnie non-stomic complete messure:space and let (E, [-1e)
be a separable real Banach space; we denote by L' (S, E) the space of all (equivalence
classes of) strongly J-messurable function v:§ —» E such that

er:;mm< ‘o
The norm on L'(5, E} is the usual one:
h'l.‘u.l:'!lf(ﬂue&‘
I veL!(5, E), we denate by l-EsMriﬁcB-xlminlqpl of v. When £ =R and

there is no ambiguity, we wnﬂymL‘ﬂlhphenfL‘lSR)Ammmm
setK gL' ($)is said to be for every w;, w; € K and every measurable
st ACS, one has x,.unufx,.)u,sx where 1, is the characteristic function

of A

Now, et T = 10,4] be s compact interval with Lebesgue measuse s, we denote by
AC([0, a1, E) the set of all strongly absolurely continuous functions from [0, 4] into £
which are almast sirongly differenisble.

We say that 3 mapping F: T % E — 2% has the weak Scorza Dragoni property if for
any & > 0 and any compéct K ¢ E there xsts a compact set T, ¢ Twith m(T\T,) £ ¢
such that the ressriction of F o T, K is lower semicontinuous. Classes of multifinc.
tions that have the weak Scorza Dragoni proparty cun be obtained, for instance, from
Theosem 1 and 2 of (2],

Wlaflﬂvﬁnlfmﬂmuﬂz*mdnmde For the read-
er's convenience, we recall it here.




i
Tuonese 1.1 ([8), Theorem 1 and Remark 2): Let (5, 3, o) be s finite non-atamic
nccture space; E a separable real Banach space; b: E— L (5) a linear bowses-
morphism; f:§ X R—s R @ Carachéodory function such that
mp{reR:fl,ri=0} = +«; inf(reRiflnr)=0}=—-= for pe. 565,
and the function s — il { |r]: fls, r) = 0} belongs & L (S).
Then, theser Y = {u € E: fls, Dla)(s)) = Ofor prae. s € S} is @ retract of E and inter.
sects every clased of E.

In the fourth section we wse the following nosation. 2 is a nonempty, bounded,
apen, connected subsct of R, # = 3, with o boandary 32 of class '+ and W*(Q),
with ke {1, 2) and n <p < %, is the set of all real functions defined on 2 whose
weak partial derivatives up 1 the order & lie in L7 (12). The srmbol W (@) is used 10
denote the set of allu & W'# (22) such that atx) = 0 for cvery x & 82, Given a positive
integer b, we denote WEF(Q,R') the set of all functions w @—+R, u=
= i ky, v, ), such that ;& WA2(Q) for every £ = 1, 2, .., b. In similar way one
defines the set W3+ (£, R*). The symbol £142) is used for the Lebesguc o-elgebra of
2, while B(R* X R* ) denotes the Borel a-algebea of R' x R*.

La

- '..?:.""" ;;,, -3 b.m% +dxu

here. 0,0 C(D), 4, =, Tor tvery f,j=1, 2 and S i
AL ELH .+ B for e 45 0 every ¥ @ D it vy (61, B2, -
bel™ (@) forall i=1,2 e L () and clx) 2 0 almost everyhere in 2.
Finally, for every o) @ W (R, R, we define
= (L, By, e, L)

and for every o = (g, uy, ..o iy} £ WHP (2, RY) we et

Da = (Duy, D, ..., Do),
where Di, is the gradient of the function ;.

2. - A wasrencn mHEores vor Prosces (1)
The main result of this section is Theorem 2.1 below.

Tiaowiss 2.4: Let Lbe a subiet of B E a separable real Bariach space; F: 1 -+ 2% mud-
ifunction wuith nomempty and cloved valucs suck that
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(@) g {F) is comected and locally comsected;
(b) for every apen set QCE, the set ™ () (i (1) bas o isolated posnts
Then, for every bownded multifimction G: [0, 81 % E ~» 2% sorth momewepey andi closed
alues baving the weak Scorsa Dragarsi property and such that
i G0, a1x Eigl,
and for every xq & E, there excius & fumction € AC(0, 5], E) suck that
W10 @ PGl w(e)))  for almoss every ¢ [0,4],
wl0) =

~ Proor: Thanks to our assumptions, we can apply Theorem 11 of [9] 1o the multi-
function F. Then, there exist two raulifunctions @1, @y: [ —» 2 such that @, s lowee
semicontingous, % is upper semicontinuous with compact values and § = ¥, (r) ¢
go,(;);?[r)blmryref

fle,x) =B, (Gl %))

for every (,x) e [0,a] X B,
It is easily seen that I[0,] X E — 2° has the weak Scorza Dragoni property.
Moreover, i  muliuncion v reltvely cormpact ange. lndsed, o the wppes
of @, wnd the compaciness of GI[0,a1X E) it follows that
3 (GIT0,4] X £)) is & compact set in E and
0,a] X E)¢ @, (G0, a1 X E)) .
Ar this point, we can apply Theorem 4.1 of [12] to the multifuncrion /- From that re-
sult, there exists a function u € AC((0, ), E) such that
()& BGl,uin))  for almost every 16 10,41,
#0) =1,
Taking into sccount that for every £ [0, o] the set @; (GUs, w(z))) is closed in E,
we have
@, (Gl st))) ¢ ®: (Gle, () ¢ FGE, u(2))),
for every £ (0,a). Hence, the function u satisfies our conchusion.
Rk 2.1: From [11] fsce the exanple and Theoremm 11) it is not difficult 10 ob-
iain an example of a differential inchision so that the conclusion of Theorem 2.1 i no
longer tue without assuming (5).
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Clearly, from classical cxamples (sce, for instance, Example 5.1 of [4]) it i abo
possiblc to show that the conclusion of Theorem 2.1 is no Jonger true without
assuring fa),

3. - Proors oF Tueorems A axo B

In this section we prove Theorems A and B; morcoser, we give a variant of Theo-
rem A and present  futher consequence of Theorem 2.1

Proor o Treorem A We put
1=gV) and Fir)=flg'(r)

for every r & L. We claim that the graph of multifunction F: [ —» 2° is a connected and
locally connected set. Let us prove this. Let b: ¥ — | % E be a function defincd hlo) =
= (gle), /() for every v & V. Obviously, & is a continuous function and gr (F) = (V).
‘Taking inta sccount that 1V is compact, connected and locally connected then, the sct
B{V) is 50 100 (see, for insuance, Theorem 5 of [6] p. 257), Hence, our claim i
proved

Now, let r € int (1) and @ an apen set in E such that /(g ™" (ry)) 1 2 # 9, Taking
inta account that £ and g are continuous functions, since int (g ™ (ry}] = B, for every
@0 there exists 7 w int (1), with 0 < |7 —r,| < g, such that ¢ (1 N/~ (@) = 8
that is f(g *' (7)) N @ » 0. Hence, the set F~ () Nint (1) has no isolaed poins,
Clearly, F is a multifunction with closed values, At this point, we can apply Theorem
2.1. Then, there exists a function & € ACI[0, 4], E) such that
@ w'{eyafig™ (gle. wlr)))  for slmost cvery re[0,4],

#l0) = x;.
We now pus
Hit) = 1 w'te)) N g~ gl i)
for every te[0,4]

From [2), we have Hiz) = 9. Moreaves, H is a measurable mulifunction with closed
values. Hence, by the classical Kuratowski and Ryll-Nardscwski theorem, there exists a
measurable function o2 (0, #] — V such that ptr) & H(r) for almost every ¢ e [0, 5]. To.
finish the proof, it is enough 1o observe that flue)) = a'{#) and glels]) = gis, wle)) for
almost every ¢ [0,a), namely

#

1ot jmmw:) = glele))
J

for almost every e [0,a1. ®
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Now we point out 1 variant of Theorem A, when V¥ is not campoct.

Tinowes 3.1: Let V be o conmected and locally consiecied meiric space; E i separable
real Banach space. Furthe, let f froms V- oo  subset of E & Bomeomorpbion sd g: V — R
a confinucus function sach shat int (g~ (r)) = 0 for every r e int (g(VI)

Then, for every bounded Carathéodory fionction :(0,u) % E— R mich that
@021 X B ¢ gl V) ancl, for every xy & E, there existr & meeasunable fumction v:[0, 4] —
V. uch that

¢(:...+]’n,(.)m]=1um
¢

Jor almost every 1@ [0,4]

Proor: Keeping the same notation as that the proof of Theorem A, we juse
“poine out that the function 4 is a homeomorphism and 50, taking into sccount that V is
a connected and locally conncered metric space, H{V) = pr(F) is & connested and
Iocally connected set. At his point the peoof is smilar to the previous one and so we
omit i, ®

Before giving the proof of Theorem B, we point out the following consequence of
Theorem 2.1.

. Tewounn 3.2: Let E be o sspanshle real Banach spoce; Y a ibset of E and . ¥ — Rat
Sunction such that

1) gr (k) s commected and focally conmecied;

(8) ity (b~ () = 8 for cwery r @ ine (5(Y)),

{e) for every reb(Y) one bas i) 15 closed in E:

Thon, for every bounded Canatbodory function @:[0,4] % E—R sch ther

F0,eTXEYCh(Y) and, for every s & E, there exists & function u & ACIL0, 4], E) sch
hat

viey Jor alvses every € [0, 41,
Bla'te) = @t uln))  for alowost cvery ¢ € [0, a1,
w{0) =x,.

Puoos: We par

I=HY) and Firi=h""{r)
for every rel.
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Clearly, the mulifunction F: [ — 2% verifies all the assumptions of Theorem 2.1
‘Then, there exists n function u & AC(0, al, E} such that

W'ty &b (ple, ux)))  for almost every ¢€ [0, 4],
w0l =x,,

Hence, blu'ir)) = glt, 1) and w'lt) € ¥ for slmost every ¢ & [0, 2]. The function s is.
our solution. W

Resouns 3.1: 1Y i n losed, connected and locally conniected subset of £ sad s 4

continusous function such that inty- (5 (7)) = 8 for every r @ int (5(¥)), then the con-

ditians (], () and () are verified, So, Theorem 3.2 extends to infinite-dimensional
nach spaces Theorem 2.2 of [10]

Resaanc 3.2: We point out that, as the cxample in (9, p. m]inn(hzmmdﬁ
continuous functions b satisfying the hypotheses of

Finally, we give the proof of Theorem B.
Proor or Taeokzs B: Pur
Y= {ueE: fls, uls)) = 0 for pae. saS).

s a retract of the Banach space E, It follows that Y s a closed, con-
nected and locally connected set (see, for instance, [3, p19]). Now, let g and Whe as in
the suatement and put b = g o (Wyp}: ¥ — R. Let us prove that the funciion b stisfies !
all the assumptions of Theorem 3.2 (see also Remark 3.1, Clearly, 4 is a continuous

function. Morcover, we statc that & is such that inty (b7 (r)) = 8 for every re

« nt (31Y)). To prove this, we show that ¥y is a surjective and open function, Clearly, {
Wy is a surjective function, since ¥ intersects every closed hyperplane of £, owing to

Thcm

is locally connected, 1o prove the openness of ¥,y it is cnough to thow that
nluumbalemem To this end, we put

Fis) = {re R:fts, ) = 0)
for every se§ and
dp={u e L1S) uls) € Fls) for every se 5}, {

Clufly ®{Y) = 5 and 5; is 0 decomposable set. Morcover, owing o the classical
Riesz Theorem, there exists v & L* (5) such that

(o™i = [olodats)du
F
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for every w & L (5). At this point it is easy 10 see that all the hypotheses of the Theorem
of [3] are sacified, Hence, the functional (%<}, has no local extrema since its
ringe is R. So, since @ s a homeomorphism, ¥y has o local cxircma. From the
openness of %, taking into account the hypothesis on g, we have thatinty (61 (r)) =
=8 for every ruint (h(Y)).

Now, we apply Theorem 3.2. Then, there exists a function u & AC([D, 2], E) such

WY for ne. rel0,4],
Bt} = gle, ule)) for ae. 1810,4],
w0} =x,,

Sfis, 2 (0)is) =0 forac. rel0,s] and for uos. 55,
P (1) = glt, wlt))  forac. rel0 e,
wWop=x, =
4. - ELLOMIC DOFERENTIAL INCLUSIONS AN APPLICATIONS
n his section we present & theorem on elipti differental inclusions and, a3 an up-
plicuion a result oa implcit eliptic equations.
 Trmonew 4.0: Lt | be o subsct of R; F2 1 =2 2 & mmdifimction seith nonconpty and.
closed values such that
a) g (F) i5 commected and locally connected;
1B) for every opew set ACRE, she ser F™ (A) Mint (1) bar mo ssolated poimer.
Then, for every bounded mlinction G: 2% R Be* —+ 2% with momconpty and
clotd velues such that
(i) the multshonctron G it £(2) @ BRY % R¥ )aveasirichle;
() for almow every x& 2 the multifinction 1z, %) =Glx,z,w) i lower
Liii) ome bas
Cax® xRl
Then, there exies a function w & W7 (2, R) N Wi (2, R®) nech that
Lalx) & F(Gls, stx), Dutx))  for ae. xeQ.

_——————
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Proor: Thanks 10 eur sssumptions, we can apply Theorem 11 of [9] 1o the muli-
function . Then, there exist e multifuncions ), s T—» 2% such that s bower
semicontinuous, % is upper semicontinuous with compact values and # % @, () ¢
¢ P, (e) g Flr) lm every ral.

We now put

Nx,z,w) = B ,(Glx, 5, w))

for every (x,2,uw) € 2 X RYx R It is easy 1o see that for almost every xe 22,
the multifunction (z, &) — /1x, 7, ) is lower semicontinuous and the mulifunction
(%, ) = Flx, 3, m) is £(2) @ MR x R™)-measurable. Moreover, from the upper
semicantinuity of ; and the compactncss of G(R2 X R X R~ ) we cbtain that /s
bounded multifunction. At this point, we can apply Thearem 3.1 of (7). Then, there
exiss 2 function _we WD, mnw"m R swch that Lube
-o TGlx, ulx), Dalx))) for almost every xe 2.

aking into account that for every x & 2 we have

@, (Glx, wix), Dulx))) ¢ FIGlx, aix), Duix))), ‘
the function w satisfics our conclusion. W ‘

An immediate consequence of Theorem 4.1 is the following

Tvow 4.2: Let ¥ o subset of R and b: Y —R & function: such that ‘
1a) grib) is connected aid locally connected, |
1) oty (87 () = 0 for every ¢ & int (BY));
(e for every e bAY) ome bar b1 (#) it closed i R
Then, for every bosnded Canthéodory function : @ X R % R — R such that
@R X R x REVGhIYY; there exins @ function u & W2(2, R )N W4 (2, RY)
such that Lulx) € ¥ and b{Lulx)) = glx, nlx), Dulx) for we. x4 2.

Paooe: It follows immediately from Theotem 4.1 putting I'=b(Y) and Fir) =
=5 'r) for cvery rel. ®

Risanex 41: 1Y i closed, connected and locally connected subset of R sndf s
function such thatinty (5" (r)) = yr e int (H(Y)), then the con-

ditions te), () and (c) are verified. On the contrary, if & satisfies al the hypotheses of
Thearem 4.2 it may be non continuous on ¥ (see [9, p. 2271}, contrary ta that required
in Theorem 3.4 of [7].
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