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this end, we use the full stcength of Non Standard Analysis. As & by-product, we get
new insight in various probleans, €. the comparison of aerc-probabilites,
extension propeties, and equiprobabilty on subsets of the real fine. In same senie, we
e here a peecise answer to the following remark of B. de Finen: -

e s just mestions hat the considerstion of prababilty as u mow-Archimede

‘place of “zore”. There fs nathing to prevent ane from expresting things i this way, apart from
‘he foct that t is u wseless compplication of language, and leads ome o prcle over s infini-
ment petites [F2].

I is ko that the limit of a sequence of = addith i he sa-
e space s not B general a a-additive measure, while the imit of a sequence of finiccly
additive ity laws is finiely acditive (Re2). The comesponding statement within
NSA s that the shadow of a fincely sdditive Liw is a ssandard finiely additive e, This
opens the way to the finitsati finitely addith bability theory that we
shall develop in the sequel, Meumwhile, E. Nelson has given a partial fnitsation of the
a-addiive theory; indeed he has proved in his «Radically elemenary probability the-
arys [N2] that cvery stochastic process may be replaced without loss of probabilisie in-
formation by & nearly clementary process on a finite space with a finte set of times.
Our finitisation s even more radical: we prove that every fintely additive conditioml
peobability lew on uny algcbrs of events may be replaced without loss of probabilstic
f jon by & regular simple law on some finite algebea. Tn this paper we will used
the adjective asimples in comparison to conditionals.

1. - SOME WICALLS FROM ELIMENTARY PROBABILITY THEORY

Let 3 be a s¢t, § a fnite subalgebra of the set of events (1) and = a probability law
defined on 8. We call this law reguiar in case piA) # 0 for all AeS-{9).

Ancl emem 4eS-{8}iscalledprimeiffanyB u §-{8} suchthatB ¢ Aisequal
tod

Each element B $-{8}. contsing at lease one prime chement. Morcover, if
By, the prishe elements of S, then ouc has the canonical decomposi-
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dhﬂ-l:jﬁﬂg.‘hﬂsﬂﬂ=ﬂ,uﬂn&=ﬂ.m- regular law p is com-
pletely defined by 7 posithee numbers p{E,) with sum 1, through the formuls
#0 =S 5805

‘Recall thar every finite subsct G of  (12) gencrates & finite subalgehra which is the
lesst sobalgehen of (0} containing G.

7 Exnison cesis: Let S be s subslgebra of a finite algebra of cvents $* and 7.0
Wwﬁhms Then there is @ regular lawr =* o §* which extends .

Prooe: Let i . E, be the priosc dlements of S, and cal v,the nunbee of prime i
mals'm:medm& For cach prime element K of §* contained in E, , define I
&4 (K) = 2E,) [ v;. Clearly this procedure yiekds s regular kaw on §* which cxtends =. {
of other extensions exist, {

2. - Finmuty ADDIVE CONDITIONAL PROBARILITY LAS: THE MAIN PROBLEM

Recall that afier de Finewi(F1] (sce also (Re2)), the condiion of coherence for |
«conditional probabilitics leads 1o the following definition, where may be infinite:

Dernmon: Let H €AC p(0) be algebras of events. A conditional (firisely adstioe)
probability law p* on the set A | H = A X (H-{0}) of comdlitianal cvents i 2 real valued
fmctioss such that, for all Fe H-{B), Ke H-{0), Acd, Bed,

(i) ptiAlH) 20,

(i) HeA smplics p* (A|H) = 1.

(i) if ANVBNH =0, tber p* (AUB|H)} = p* (A[H) + p* (B]H). |

W) FKOH =8, ben p* (4 N HIK) =p* (A|H 0 K)p* (HIK).

“To cach conditional lew p*, we may associate the simple prabability lu p on (01, A)
defined by the formala p(4) = p* (A|G), The law p is finitcly sdditive, that is p(4 U
UB) = p(A) + p(B) whenever AN B

“Froos conditon (), we get plA N H) = p* (A|H)p(FD). lf.a(r-n =0, this formula
defines p* from p. This is the case for all H = ) whenever p is regular,

On infinite spaces, most laws are ot regular.

The condivianal exension problems weads as follows:

Given a sinple e p o A, and o subsigebra of <bypotberivn H < A, consiruct & condi-
tional faw p* wn the set A| H of conditional coents, such that p=p* {+] @Y.

Uting tals of NSA, we shall give an aliemative solition to extension problems of
this kind, which have been extensively studicd by B. de Finctti and his followers
{sce[Re2). We use u «finiisation procedure that we shall now develop.

e
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3, - Finims KEDUCTIONS AND THE FINITIATION PROCEDURE

Sec the appendix for some evential topics of Noa Standard Analyss in the seiting
of Nelson's Internal Set Theory.

Durwamon 3.1: MA&-MM#.:MMSQ’AH-MJA
twhich bus dbe samve standard clements as A. .S i funite, we call it o finite reduction
af A

WHSEM.MSMJMMWMMIMW:m
Mm‘ﬂemhrwnﬂﬁﬁm.mmm.m-mm“
have 10 be non siandard.

Mams TooL 11 Fach standand algebre A admits @ fimic reduction.

Proor: Ainvnuequnﬂnflhndnlkuivnlm,mlsnﬁniwmbsﬁﬁcfd
Mmmﬂwcmmﬁﬁ.mmmmsﬂﬁ pgenerated by G
is & finite reduction of A.

Reauanse ‘The shmplicity of this proof is midleading. Inded, t uses the ful srength
of the Wealisaion. axiom scheme within NSA_ Deepncss muy sgres with simplciy!
Notice that, x5 the chickce of G s not unique, there may be differcat finite reductions
of A.

M oor: 2 Let § b a redcsion of an algebra of coomts A € p () amd let = be @
simple regular Lo on 5, Thew there i ome and only one conditional faw p* on
A1 A meh that for all sondend A aad H, A€ A, HaA-(8). one bas p*(AIH) =
= *(xlA O H) [ ={H)).

Proor: Define =* MS\SMﬂwlﬂml‘l:'(MH)-lﬁMnHUllH}}-m
\aw satlsfies all the requirements of definition 2.1. Since ] 8 has the same standard
clermenis us the standare set A | A, the shadow p * of * is the umque standird brw on
A| A vuch that for A and H sandard, p* (AIH) = (A 1 H) [={HD) see consc-
quence (iil) of sundardisation in the appendix). Using this formuls, the verification
{after transfer) that p* i a conditional law is immediate.

We call p the exordod shadow of =, Notice that the Enk between  and p” given by
b Last formala works anly for standasd A and H. For non standard events, the formla
s o longer true, but by transfer all internal properties of p* may be verified on the
standard events, 5o that we pever have to compute p* on non conditionl
ercnts.

There is no analogous satement fot s-additive. probability. brws. In_ general,
the. shadow of sach o law i nov saddiive. An equivalent. classical formedation
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is the well known fact thar the limit of a comvergent sequence of c-additive
wu,nmmm

 Resams We may compute p* (A|H) even in case P(H) = 0, where p is the stan-

dard simple law associated to p*. Indeed, this means that =(H) and =(A 1 H) arc infi-

nitesimals, but =(H is not 0. Ths, by direct comparison of infiniitesimals, we read on =

the rich stratibication of the standard ero-probability events. We may also understand

Wzrm)mkmmﬁnmdmnilﬂdwnfﬂ)mkﬁm#dbm
happen if the number of terms i infinitely large.

s a first application of thesé tooks, let us' prove.

Tizoren 3.1 For cach set £, there fs ¢ condirional lote on 9 (0)] 9 ().
‘Proos: By trunsfer, we muy suppose that £, -uihmedsmdndn'(ﬂl.
stanchard. By main ol 1, there i a finite red of p (@), Callts i
d,mmmda!w&mlﬁﬁm-mﬂ:myhhnmsns
in $1. Then main taol 2 yields a conditional lew on o ()] ().

Here we have 1.4 prion condition on the rosulting law. Tn more restrictive cases,
following

we need the

Stare Fnrmsanion wesnan: Lot S be & finite reduction of the stawdard algebra A.
Then each standard simple ki p.on A i the shadow of somve regular smple baw = on 5.

Proor: Let § be a finte reduction of A. Call E,, ¢ = 1, ..., x the prime clements
of S. mu.nmum.ep(a)wns.l.ummmlnp(m IE), Choose
w1 positive infiniccsimal real nambers £, such that Ze, = 0 and e, < piE ).

Define 7(E,) =p(E,) + &, for 1 €1 n— 1 and =E.) = p(E.) = Te

Eteod = by additbvity o the algebéa 5. Then, for sach sndard event A . A,

2(4) -2:‘, FUENA) =EpE N A)+ g with [n] €2¢, .

Thus =LA} = plA} + 7 und hence *(=(A}) = ptA) as requesied,

Tuwcnsse 32 Each snaple laso p on an algobra A € () extends 10 & condivional law:
P AlA

Proor: By transber, we may supposc p and A standard and look for & standard
extension p*. Main tool 1 yields a fiite reduction § und the simple fiitisation lemma &
lew = on § whose extended shadow p* is o solution of the problem.

Rusax: In the proof of the lemma, the choice of the finite reduction 5 s not uni-
que. Moreover the choice of the , has & decp influence on the value of =(4 N

I .
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nH),‘RIH!‘lem-n.swmrhmﬁ,nﬂ&mlmdxd.-irhp{ﬂ.l=p(E;]:0‘
Ther, fo A = E, et H = By U Ex we get plA]H) = “ley /(s +£2)) which depends on
the atbitrary positive number £5 / ¢, Thus the conditional exieasion of p is peperally
Bot unique,

Theosem 3.2 concerns the sonstruction, of & conditional lew from # simple aw in ¢
s samme hypohcsis have (-peobability. Bt if the conditional law i son Scn or some
A|Hwhn!HkAﬂtﬂpbﬂnEA.:b=ﬁnﬂ=MimhnmhmnM{wm
* i = which respests this supplcmentosy. constraint, Thus we peed o

Compimonus, AmATION sbwbsns, Each standard condivional la §* on 8 seadard
A H is the exeended. ywmuwkkwxmammmms
of A

Pecor: Define the (5 1 H)valued sequence (G, ) by the inductive condition
G.*D.E-.-xhcudvnnfnlkcsﬂﬂmduln:K(G. and p*(K1G,1 =0,

Mp'tGiG}=l.=hﬂm'ﬂnﬁlfm-lnquﬁ.’B-ndF_ﬂ
=G, ~ G oon empty element of the finite algebr § 1 H. Hence G, = 8 for n
lmm@.mkhumﬁmcnmmnr.-a.md.w:k,soe
nu'rnmMMKESIHMMKL‘F..“MJI'(KIG.J>0.C|I1p(.lh
Inn:dﬂnepuliﬂhmu#us.lm’lp’Odmk-d:(aﬂ\bep..Nndu;hnm‘:mll-
Jes than 1 and may be infinitesimal.

Thos, foc all H e 5 1, and all n <k such that H .= W we bive
P (HIG,) = p* (HNE,|G.) +p* (HNW0 - GG +

$p (HO Gy [Ga) =p* (HIG) 25

mr.mbep.ﬁdomdimue)mm?f-udr.'uds.-bmn"sopmﬁmem
rlmﬂluKnlSmlimdinF_mdllllﬁp'(KlG,}-O.H:nmp'(F.'lG.)Kl.

"Cal »{A) the mumber of prime clements of  contained in A. The function ¥ is

‘siditive on disjoint unions. Let € be & pasitive infinitesimal and ¢ = .

Furnd:#iblclx:.bvnpou‘iwinﬁnmuiuﬂmhlhlﬂf."ln.<x.anun

define a law = on § by the formula

wld]l= g.[p‘MIG. W1 = w(FS Yy ) + vA N F2 g de" —plANe + P

hisnk:llhmni.d:ﬁﬂvemdhnw}=l.ﬁwmndﬁms-bw=lﬂwdmli
)= 0, then p* (A]G.) — 0 and nlA (1 F2) =0 for oll w hence AOES =41
f\F:’=l‘fm-ﬂ.ln,whidlinplluA-I.Thmnk-mgﬂuhme.Nwmﬂ&:|
standard pair (A, H)e A | H.

Then 14, 2N eS|SNH and we have 1o prove that plA NG)/=iH) =
=p*AH).
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+ Gall r the imeger such that HcG, and H& G, . ;. Then N F,# 8 uod hence
P*(H|G,)> . From this ud the conditions on ¢ and the 7, we get =(AN H) =
=ptANHIG,) +3p" (H|G,) and rrm-p'uﬂc )1+ 8) where « and 8 are
infnitesimals. Hence the expected result follows from the

PTANHIG,) /2 (HIG,) = p* (AIH N G,) =p* [A]H).
Thus p* is the extended shadow of =

. Tumowsw 3.3: Each conditionsl lew p* aw A| H extends to a conditional loww on
AM

Ppw Transfer, choose a finite reduction of A and use the conditional Jemma.
ﬁ..u.mm.awnnmud has the expected property.
A natural question I8 to extend u law from i subalgebra A to the whole algebra
I.D)wlnwdlh‘w aft)}lp(ulmymblcminbeenmdbyskrmﬁzrm
gﬂlﬂinﬂ” itional lawy by & direct pro-
based on the Extension lemma of §1.

"”mmm 4 Every conditional law p* om A| H extends to & conditional lazs on
# Q)] plan

Proor: Brymnﬁrmpposﬂp‘ H, mdp'mdnd Consides  firte reduction
5% of (2); then s ofd
arcin 5*. mmidllmmiﬁmulumhnnu)wunsmyﬂnleTunIth
ded shadow to A| H is p*. This lrw extends 10 a regular law =* an §* fsce §1). The
extended shadow p** of = to ¢ (Q)] p(2) has the expectod property.

Resoar: As announced in the introduction, these results show that the finrely ad-
ditive probabilicy theory and the clezmentaty fiite probability theory have exactly the
same scientific content. The link between both is agencral nonsenses in which there arc
no peobabilistic concepts, but aaly consquences of the principles of NSA.

Here below we will give another appheation of finte reductions. It concerns the mi-
seading formulution of the strong law of large numbers.

A= AROUT THIZ STRONG 1AW 05 LARGE NUMBIS

4.1, Let 0 be a finite set, p.a probability law on g () and ® = 0¥ the set of all -
‘vahued infinite sequences, The set £ of eylinders, that is all products A X # with 2% 3.4
for some w, s 3 subalgebra of (). We extend p to the product law an X which is the
only finitely additive law such that pl{ors, ..o )} % #) = pien, Bocoplfe,

Write f, (w: $) for the frequency of an o & O within the & first terms of &
a9, For, each. positive ‘real number - und for. eich: puic -of integess such that




I

< consider the cylinder A_ (s, $)'= (& 0:plo) = Efilw:g) Spla) +
+a Vemsksn).
“The strong v of large numbers claims that forall u > 0 aud ¢ 0, there is & rank ¥

= plon}.

“Ihis formulation gives the impréssion that the i
scqucnces (that i the sequences which would be gencrated by a randori device with in-
dependent isaucs) s soch that the frequencies tead o the corresponding peobabiltics
when the length of the sample tends to infinity. And the strong law tells us that nearly
4l sequences are «good, & behavtur that we may cxpect from actual randomacss and
which gives confidence in the frequential interpretation of probubility.

1‘2waﬂhhiﬂupznu'uuuqrxﬁtwrhnspeci[mmp‘ﬂfp‘ﬂmmkﬂ
cxtensians, which are only finitely additive, have the same legitimity concerning statiti-

al
{uwhich have the advantage to be the whole algebea g (9)) babil
of Blos, 2) behaves as bad as possible (see [Re3l).

“Fuawonen 4.2: For each eal masber 2 € 10, 1, there i an extension p” of p 1o 8 (#)
such rhat p' (Blos, #)) = a.

This if we choose such a law with = 0, we conchude that neacly all sequences are
bade . and that fnitely sdditive probability has norhing w do with random-

Let is through the chaic of § 3 which shows clearly the
degrees of freedom shared by finiely aditive extensions cven i they are defined on
the whalc algeben g (#).

Liswsaa 4.2: Lot  be a set, A subalgebra of 9 (#),p 3 sirmple law o A, 2 £ 10, 11
and Ae p (), Suppose that A and is complement A* huve won empry iniesections it es-
o clement of A. Then there 15 an extension p* of p to p (W) suck thet p'(A) ==.

Proos: By ansfor, we may restrict the proof to the case where the constants of
the siatement #, A are standard, and we look for a standard law p*

Lt § be a finite reduction of p (#); snd F the finite subalgebea § N A. Call Fy . Fy
the prime elements of F and S, .. S, these of S. Thes every F, is the disjoint union of
some of the §,. To define a lw = o0 § whose shadow is & standard law 7" on equal o
on A, it is sulicient 1o share for esch i the aumber p(F;) between all the 5, which are
contained in F,. As A s standard, A & §; bence A is a union of some of the . From the
Iypothesis we get thar every F, contains one of them, asd the same is true for A

PERSET
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W:&.—-.mmlumbm«ofm:mﬂmhrmrus,s;(mmn \
distribute the =, on the S which constitute A N F, and p{F;) ~ a, on these which consi-
tute A°MVF;. This defines a law = on § whose shadow sarisfies the additional condition
;
Bl =a

 Now it b casy 10 see that the sets Blw, #) satisy the hypotbesis of the leaiin,
they meet each cylinder (onie may ahvays continue o given finite sequence such
e frequency of o tends 10 a given value), but are not contained in a cylinder
@mh-hmahmﬁ%ﬂmmnﬁm}.ﬁbm
-'lwd.l

* Further applications of finite reductions (e:g. 1o the study of random varibles wnd
stochastic processes) will be dealt with in another paper. For the momnr, we confine
s 1o favestigate the power of another nitiation tool which may be useful to constrict
law that sgrecs with some additional structure of the set 4.

5. - POINTWISE REDUCTION  AND' EGUIPRGRABILITY ‘ON NUMBER FIFLDS.

5.1 In this section we construct. conditional probablity laws on same infinitc
#0)] # (2), which remain invariant under the action of some transformation group on
_I’ﬂ'!lﬂ.'ﬂlilmnsammh#rhnmmbﬂmN.Z.ﬂ‘RﬂhM'}uupsuﬁnndm
tioes. We: necd another finiisation technic, which concems the points of 0 and not &
subalgebea of g Q). This is

M w0 3: Lot O be a standand ser, F a fimite subset of 3 which contuing all tan-
dond. elements of (1. Let §: F—10, 1] be a arictly posiive functions such that
Z 3)= 1. Define =i (@) 00,11 by sA)= B gt fraca.

oF

Then i a simple Lawo on - p(2) but it i mat regulor (hecause w{A) =0 in case AN F s
empty).

YH & o (O8] is sandand, thow H 13 ' 0, snce H comtainssome sindind elemont;
£ u s x(H) 0. Thentheris dissnallerop *on p ()] p D)
sauch that, for any standard A and H, p* (A|H) = “(=tA N H)/=H)).

Prooe The existence of p* follows from the standardisation axiom, while the uni-
quencss and the verfication of the properties. follow [rom the transfer axiom.

We call this point-twise reduction procedure wn (F, &)-constrction.

We may choosc F and ¢ in order to satisfy some additional conditions on p* or on
the sssociated simple law p

‘We consider here three important examples of such choices that solve equiprobabi-
liy-probloms. The two first ones have boen solved previously by E. Regessini [Rel]
using  classical limit procedure and de Finett's oxtension lemma,

C— v
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5.2 Examms 1: Comtruct i dow on # 1Z) which i iwvarions snder all tramils-
droms

Eyu—qu,.um!ndl-vhwimmdu-hmhmmksmw;w
the standard translations applied to standard subsets of . Take two infinitcly large po-
sitive integers o and #, and consider F = {~m, ..., 0, ....n — 1} with the constant
ﬁnnhnél:)ﬂ,‘(m+n}.1}nmﬂm¢uﬁmllmphhmmwdamm-
dard translations. , for A standard, if 8 (resp. b is the cardinal number of F 1.4
{resp. F 1114, then the bsolute value of the diffcrence b — o afer a transhation ¢ by
4 standard integer 7 is less than 7. Hence =(r(A)) = #lA) is infinitesimal and thus
#UHAY) = pla).

Notice that if s /= 1, then p s also invariant under the symmetry around sy
point, The induced s * (-] N} i a simpc lw on N which i invariant under all positi-
ve translations, Taking m = , we call this standard luw p, and compate the probabiiy
of some subscts of N ta see how it depends oa the choice of

swmmwe,wmu.ﬂwnmmmbﬁym.
Iy additiviry, finite subsets have sero probability.

IF A i the set of even integers. and B the set of the odd oncs, we get p, (4) +
4 p.(B) = Tandp, (A) = p,(B), since B is the mage of A under translation by 1. Hence
2{AY=1 /2. For the same resson the set of multiples of an integer & has probablity
1/k.

Here is an infinite st with zero probability: D, = {2“E e N|. Tn fact, if 2/
<n<?*t, then card (DAF) =541 and p, (D)= {4 1) fm} = (s +1) /22 [n) =
= 0 since s is infinitely large. The same is true for D, , a standard. By transfer, cvery D,
has zero probabilivy for any law p,.

Let us consider an example of a standard eexotics subset E of N such that p. (F)
depends on 5.

Consider the union Bofall Ay = {4, 71 # 1y at =1}k e N T = 4
for some integer b, we getp, (E) = 13, 1n = 2.4* the probabilty isp, (E) = 2/3.1n
the general case the value lies between 1/3 and 2/3.

Observe here the structuse of the conditional probabilities that you get from the la-
ws =, in case the hypothesis have zero probability for the shadow hss . .

Por instance, if A and H are standard and finite, H non-empty, then p. (A|H) =
= card (AN H) / card (H) since ANHNF=ANH et HNF=H

with infinite subsets is p, (Dy|Dy) = 1/2.

5.3, Exauris 2 Gonstract 4 lw om 9 (Q) which is imuriant wnder all ratianel

Choose an infiitely large integer n and consider the set F= {z/nl with ze %
and J5| € (n + 1)t} Choose agiin # constant, ie. gix) = 1 feard (F). The same:
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a5 above shows that the resuliing law is invasians under all rational
and paini-symmetrics.
mp,-p'nlu.: the induced Liw on @; = Q N[0, 1]. For every standard
'I' subinteeval of 0y, ane bas p((x, 8]) = ~ x. This follows from gy (La, =
-.p]),'-((n m)- He—a+1/14n)=5-a, where =
Bymﬁwwm:hrﬁemhﬂnyqrmwdmﬂfem!mm
This property s much weaker than the invariance by ranslation and docs not
on the value of ».
Natice that all bounded mbsetr of Q bave zero probability.
Indced, by wansfer, restrict the proof ta standand subsers. Then the number
+ Lof rationals 2 /! between two standard rationales & = 4 /! and 3 = b /nl is
relative to 2(r + 1)l, which gives sero probability for the shadow.lw,
Mmhﬁknnmhwﬂmﬂmlmmﬂ;mﬂoﬁbﬂuym'ﬂm
ate abo subscts whose probabilty depends on
,‘Mmunummdhnmhnlddgumemmm

A more difficult case is
34, Exawnr 3: Comiruct @ law on @ (R) which is swvarians ander all real

,

Let G = {5y, ...,g4 ) be a finite subset of (0, 1) which contains all standard cle-
 ments of [0, 1]. Call Z.(G) the Z-sub-modules of R generated by G. Each clement x of
Z(G) has at keast one (non-unique) representation as x = 5 g, withw, e Z, Choose an
nfinitely large intéper o and consider the subsct F of those element in Z(G) which have
at least one representation with all coefficients w, & (—w, &), Then F is finite since
€ard (F) = (20 + 1%, Morcover F containg G and also G for all standard integers
#. Henee F contains all standard real numbers. As previously, take § to be constant
an F.

We: cluim that the (sandand) simple late p associated 1o thes (F, & )constraction i iwea-
riant wnder all rnslations and pan.symmcrricy.

In fuct, let , be the transhation by  non-zero elermesi g, of G. Ii leaves the infinite
‘modulus Z(G) invaciant but not the set E. Thus we try to compare card (4, (F) = F 01
V4,(F) with card (),

For cach x = Zngy wicte e [~w, +] NZ and 4(x) ¢ F, one his = o,
If not, then —w %, < o hence 4(x) =x+g, would have all its cocfficients in
[~w, +&)N 2, and consequently would be an clement of F.

Thus if 1, (x) ¢ F, the 2 + 1 distincts elements %, x —g,, ..., x — 2ag, of Z(G)
have u representation with all coefficients in [ ~w, +0] M Z, hencs belong to F.
If an other clement x'e F ml‘m sLix'le
e T B B e = 2ug,

o the ppasit: case, there would be two distine integersa ¢t between 0 and 26

I
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soch that ¢ — agy = = a'gy; If afa’, thin would imply 1,(x} & F since 4,(x) ="
—(a'- —l‘u.\n'xhﬂ(u'—-—lﬂZu—l.hmmw-'Clwwklinrply
£{x") & F; both cases contradict the hypothesis.

‘Hence to each x 8, (F) — F 11 1,(F) comesponds # subset of F with 2u + 1 dle-
mwhmmmﬂluﬁﬁnx&n'cmhnmukwm

card (1, (F) — F N, (F)) € card (F)/ (200 4 1)

Fox the sime reason, we get card (1! (F) = F N1 (F)) = card (F) [ (20 4 1). As
4 is onctoone from R to R, e from this thar card (5, (F)NF) <
= crd (F) f (20 + 1),

Tet A be a sundurd sobsct of R Thea =(A) = card (A N F) [ eard (F) =
= card (£,(A nF)l,'Clnle)‘uld(l,tAlnlA(D)l,’clld(Fl and  wlh (AN =
= card (1, (A) N F) [ card (F).

Now r,CAlﬂF-U.MJﬁ‘n(ﬂl’\l‘)lu[lvldin(?’—f.{ﬂnﬂ] {disjoint
union) and !.(Mﬂl‘(F)-(l.(A)ﬂ[l,lF]l’\F)]u[l.hﬂﬂ(l,lf'-lnﬂ! (disjoint
union). Thus (4] = card [4(A) 0 (4 (F) N FY] fcard (F) 4 § and =l (A)) = card
[,44) 0 (15 {F) N F)] [ cand (F) + Twith 0 < £ < 1/(20+ Jand0<f<1/(20+
+ 1), Hence =04, (A)) = =il

Sé-uad\mmimlbflmnduddmnmoﬁo.lli-oihnwhimll,.
mmmmm;dximmﬂmmm(m{mm
et ple, (A) = plA} for all A). As p is standard, by transfer it is also imvariamt under
ravalatians by an clement of(D, 1. By iteraion, we get imvariance under ol toansla-
tons. Mpmﬂ,uFiWwﬂﬁ‘mmmndO.mg‘dﬂﬂpﬂiﬂuﬂuﬂ
under all sometrics of R.

hdﬁm‘mmhu.dthipd&pcu&mlh:bdﬂolc-dn.llmﬂmdr
+e are subsets A of R for which pl(A) ean be compured directy from the invariance

property.

o instance, suppose that there is an infinte sequence 1y .., 4 - of translarions
such that the subsets £(A) are murnally disjoint. Thenp(lllq-m))-vuﬂ< 1 for
every imteger n, hence p(A) = 0. P.um.h.wgunm-om:nmd-rwu!mw
n icationnal pumber). Alio cach bounded subsct of R has zeto probubilty.

Tbe-hnw\xdoﬂmb:nﬂruﬁaﬂtdmﬂ'wmﬂmdinﬂmlhm-
Msymu&:.d\iptmrbewuhﬁnidgddimhrmudnmdﬁm
Wswhkhhdcﬂnadun-lmhuundhv-ﬂmundﬂ-ﬂumm

APPENDIX

A brief account on NSA.
We give here the clements of NSA which arc essental o read out paper. This the-
o s created in the early sixtes by A Robinson (Ro] who derelopped it a5 u consc-
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dHnﬂ-.ldM In 1577, E. Nelson [N1] gave an axiomatic formulation of
mm“ma.&.p.m T his formal theory called Tnternal Set Theory (IST),
e extends the language and the axiomatic of the Zermelo:Fracnkel (ZF) sct theory.
 One of the possibilities of this extended theery is te formalise the infinitesimal concepts:
that Leibniz introduced in 1670,

Fechnically, the language of IST contains the langusge of ZF, whose formulas arc
called éntemaal , and 1 new monadic predicate called wsts (read standand). The formulas
Slieh cuntain somewhere the predicate saix wre callod eaiénal, The axkomatic i con-
stituted by all the axiom schemes of ZF restricted to internal formulas and by three ad-
ditional schemes called ransfer, fdealisation and standardisation, which regulate the se-
smantics of standand. We give these schemes with some important consequences. To this
end we use the following sbbreviations:

for ¥ 52 (x) (read for every standand x)
and Fx for Jc s (x) (rcad dhere i3 a séandard x) .

 Twansren scunse: For each internal formuls Alx by, ... ) with k + 1 free varia-
b, o s e aiom:

W WP RALK, 1y e )2 VAl 1y )]
This axiom ensures that, for all standard values of the parameters ¢y, ..., 4, the pro-

pecty Alx, 3, ..., ) s troe iff it is true for every standard value of %,
By contraposition, if Blx, 4, ..., % } is the negation of ACx, 1, ..., ), then, for.all
standard values ;... 4, there exists an x satisfying the property B iff there cxists o

Standand x with ths propenty, In particular, i Bix, £, ., 4 5 only saifed for one cle
i  for instance, every uniquely defined ob-

<0, ...
MNotice thar to prove within IST an internal theorem Y Alx, 15, .o )y whare the
parameters have fixed valucs, the transfer scheme allows 1o restrict the proof o the
standard values of x, provided all the parameters f;, ..., f are restricted 1o standard
vabues.

T — mwwmm ”
Bl 5,3, 81, ety 0 b e iom

W, WV Z, Z finite, SxVy € ZBix, 3,0y, oo, 1)) [BEVIBIE . 1y )]
When the parameters are fixed to stendard values, this axiom sheme yields an ideal

element & which is related to all standard 7, provided the binary relation B satisfies the
first part of the statement

N S sl MR |

oyt wwith free s
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The most important consequences of the idealisation scheme are the follo-

(i) A set E i standard and finste iff all itc elewonss are standard.
Hisr: take as Blx, 3, E) the formuls «ce E and y & £ and x = y».
() The set of integers N conlains infinitely large elements, that i imicgers which are
larger than alf soandand integers.
Hinr: take a5 Bix, 7, N} the formuls sy N and y e N and x = y».
Thmhp«ndﬂh-ﬂmmdrﬂﬂmﬂmﬂcﬂmhnihhmhhﬂ
dmm-ﬁﬁuhhmmlmba‘:dmewﬂh-ﬁn&nd,hmwdm!md;h-
oy frwersion infinitesimal seal numbers which satsfy the classical rules concerning the
o operations, We write x = y for e is infiniely near y». Notice that the sum of an in-
h*hmmnlmﬁw&wdm,wmkmchmhﬂm
tely large number or infinitesimals is infinitcsimal.

(i) There is a finsse set F sch that every stamdard % it an element of F.
Hinr: Take as B the relation «x is finite and y €xn.

Such a finite set F cannot be sandacd: in fact, if # would be standard, i
section E with the set N of integers would be u finite standard set. Hence all its ele-
‘ments would be standssd. Call £ s lnst element. Then & + 1 is stundard, hence belongs
0 £, & conradiction.
wdhmmﬁmdNMkmﬁwuwmm-
o, that is 1o upply the cxtensionality axiom of ZF to non-internal properties. For in-
stance, there s 1o estbset of standard integerss, nor of winfinitely large integere= or
«of infintesimal real numberse. A positive counterpart is the
STANDARDISATION SCHTAGE: Fuud,ﬂ.mhrmn-famjcu.n.., oty with
e suriables X,4y, . 1y, cHie by the axiomr:
v....vn.lv‘es"w"xu-vmzs and Clx, 41y oo b))
Notice that the set ¥ is unique, since two different solutions would have the same stan-
dard clements, which coatradicts the transfer axiom scheme.
In the main text we use three important consequeries of standardisation.
[t} wmdmbazmbawlawm infimately large bas 4 ssbadouoe “a, that
i o e standand roal ssber a
Hiser: Take £, = u, E = R, und for € the fomula < < g». You et a stndard sub-
sex ¥ of R, bounded from above by the same standard number s 4. The least upper
bound of Y is the shadow of a.




S

The shadow satisfies the following properties, whenever the shadows exist:
-h%]“ % + %, ab) = (*a)(%) and if a < b, then *s < *h. Moreover, if.a is stan-
=u,
mhmmnwm;«zmnwwmagy
which b the same standard elements a5 B,
Havr: Apply standardisstion to the formula «x & B».
(i) With che same motation as i (i), et f be a fusction o B such that for each ele-
et & of B, the image f (a) has a shadoe. Then thore exists @ wotique standind fiusction g on
I Iﬂd shadorw of £ satifring the relation gla) = *({ (a)) for cvery standard element a

-gjm,mmmmnmuwwmmmw
‘elements of A, and thus may be deduced from propertics of the inital function /.
Kw":g;iwfhﬂfutmlm clements & &4 1 B, g(a) may be quite different from

A justification of NSA is the meta-theoretical result (proved by fnitary arguments)
that the theory IST is a conservative extension of ZF. This means that if an internal sta-
tement T a theorem in IST, then it has also a proof within ZF, hence it i  theotem in

. Thus we may legitimately use the powerful tools of NSA to prove any theorem
which can be ﬁmuhwdmﬂwhmq: of classical mathematics. Often, such a proof
s easier 10 discover than  cassical one. This s due to more direct and natural external
formulation of the wanted result aftes transicr, The acconomys depends ausicly on how
much idealisation you may use. In this paper—as. ehiewhere in the probability
(see €. IN1] and [N2])—the main past is plaied by the decp consequence (il of the
idealsation sheme.
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