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On Two Nonlinear Models of the Vibrating String (**) (***)

Sussanr, — We new nolinear mosdels for @ vihesting string, sarting from
mwh&-wbmmm wress-sirain laws, We prove global
and s ot the Cach Dkt bl st e iy e pmiel
Idiwo(lhrhpfvzﬁumh&.ly we present. some. numerical

Su due modelli non lineari della corda vibrante

Rinssuero, — Vengono propost due modelli pon lincas dele corda vibrante, sssumendo
come pun  pucn v el drca d o Greupon o i s fr delomuions
on lineare. Si dinostra un teorema i caitenza in grande per a sohuziane di un probe-
ma di Caschy-Dirickler m:imhnm&mm,apﬁgwwhn
solazionc numcrica. Da iimo, vengone: i alcusi roulats numericl

1. - hvmoovcnon

I previous papers (1] and (2] it has been remarked dhat in many cases the differ-
ence equations involved in the discrete models proposed by Greenspan (see £i. [3], [-]
and [5]) may be considered as a discretization by the finite difference method of

a&mnmmmz]"hmmmdmhmmmwn
s possible 10 use the Grecnspan technique in order 1o obtain new differential equations
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Following this approach, we wil obtain here two nonlinear differential equations,
md:llmgd\emmnhcibunmm(‘med-(duerda.mrbﬁm:n[lnon]nw
stressestrain liw: namely, we & quadratic dependence of the stress on the
mmuummmn..m:nmgwmdmdms:mmocpmxlu OF aquas.
moleculess, then the physical law linking the interaction between two adjacent particles
and their distance is a quadratic luw.

In Section 2 we deduce such differentisl models and make some remarks wseful
both fot the subsequent analytical and numerical study, In Section 3 we study the two
differential equations and prove existence and uniqueness of the solution of the associ-
ated Cauchy-Dirichlet problems by using techniques similar 10 the ones adopted in [7),
where a class of models for the vibrating string is studied in which the stress grows at
most linearly with the strain. In Section 4 we study the subility of the difference
schemes obuained by the discrete Greenspan appeouch («leap frog formulass). Finally,
in Sestion 5, we give some numcrical results ealculated in different realistic conditions.

2. - DISGRETE AND CONTINUOUS MODELS

We consider, as in [1] and (2], a discrete string composed of an ordered finite set of
4 + 1 particles or <quasimoleculess (see [51), Py, Py, ..., Py, with mass m, location of
which will be identified with the location of their centres Cy, €, ..., C, in the xy-plane;
et (3,34 be the coordinates of the centee i of Py We sssume that P, and P, are not
in motian (sering fixcd at both ends), and that P, {1 = 1, ..., = 1) ase frec to move:
only vertically, namely pacallel to the y-ais (sransversal vibrutions). If ! is the distance

theﬁmedpol!hles?nndp length of the string in the horizontel posi-
oo wesee di = L +andx, =i, i . Newton's law for the parsicle £, st

I’ml.m:(..lho‘l'l“‘fw‘ll

where:

Fierh T4 H“I Yok~ i
V’J.\’ +rena = al VI = af

df_nmmhv'l'.d‘slm:bennmpnm(lm?,.,n‘i?..ﬂ‘,l}xmbcmpam
cles P,and B, ,, andf, s the external force scting on the partcle P, ut time 4; parallel to
the y-axis; actually, T2, is the interuction force between two adjacents quasi-molecules:
Tn what follows, /, o will be ghen by the weight and the air resistance, ie. f, 4 =
= =g = 4, where g it the gravity aceeleratian, 7 the viscosity coefficient v, 4 the
spece of partibe P 1 . However,the thearetial reais of Section 3 hold on o for
more general forcing terms.

Fa= + e




— 2B

21, Giwodel, Firsly, we sssume that the imeraction berween two adjacent pant
 cles, a5 suggested in [3] and (6], is expressed by the law:

. _'ﬂ,_n%vm:'ﬂt...-ml’“ i ‘[\c’b’ﬂr:,r‘ml’);]'

VoG, (\."k'w.,.—y.,.,m)’
o vy x I

lengeh /).
By using the well known leapfg formulas:

A
Voaa=viot Fae,
] Sekvin™ Puk-ia+ s
| Fiker =t Mo,

* and working a5 in (1], we obtain the discrete systerm:
oo™ Buabdienn o [Hoid = ikt hoia
> il 3

I-a+

e e R e

B T et M= e = ﬁ-nﬂ:x%,&mm(ﬂmykmulﬁﬂr

 difference scheme of the differential equation:

W #%% [u—-)ﬁnmdu(i’- ]]—%s——,‘h%.

that in the following we shall call Grmodel,

d Rmaarc 2.1: Bmwddrmm-nncl,:olnmﬂ,mww
ko mrarcover, for & = O we bave the classical Dillembert oguation.

Resare 2.2: mmmmhwhwamw
 strain law, ie. @ law in which the texsion in the strivg grows quadnstically with the defor-
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itions: such e is eypical, i, of rabber mustersal in the case of swall defornsations (s that
phenumena. do not oceur) (see fi. [131).

Reoane 2.3: The chotce of & in (1) e a cortain sense & adegres of freedommn Mwe
cun spend i onder to make the adipted sevess-urain laco fit with good appriximtion the
Laww of the matte of the string, deduced by physical WIMFW&WQ'M-

wbtained, considering in (1) terms higher thon ibe quadratic one.

22 Momodel  We want now 1 assume cxplicity, considering the strain, a nonze-
o value for the proper length of the string fy (ic. for the length st which the stress in
the string vanithes—sce [9] and [10]). Therefore, the interaction force between two
adjacent particles that we assme is:

T’_.x}?r[[m‘hl“""‘_""F—"7")(1"”
[V Y .',,”
; [(V-h‘Hm sk ]“7“{
VT G iua? ;v]’
“(——J ==21)

wmk=!4’(‘f_m.nuammmcimumm&ummw
2517
lmear Hooke's law, ie. K(Z = fy) = Te: in this way, it i casy to verify that Ty is sill the
suess n the string in the horizontal posiion with length 1.

By operating us for the G-model, with the assumptions (5), we are led to the dis-
e mem:

Biker ~ st riaoa
R T

4 — 2yt
=K{[1‘[1—z}—z)1. #—ﬁ(u—n—r‘ﬂx

®  m
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 which may be seen as a finie difference scheme of the differenrial equation:

'hn)"‘

@ ;’-Ryu - w.z :.{u-a-._ 2

iy
itz

3 &Yyl M. M &
vl () 3 - e A g

st ot pop ke

 Besamx 25 Seing ¢ = 0 i (7), . supporing that the stressstrain law i lisear, we
0 chtsie che squation:

&
ME & 2 Y oM ¥
TarmMla b Eoi] [ R s

z)
 for which, therefore, the. (8) bus beew proposed

 of view in [11] and (2], as & nonlinear model for perfectly elastic (1. acconting 10 Hooke's
M '} trammersal string. vibrations: we shall refer & equation (B} as «A-model .
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Resasx 2.6 Asdmm[:],ymﬁm:quﬁonmmwww
of an arbitrary velise 2 of = ,mm,&r&wqfal.n&mm

1+z:,’
eea) Vie
I we dvant tor ensure that (9) i positive (that means (7) to be a byperbolic equation), it &

easy 10 30¢ that 0. & < 115 o lomper sffcient condition for every value of Iy % I; wamely,
we bave fo suppase:

(] l.'(l—xl—znf,:—i.(u-:a—;—)

i
a0 e<m
Ma-hmm&imu&dﬁnzi;l,hnSewawﬂmm&bﬂmhh
(10) bolds i Mool togeber with s cormqponding in G-l i 0% < 1, when

prising exisience and wnigacness of auchy-Dirichiet grobierns aocisted to o equations,
during the wudy of stability and in pecfurmiing natericol experinsents,

Rusame 2.7: By proceading as dowe in |21 for the case =0, i is possible o see that the
discretization emor of the discrete scheme (3) for (4) and of (6) for (7) & O(3x"+4¢%).

3. - Asavmic stuoy oF Ge avo Mevoness.

We now want to prove that, under suitable hypotheses, the Cauchy-Dirichlet |
problem:
00 =y(.5) =0,
un ylx, 0) = =),
& .
3 00 =5tx),

associated to equations (4) and (7) has a global unique solution, We will refer to the re-
cent papers [7] and [8), setting = == 0, for. simphicity () in these works the ]
equation (2): r

2 ;,-A[ { ]+ﬂ: =,

) 1 ca o iy hat i ch cabe g = 0 (a3 0, te Thooeesns here proves comtine i |
@) For the: sl of simplicry, i this Section we set M /L= 1




3 Gl -G kDl =Gl +G,  0<ys1,

BlgeN<w.

d:amwmh(}nﬂlmmmwmumm
@ the Momodel in an immediae vy
© 31 Gl Aconding to(12)r e he s f Gemodel
s ba=az+c(Vize)e
s possble to verfy with 3 staghforsnad cakelasion tharc
- ue Cslg* - Cos B8N S CH1EP + G,
1428

‘ﬂ” BB =A+C e
Visg

‘]ht dlearly do not mk& 41
 seung'= 2 D-; 2@ = (0, Tou} % (0, ), and sssuming that (2, x) & L*(Q),
 we wil say that y is n weak solution in Q of (4)(11) if:

a) 3l a L= (0, T HI N HY = (0, T L), 5(0) =

B) 51} satishies, a.e. on (0, T), the equation

n

08 [{ =08 + (D3 DB) — (fibhshdn +
N

+y'te), bl — (8,610) =0,

Wb(r) e L?(0, T: H ") NH'(0, T; L7). In (18) we denote by H"” the dassical
Scbolev space of functions & L’ wﬁmmmduduir and by
e ).:.ammmmundw mf.u.h,md(m.xuu then.
B{E) e L*?, so (18), with the notation meaning.

hmdermpmmmqunm—nfﬂnddm.uhm:uuﬁw




consider, peeliminarly, the cquation
e B 2 4
(19) ) ar'(au a L ez, a0,

uﬂﬂ:-mwémum(ll)wid\dxﬁnhumdﬁm
&y &

200 i

comesponding 04 rod hinged st both ends. The wealk sohition of this problem will be

defined In. the following, chvious wiy:

a) {eye L™ (0, T HENH ) NH = (0, T; %), (D) =

bab 3te) savisfics, ae. on (0, T), the equation

@0 [ (=0, + Dy} DE) + 207, Dy = (£ khabdy +
¢

Fy" (o), k)l — (8, k(0D =0

Wkie)e L2(0, T; Hi N HY) NH'(0, T; L),
We arc now able 10 prove the following Theoress.

Trones 3.0: i xe HY(0,0) DVH?(0,1), 5 L2100, 1), there exivs i Q a wniguic
weak solution of the problem (19), (11), (20).

| Proow: We give the proof of this theorem in a schematic way, focusing the atten-

tion an the steps which canaot be taken directly from the correspanding Theorem in
| [7). The existence can be proved with a classical Facdo-Galerkin method.
)

i) We consider an orthogonal basis {*), orthonormal in L7, denoted by {z;) in
%ﬁﬂiﬂwmx.ﬂp,ddmpmmxww b
spanned by {4} when j = 1, 2, ..., 0. Setting: o
@ y.r'_iy,um
we consider the system of erdinary differential equations (in ), that the cocfficients ¢ i
‘have 10 verify to solve the Cauchy-Dirichlet problem given by (19), the first of (11),
and the initial conditions y, (0) = a, and y,(0) = 5,.

i) Mltilying the ;* equation obtained i the preceding siep by ; and adding
for = 1,2, ..., by a standard use of Gronwall's lemma, we obesin the following,

€3 In the soquel, we set H'=H'(0,4), L? = L7(0,4), etc.




.
fundamental upper bownds for the solution y,:
ks M,

M,
=k
(23) Il = v L
lya )l & My
¥re (0, Ta), where M, are constants depending anly on the data. By well known em-
* bedding theorems, it follows, pussing to the limit for w — = , that there cxists « subse.
‘quence of {y,}, sgain denoted by {r.}, soch thar:
24 Jim (e} = 3(e)

i the weak” topology of H * (0, Teu: L) N1 L™ (0, Ten; H* N H3) and in the strong.
* wpology of L*(0, Tex; Hil.
Marcover, it is possible to shaw ([7]) that:
. (¢} e HU (9, Tous (A NUHGY) OL= 00, Ters L)
im0 =50
in the sirong topology of C°(0, T, H ™)
i) We now want to show that:
r ‘1
| [‘v‘l +DJ.‘Dr.u—&J;74U V1= Dy Dy Dieddn
i i b
belonging o the Functional spaces indicated above. Observe that:

a9 U (VT B3y D -jj'mmman|-
. - U‘[‘\[;Tnﬁmy.-mmaa+
a J j VITDy - Vi+ By k| <

i.f'

+ [ [ IV Dy = VI+ Doz ook 0| .

o

f V14 Dy3 LDy, ~ Dyl Dk | dedy +
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Since y, & H?, Dy, & H', we bhave that, for x« R, Dy, € L" (Q). Therefore, the first
term. in the right hand side of (28) has the upper bound:

@M [ j 1Dy, ~ Dy Ik ded; < M f 12y, = Dyl 10kl

and the right hand side of (29) vanishes when #— %, by virtue of (24).
mh&mﬂmdhﬂimwd(mwwumhn
easy 1o verify that V1 + DyZ — \/1+ Dy*
ﬂnm.fue.nmnny that:
(30) (B(Dy,), D) — {5 (Dy), D).
Hence, passing suitably to the limit, we have peoved that y is a solution of our
problemn,

Moreaver, the solution is unique; suppse, in fact, that exist two solutions, w and v,
ond consider 1o = ~ u, where, by vinue of ¢ and &), w & L™ (0, Tay: HY N H?) 1)
AHY (0, Tgo; L), 10) = 0, 10'(0) = 0, and satishies, a.e. on (0, Ty, the equa-
tion:

B0 [ { =G, ¥+ 5Du) ~ bD0), D) +
4

+3D%w, DMl (f, kb + (), k(1)) = 0
Wit} e L(0, T; Hi 0 H?) N H' (0, T: L?). Let G be Green's sperator with
10 =D, relive to the homogeneous Dirichlet problem on (0, /). Assuming in {31)
Giv" as test function (which is obviously possible), after some calculations we are led 1o
the ineq
02 e+ Lty + [urm bIDy), DGw')y2dy €0,

Now, observe that, if Dye L™, ako V1 +(DyP el and that, by Lagrange's
m:

V14 0uP = V1 + o7 = | D]

s0 we can write the following inequalities:

) “’]”\/1+(mfu,.cww-amwf'fvx«,m,foocw.,-m.,|4
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s[‘[‘ V1 + (Da P | Dl G 20" | e +
de

+ [. [' |V +(DaF = V1 + (DrPIDW| GV | dedy &
0

<M, [ I 6 ' lusd < M [ oy + ' i1
i ]
yaq.ww,h,.m.dwmmﬁcmwd'.hm-.wh»ww,u.m
olution | unique. O
‘By virtue of the Remark L1, we obscrve that 5(2) > 0, be/ b{£) is strictly increas-

ing. This fact allows 10 s o clim the following existence Theorem, proof of which i
immediatly obtained (see [7]).

Tionsm 32 Fxe Hi, e L and f & L¥(Q), then there custs ot last o soliion
of dhe problem (4), (11). ©

Consider, now, the problem of uniquenéss: difficuhies relevant
- examined in detal in [7].
We sturt by proving some wudliary lcmmas, unalogous to the ones given in (7).

Leamaa 313 ﬂ'r.uﬁem&:dam-qf(l‘?l (11), (20) tobich exsits and &5 wnrgue
virtue of Theorem 3.1), satisfying the intial conditions y,(0) = =, e H; HYOHY and
0)=g,6L}, and xo— a2z in Hi, 8,85 in H7, m&n §3, twith >0,

'i_m,n-yi
i the stromg, opology of =7 (0, Tews H=") NL® (0, Tau: HiL
Proos: The proof is analogous. t the uniqueness part of Thearem 3.1. Sct 1 =
=;,—:,,-nd.uirhd¢mmduzr-d;ﬁdmd;emo[nﬂm}lm
the cquation following dircctly:

(34) {0+ D%+ Dibty)) - Dblya), Gu') = (6~ D ye Gu')
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where w(0) = 2, — =z and '(0) = 5, = 85, Hence, by &,) and (33) (with y, and y; in-
siead of w and o), we obuain:

o3 Ll %Hw(l!ﬁq = L'l +

o
+ [[ Wtor— b0 61 + G- a1, w4 <
¥

i Laiy 3
SJ!.(IW Bt kg My €12 = 81+ L bo'(O-1 4 2 DOl
ae on (0,T).
On the other hand, by (23) and (25), we have, ¥4 5> 0:
rlle=o.rmgr, < My, lifen o, ren € My,
1l M,
Iy o,y & My, Ib.l‘-‘..::msvj.
1Dl o, 71-20, % My,
where 0<5 < 1. It follows thar, when 2— 4,
37) lim w =z
il
in the weak and weak* topologics corresponding to (36). Letting then & 5in (35), we

obuain, by the usual compactiess theorems, bearing in mind that 1o'(0} — 0in # ' and
(0)—0 in HJ,

o8 Sl + £ ||t(liﬁq SJC.(II: Colis + et
Therefore, by Gromwall's lemms, z=0. O

Now, denote by Uy the set of weak solutions of (4), (11) corresponding to the
knmxmf.ndbyﬂ,urmnfwuk,dmmom)uumw.. tof, which
are obtained by the wlmmu[dtw‘btmmdpd:kmug} (1), (20), when the
Bexional rigidity ¢ tends 10 sero: we shall all such solutions appracimable soltions.
Moreover, we shall denote by L? the subspace of L(Q) defined in the fol ey
Jet {g;} be # bais in L¥(Q) and f the clements of {4,) arthogonal in L(Q) to ol the
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elements u e Uy. The remaining elements {27 } form a basis which spans L7, Finally,
we shall denote by ¢ the convex set defined as follows:
pel=(0, T:HE ) NH"*(0,T; L),
'(¢) € L2 weakly comtinuous on [0, T1,
W)=z, 210)=4

ht1)upmedum|¢w9umnm>.(|uuommxumw sctiing By =
(Dy), can be extended & B, ie. there
el t eust  weak solion'y & 2 /& B on the other hand, iy & %, there exims
& unique f&BAC, such that y e Uy

The proofs of the follwing reo Lemmas can be found in [7).

Lenws 3.2: Let Uy be the set of approsimable solutions comespording to the knoun
mrmmu,m.mwnﬂfﬁmmumnumm
L3(Q), weakly® compact in 3¢ and does ot comain any isalsted ponts. O

Ix.mmn Lot {u} be a sequence @ Uy, with S 0; then {u.} cannor be a busis
E

We can now prose the following uniqueness Theorem.

09

Troems 3.3 Under the asumptions made in the existonce theorens there exsts at
mast ane approsimabie salution of (4), (11), for nearly all kv terms f & L*(Q).

Proor: We shal follow the irace of the comrespanding Theorem in (7], To bein
with, we remark that si th holds for nearly all f, that o 0:
on the other hand, ohserve that if xix) = 8ix) = flr,x) = omn--mb.uwm
mable solution is y = 0.

Mateavés, we can assume that Uy centains & sequence {13} in fuct, if Uy contains »
finite number of clements, the Theorem is proved, by virtue of Lemma 3.2, ma:-

menis of {1} cannot be linearly independenc in L in fact, n.-zm,

(k=1,2,...) were linearly independent in £*, they would mmtt:hntlnz’
wm]mhmaonnuﬁhiﬂadhbywmuumlmmk
Therefore, allsokions are lnese combinations of p Mwm-e

f=ByeBC: on the other band, if / eBAX, there exiss at least one ye UjN 2.

Now, the busic idea of he proof s the following: ify & U, then, by Lemma 3.3, ¢
ﬁu,nuuonl;wmuu:.anummwfu,nmmdﬂ,
(and consequently of U). The Theorem will then be pooved if we show that, for ncarly
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all f&13(Q), there do not exist any solutions that are limit points of Uy (ie all
solutions ere isolated).

Suppose, therefore, that there exist two weak solutions, i, u @ 3, 1 Uy, with
limit point of Uy und & L7; we can then set

(40} “-lgl ayryy ﬂ=‘$lﬁpn- ne=F -

On the other hand,
“@n b1Dy) ~ ${Du) = (Dv — Du)b' (DY),
with Dylx, 1) = 3, £1Duly, £} + (1 = Alx, 0) Dolx, ), (0% 2% 1), Observe that

I“‘z‘ sr+all,
wifz ]."lhhb‘hlif-'lﬂdmﬂdu(ﬂﬁh!ollm!hu"lwlﬂb'lm)z
eL”(Q)

A straightforward caleulation shows that the coefficients 7, satisfy, Vb & (Q), the
equation

w2 £ nl. 5+ (Drron, Dy =0,

where the second he left hand side of (42) is meaningful, beemne every func-
o in the crochet € L. Tuking b = by, by ..., b, lineasly independent functions, (42)
reduces 1o @ lincar, homogeneous system of p equatione in the p unknowns

Rty i By

.
(43) 2yl b Db (DR, DBN =0 (i=1,..p)

with determinant of oeder p,

44 Gy = det [l b,) + (Dab' (D), DB ).

Since u i u limit point for Uy, it must necessarily be G, , = 0 3 in fact, i G, 0, then
by continuity, G,,, # 0 Y in a sulficiently small ncighbourhood of u, but, in this case,
system (43) would admit only the selinion 7; = ... = 7, = 0, ie. & =p. The coci.

cients 3y, .., @, of salutions « 3¢, which are limit poinns of sequences of solutiors cor-
tesponding o the same known term must therefore satify the equation

det [(r:.é.) + (o,-, ¥ (2’ .,-ur,-]. m.)] -




Sanina
Bl i (n:.s (é;. .,n.,)m) -J ms‘(ﬁ% u,nr,)m,ao.

observe that, in our case, the functions gg, are analytic in
Mmmzmp,-ymwln.cr- powsbi
m! I-y-hmd bt the Finctions 2, are linearly indepetdes Therefore, it is possible
Sy in such u way that

=8 0D b) = du

ym:.mmdnmmudm ri.nmmghﬂx,l!\h:
of T Alember: equation 4™ B 0D 0, wih il

(xa)u:, m(qs)wmummm In the sequel, we shall denote
307 such s, by 5 the sets such that s, £ & 6, We may then conclde
d:mnmoh:eduk sehich form part af a set 36 ll belong necessarily

3 ummhw@—])&mmdn-nﬁou{‘,.“of!qlmlﬂi On the other hand,
the sets 437 may contain pon isolated weak solutions consituting a p-dimensional set

Let {1} be a basis in 36, with g (¢, x) = #(é, ).
I meas(®,) >0 ia 3, then, denoting by 11, the sct of p-dimensional manifolds ¢ 2
i which do oot coatsin g;

n,={yex.a=’§ :.;f].

there exists necessarly one marifold I77 such that the set #, 1 117 has dimention p. By
efiiion, Hareve, 17 coincides with some set 36" and we bave shown tht 8, N
ag'"-m-u—xmmamunu.m(o,)muau
Repesting this peocedure for f = 1, ..., we may therefore conchude thit the set
#= U9, has measure zero in 3¢

Consider now the sets Bt and B, constivuted by the known terms
tespectively 1o cventual non isolated weak solutions and to ll weak solutions. Since to-
each fe 1 there corvespond infiniely many weak solutioas, whil 10 exch f BIC\B
there corrcspond at most a finite numbee of weak solutions, it follows, by what has




been proved sbove, that B has in B3, and alsoin L2(Q),
since BXCL (0, T;H %) + H-1(0, T; L*) and L3(Q)3(L*(0, T; H-4¥) +
+H0, ;LYY

‘Hence, with the exception of at most # set of measure 7cro, to the known terms fe
& L*(Q) comespand isolated weak solutions; us we observed, by Lemma 3.2, this proves
the Theorem, 0

Resai 3.1: As cbscrved i (7], the proof of Thearem 3,3 can be extended 1o amy
solution abtstned ar suitable limit of an spproximate well-posed problem, depending comtin- I
wously on @ redl paramieter, and not only by the approvimsate problem of the rod. i

3.2. Memvodel In the M-model we have, with respect 10 (12):

+c(m)e

(48} bl =As-B

where, according to Remark 1.4, b(£) is still u strictly increasing monotone function,
provided that ¢ sutisfies condition (10}, In order to extend the Theorems relative 1o
G-model, it is easy to observe that b(£) defined by (48) has, with regard to the proof of
such thearems, the same properties as (13) (4, so all the cxistence and uniqueness re-
amﬁwﬁnmmmmm.“ﬂnmmmu

4. - STARILITY OF THE DIFFERENCE EQUATIONS 1

41, Gomodel, We begin to study subility conditions for the equation (3), setting
a5 usual (see (12], (1) and [2])

Yibe1 = Fub-1
L T T :

Following what we have done in [2], we linearize the nonkinear term

Fiank = Yis BN St /0 N (6 S S 'S b (TN
(Bt iRy e Jr+( )
in (3) by using s Taylor expansion truncated at the first derivative of the function
#2) =2V1 + 2, In the neighborhood of a suitable — in a sense that we willpoint out -

{‘llukulkuem to verify that the further term added in M-model, ie. B ——=—
satsfics the assumptions (13) and (14). v'ne’




valie 2 of , obtaining

~di-ie
I

o #y.,...-ar..n-r...d =

e

142 | Yora=atdiin M M _Tke1=Fiax
LTy 2w

‘H[ll--nr e 2

Equation (49) is- obtaived by writing. ple)) = ¢ (z) = 9'(z )z —22), with 5y =

Fers—Yes s
et
Lot us set:
1 1424 | a2 20-n
r= L l-ae el !
M, u[ Vied ) a l+-£
{50y ‘u
l-l;
4= 5= T
l+w;

%=l m=

(51) becomes therefore, in vector form:
2)




R

where [ is the identity matrix, B= sl and

As is well known (see fi. [14]), the eigenvalues of [] are given by the equa-
tions:

535) Mephte=0 (f=1,2..,n)
where &, =28 + 2g cos L5 m:kamhﬂafﬁlnwd«lodwnnﬂmhl
way that |4] 51, mmnuomenwuulm,.

we preliminarly
case with 2 = 2= 0, ie. without domping, In this case, 2p = 2(1 = ), ¢ =r,5 =1,
and the (55) becomes:

=
s+

A+1=0.

156) 1'72{1 = 2rsin®

Since the product of the roots of (36) is equal o 1, we can obtain at most weak stabliy
impoing thae suc ros s gy, confgae, wih ot 1, L. imposing |

gl == 4

[ 2rsin 2(1"‘”]}‘ 10, 1

which is lways verified provided that: |
57 rel.
Expliciting this subility condition, we obtain:

(38) &=

Resnwx 4.1: Equation (58) bas surely semse, becouse of the condition e [0, 1) that
ensures, as observed in Remark 1.3, the radical o be positive. Morsover, for « = 0 we bave




—219—

the saell ke sty condition for the D'Mlesbert equstion, o1 was to be expeced,
ohil, or ¢ 0, (38) becomes more resrictive being -2 2 1,

14z

Remanx: 4.2 As aiready observed i (2] with reference 10 (8), the denominator of the
right bund side of (58) incresses with 2. Therefore, a sieple and, at the same tine, spes
sancisticn choice for 2 i

o h“m(lj‘“ J.” ‘
Inidead, if i the case trened in (2] i wes pasible to cansider & time: inclepesmient pessinpistic

condition, passivg to the lintit for 24— ® . this procedure s not applicable to. condition
(38): dn o, by 10 doing, we swoudd bave 4% 0.

Yierh™ uﬂ
Ax

Finally, it is possible to verify that o the dunped case, (58) 34l ensures stability (at
least weak, and strong if = s large enough) ).

3 Ml s it U o wieed I g b

that, not being of p
uuvuh.llnmjvehxe bl soudiica wimlogout 1o (58, where e do-
nominator of the right hand side i

- [E LR 1424
(60) J" f_e[u 2l 7](@ V]T]

for which all the Remarks made regarding spoudi :m-uwu.:m
g of dumped case

ULl = o) = 2ol

Resiank: 43¢ I [2] & hes been observed that, hﬂuxofﬂ!mmd‘ﬁe
’-Hcmmdadmﬁd:m% Mh-qﬁl
she leap frog formulas, we need to maak i omder.
eristality of At 50 that At & veally & 80y vmmnmmmm
ther variahulity, we are led & the condition:

61)




! 1+2d
y==Th{{l=-d+:
M [ Vi+g

in the case of Gmodel, and:

. PSSy N Lrad
r [lftl )= 2he] - ln!ll = }(V'H‘_) m

for the Morsodel. In oo mumerical calcadations we bave ahvays waed values of di, which
verify condition (61)(%)
Restans 4.4: Folleig the pers [13] and [17) i contd m ont that our solutons

the contideratians made by Lax in [18), thic

Tn fact, according Lax's work, if we consider the equation:

H-el2)3

dmmmmﬂmumm%mdkﬁm::

1
i a2
(0 max £ |
Homever inour cae, e hase S (0 =, g0 we b that i it -l

such discontinuities do not arise.

5. - NUMERICAL RESULTS.

We now present some numerical results sbout the two models considered. Accord-
ing to Remark 2.2, we made our calculations considering a realistic case of a circular

(%) Eventually, can be introduced o maximum vakue for 4, in order o ensure sufficient
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Fig 1. -~ Bebwviour of G-model with « =0.9 tsalid) and ¢ =01 (dashed) with triangular condi-
tions, from 0 5 meec.: the icresse in the frequency of oscillaions i snal, bu quite
evidens.

rubber string with { =0, 5 m, /; =0.25 m, diameter of the pormal section = 2 mm,
m}uﬂ./m’.r.-mﬁnﬂ&mm- where the breakage stress is
20 N/mm’.

Generally, G-model and M-model give very different resubs, but this i not surpris-
ing: in fact (see [11] and [2], even if in a different physical casc), the introduction of &

0 es s
1 (dmsbed) with riangular eond-

o e 01 oms 62

[T
Fig. 2. -~ Behuiour of M-model with ¢ = 0.9 tsolid and =
thons, from 0 10 5 maec.

=&
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Fig. 3.~ Behaviour of Gomodel with ¢ =05 (s0fid) and Drmodel (dashod) with sinusoidal
nisial conditions, from 78,00 to 7950 mucc.

non-inill value of Iy causes substantial differences in the behaviour of the string, even if
=0, ie ulnear stress-strain law it is considered and G:model becomes D'Alembert
‘equation (D-model), while M-mode] becomes A-model. Acrually, if the deformations
are snall, the differences berween G-model and D-model, and berween M-model and i
Amodel are small w0,

We present some graphics obtained starting from different initial conditions, by

3

085 &1 @13 63 @3 03 08 64 64l e

Fig: 4. = Behrviour of M.model with & =03 (sobid) and D-mosdel (dashed) with sinusoidil
fmital. conditions conditions, from 74,00 w 79.80 msec.
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%0 o5

Fig 5. - Behavioue of the damped Gomedel in 100 msec. (5 =0.005 Kgfsee; ¢ =03)

using the loap fiog formulis iy the discrete equations (3) and (6): analogous results, ac-
cording ta the precision order of all the methods, i.c. the second, can be obtained em-
ploying the Method of Lincs with spatial semidiscrerization given by (3) and (61 and
tegration in time achieved either with & method propased by Van der Houwen and
Sommejer and adopied in (1], or with a Predictor-Correcioe. method

Namely, we consider:

1) tefangular initil conditions, Le. the conditions of a plucked string: the dis-
placement of the mid-point of the siring & 0.1 m;

a4

Fig 6.

Behsiour of the damped M madel in 100 msec. (5 =0.005 K
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2) sinusoidal inital conditions, in which the first sinusoidal mode of the string is
excited; in both cases, the initial velocity is equal to zero,

In Figures 1, 2 we compare the behiviour of the solution of the plucked siring ac
cording to the G-model (Fig. 1) and the M-model (Fig. 2), with different values of ¢
{e=0.1 and ¢ =0.9(7) and g = 0; it is possible to observe that when ¢ increnses, the
string oscillates at a higher frequency; in our opinion, this is duc to the fact that when «
increases, the tension, that brings the string back 1o the horizontal position, increases.
wo {in fact To(1 = e+ e(1 +27)" (14 227)) > Ty and grows with <), causing a
more rapid oscillatory movement.

In Figures 3 and 4 ase ilustrated some solutions calculated starting from sinusoidal
wonditions (a(x) = ~0.1sin (= /1)), with ¢ =0.5 and ¢ = 0: in addition to the increase
of frequency of uscilltions, it is passible 1o observe the arising of modes higher than
the first, as already observed in [15): in fact, in this case, superposition of the effects
does nat hold. The appearance of the higher modes is more evident in M-model, where
the string loscs very quickly the initial sine configuration,

In Figures 5 and 6 are ilustrated the solions calculated according to the G- and
Memodels in the damped case (z =0.005 Kg/s, ¢ =0.5): in the preceding figures we et
£ =010 bener show the Gited effects, but generally, it s clear that the choice ¢ = 0 i
more realistic.

{7} With the yakues adopted, condition (1) becomes « < 1
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