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Semeuars. — Nell'ambizo dei aMovimenti Minimizantis, recentemente proposti da E. De
s, consideriamo wn problems di ; it

Tn & recent paper (sec (DG]) E. De Giorgl has proposcd the idea of minimising
mosements 15 useful tool o wify many diffecent problems.in Caklus of Vasitios,
combining

and jteration a lo of interesting cxamples receive a variational formulation which allows

Tn particular he suggested some conjectures, which very naturally lead 10 wppeozi-
‘mation problems for variational inequalitics of evolution; we study them in an abitract
Universit deghi Sto.

da Ennio De Gi uno dei XL
soppomied by MURST. hevegh 60% fusch wad by




o
formulasion of the iype
0.0)  alule),w’(r) = o) + blule), u'() — 2} # $la"(0) - ple) =0,

VoeV, ul0)=ueV

where V'is  Hilbert space, p: V] — =, + = 18 8 proper, couves, lower semiconiin-
b: Ver-R-turmnuHMhm&nd:lmmmnd
positive but in geveral not coercive,
De Giorgi's approsch to this equation is to choose a time step £ = 1 /2 > 0 and to
look for 4 step Runction . (¢), constant on each interval k=, Uk + 1)+l & € N, such that
u,(0) = uy and o ((k + 1)r) sohves the minimum prablem:

suto)]

n k) =ulr),  in V. Yee (0, + =]

(0.2)

v[%‘“‘"” + bl ke, 0+ :;(

i
03) 3 i

we call & & minimizing movement sssociated to the functional (0.2) and the equation
),

Under suitable hypotheses.on ¥, 4, & we prove some caisience, uniquendss und
comvergence results from which De Giorg's conjecturcs cun be obtained as a special

ease.

Equations of this kind have been lurgely studied in these last years: just 1o quote a
few examples, in [DL] and [Br2] 2 non zero datum fif) s considered while in (CV] and
[Co] a double nonlinearity s studied and a faily complete list of works an the argu-
ment is given.

Tt doesn't seem, however, that anything like we did already exists in the literature,
duc to the lack of coerciveness of the bilinear form 4, t the unboundedness of  and
above all to the srong peimwise ctimate requiced by (0.2).
and coavex analysis, whose tec-
siques are developped for cxarope i Bar), [Bet] und (ET) and 1 which we refer for
sdditional elated matecal. On the orher hand the stablty and convergence esimatcs

13; the proofs are given in the following sections

We'd like t thank Professor L. Ambrosio for suggesting us this argument of re-
search and Professar F. Breazi for his support.
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= GENERAL DIFINITIONS AND STATEMENT OF THE RESULTS

the following R will be the extended real line (R = RU {~ =, + = }). Lee §

 topological space. In [DG] De Giorgi proposed the following

Dernmon: Let F:11, + 0% Z % 5 % S — B and . R — 5 we sy that u is
vizing movement associated to F and § and we write w € MM(F, $) if there existy
n[xz-sm} that for amy e R

Lm0, G = ute)
md for amy A €ll, + Lk e 7
F byl b + 10, wli, 1) = min FOL ks, w03, k).
s o suppose hat § = (R, v Ftion i space o F i
tiooal & follows; in this case we deal with gradiont flowo type problems snd
ot (DG] mgacecd the folowing
- Congroruns 1: Lot Sull. 2) be given; i we set
J1f-ml FE=0,

Fakfe)=1"
JavrE Gl -alra rkso,
&

& MM(F, §) if and omly if w: B — § i contimiones, 3(s) = o for any ¢ % 0 and, set-
wlx, £) = mle)ix) v solves

']eﬁ';) Tov m R X104l
Conpcrime 2 Let 8y, ...,d, € L™ (R") be givem, if we defime
J1r-ul & fhso,
an Ak fo={" &
[1ori-2EaRrasiiata viso,
bl 7

them u & MMUF, 5) ifand ondy ifu: R = § s continuous, u(2) = s for ay 1 € 0.amd, set
ting vl, 1) = wle)ix), ¢ soloer

.6 Eador Ball o Rexw4al.




Coseerinn 3: If we put
[ 1~ mpas Fhs0,
w

wn FOukfog) = J‘lvﬂ,*“\f—llxﬁ Fk>0, fog,
W

+ @ athensise

thert w & MMUF, §) iFand oy f 2 R — 515 contimaoss, ul2) = s for any ¢ 0 and, set-
fmg vl ) = wif)ix), o

(18 2o RO, el

12 Remazk: In the sbove stated conjectures it must be cxpliined whar is the
weak sense in which equations (1.4) and (1.8} have to be understood.  ®

1.3, Resask: The above written (1.3), (15), (1.7) can all be scen a5 genesaliza-
tion: of the basic functional

[ V7= sl e ik=a,
49 Aok Lo =1,

[ ISR walf gl ds i k>0,

5

Let us observe that in these cascs it is sufficient to siudy the lmiv (1.1} for
20, =

Actually all these conjectures naturally fit into a more general and abstract frame-

010 V Hilbert space with porm |+ |,
i V' its dual, (=) the duality pairing,
o~ #: V=R U {+=} proper, lower semicontinuous, comvex

Dip its domsin, 35 its subdiffereatial, * its conjugate ('),

(1) Let us recall that Dipt = fra V:ple) < + o) o 0 and thac Voa V. wa ¥
wedpls) = (ma-esgki-fe) VeV
5% V'R s a proper Lac. conves function defined by
ote) = mple,o) — gl VwuV




=

(g [ #00) Henn Vi Vs R contimious biliear forms
" | to which the linear continvous operators A, B: V—V* are associared (%),
al, ) is symmetric and the associsied quadratic form, which we denote by
al-), is positive;
alue) =ale,u); ) =alu,w)20  VuvaV.
We can then think to the following problem
Prowies Pi Lot g V be gien and consider

- e =l Hk=o,
) LR L) i) & Lol ~ ], ctbenin.

We want to find conditions on a, b, ¢, uy such that there existy & amigue u: B — V with
e MM(F, V) and

wr)mu, WSO,
OcAu+Bu+dz(a’)  ae i 10, +=[

weC*R, V) NAC, (10, +=[:V),
(1.14)

Let us start and consider the case with

(11%) b=0.
I the form a(*, +) i cocrcive on V, that is, if it satisfies
(L16) Ju> 0 VaeV  alw.u) 2 afulf,

then Problem P has a very gencral answer. As o marter of fact we have the
following

Turorew 1 Under hypotheses (1.15) and (L16), ()
w1 —Auge Die™)

) As it is ususl, Vo, pe V.
(A, o) = alo, ) % M Rl Bl () = bwe)

(')alumﬂr V) cven if this condition is not satisfied; the solution u stll verifies the dif:
inchsion bat i i ot comviues a = 0 i fact we have lim, u(r) = ug” e~ 5

dnpuxdmnllq,enﬂ!mumd HDtp® :lw\imudumhpmu;db,
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Problens P admits @ solution u that saticfies (1.14) and

(1.18) e WL (0, + 2 V)
Moreoser, if we define § as the function vr5{=v), u i the solution fo
iR} {'m""’“

WP IS0 ae in 10, H

and belongs to MMIF*, V), wbere
e —ugh FEs0,

(1.200 p(z.&.s,wi-{ %"’7”"7””&_(‘”) s

14 Resac The minimization of functionals F,F* given by (1.13) and
(120 leads to beckward Euler scheme for the spproximation of (1.14) and (1.19) re-
spectvely;this last case, i particular, s decply developped in (B 2] in # sightly dife-

and our proof s an ess theory. On the other hand,
i 31 scction 3 snd 4 we could giv a et proof of thisre-
sult, which would be more related iz ides; we restricted

selves 1o the resulis which seem to be new. ®

1.5, Resanc: Let us substitute R* with a bounded domain 0 and cheose § = V =
= H} {3} in conjecture 1. We define

(121) -u.v:-J:v..vvw. =1 de,  pell, +of.
Then

Au= —in; ap.u)-%.w-u
and

H=vmenm, Lelo
D =L @aH G, gy
where the indusion is dense. It s casy 10 see that condition (1.17) i satisfied for any

choice of ug.  ®
L6, Rencans: An: analogous work can be done with conjecture 3 once we
put

1 0 Hu>0ac, 5
(122) dul-zajisl’fkﬂhm- Hoso = {,_ P f
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Under these hypotheses u satisfies the variational incquality

JEE )l e

VoeHi(@), »20 wQ se il +=[. W

lfl!' «) is not coercive (which is the case of our conjectures), the situation is more
. We will suppose that a sriformiy convex Bussach space W is given, which s
compaible with V in the sense that

V and W are both continuously embedded

(231 in a Hausdorff topological vector space ,
V0 W is dense in V and in W),

Moreover we assume that {*)

124 x>0 Vetwa) +falezarlull,, Wwevnw

3 s linked to W in the following sense:

35, +=l, 3pVAW—RU[+=]} proper, convex, Lsc.,

o) =lalle +90), VueVOW.

We have now

Theeorew 2: um&mwms: (123H1.25), Vitg & V Problens
P bus a wmigae solution . Moreooer, ¥

{ngﬂ’()ﬂ,f‘w[;V}. w'e L0, T, W),

{1.25)

1.26)
i e*(~Aw), Hwel'{0,T),

amd u satifies alio (L19).

17 R TF  satishes:

27 0eDW), Hpiz0, VeeDiy)

the previous resule holds for T = + @ and the prool is sligthly easier. Tn this case §*
satisfes (127), 0. W

") ‘This in parvicular mplies that V" and W' can be contimously and denscly imbedded into
:vnw:' -h.d:-.lmda.-mh-
) As pomwlkl:hnkmu

v.>n Fa,> 0 Vilwo) + clalwz s fully, YoeVnw
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1.8, Risanx: Let us chaose W= L*(R"), with fe]1, 2], ¢ =0 and consequently

ata,) = [(%, Tk, phl=% [t
® 5

We are dealing with Conjectuse 1 and our hypotheses are trivially satisfied. In this
case

“swelf RxW, buD,  and Herd(Rexlo, 400w

19, Resuane: s in the previous case, Jet s choose
W=LARY, $=Ix, K=[(u30), 9m=% [ lal? s+ 40
%

then Conjecture 3 follows from the abstrace theory for 5= 2; moscoer, denoting by
UR?) the topalogical vector space of Radon measures on ', v

DiE*) = {o = H' (RN MR o~ e ¥ (R,

3 (a)m 03 So(u) = —(u P !

o la) ’,J‘h [Fde, B Gw)= P,

For ve. 4, Au i a measure whose posiive part is in L¥ (R') and u satisfies
Syt m
1.10. Renuasit (Neumnann's peoblem): As in Remark 1.5 we choase V = F1'() and
s the solution to
Sl t=de 0P, +al,
&0 on 30 X0+ =[,
o=y en 1 x {0]).
As du belongs to L”(0) the Neumann condition makes sense.  ®
Finally, Jet us consider h#0; we will suppose that
W = H s a Hilbert space and V is continiously densely imbedded in H,
(128) | b can be exiended to n continuous bilinear form on V % H— R, that i
M= 0 bt < Myl folly, VeV, o) = DIuB+ gt
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Treorem 3 Problem P admits @ wrigne solution u, which belongs sl to
HYO, T HI VT >0,

111, Resaamc: We end up with Cosjecture 2 if we suppose that ¢ =0, H=
=L(R") aad

=3 oo, =
J9%

2. - Puoor or TuEoREm 1

2.1, Lema: For amy v V there edits a unigue w = oli,v) & V such ther
@n %-tw‘m:-t%p(llw-v))-ﬁ}g[%lh.zl+~}pﬂl§*v)}]
e 1 solos he fullwitng variaional negiality

QY w2+ plw-r) - Feliz-sDE0 VeV
Mareover w alio soloes

23 tatio = v, =20+ 34 L) 54 (A S0 VeeV
and sbe dual ol

24 %l(u-n.w-wl+"W3=$[%lt=*v‘zfﬂ46'(6:!],
Paoor: The fint two relations are obious since we ase looking for the minimum of

the sum of convex functions, one of which is coercive and Frechét-differentiable (see
V1, (L1}, I we defive T= Az — u) we can rewrite (2.2) in this way

23 alw, M —0) — ) + slafw —p)) -l S0 VEeV:
that i

—dw e dplatw - 2)) .
Recalling that 8;* is the inverse operstor of 35 (see (Br2], [Barl) we get:
126) M —v) e 35 (—Aw) = = 33" (Aw)

that is (23) and (24). ®




T

22, Reswmc By (2.6) the funciion w = a(k, u) satisfies:
@n w £ 35 ) sw;
the mukivalucd opesator V'30++3¢* 0.4 ¢ V i then maximal and monatone, when 1/
is endowed with the scalar product a(+, ). t s also easy 10 verify that we are dealing
with the subdifferenial of the conjugate function of  once we ideatfy ¥ and 1V
through a. s resolvent is given by

@8 fe=odLs) vev. =

We can then finally come 1o the proof of Theotem 1; if we apply the theory devel:
opped in [Br2) we ean see immedistely that

- fuwaa-(.u)so acin 10, +=I,
u(0) =my,

has a_unique solution & in CO([0, + @[ V) N Wk *=(10, +=:V) if —Auge
€ D(z7)"". Morcover, thanks ta the exponential fortmula we have

2100wt = lim Jhuw W0

+Lagua »a)"-.-

uniformly on the compact subsets of [0, + @[ If we now define w2, &) as in (1.2) we
have

@) wih b = FES0,
212) wl, k4 1) = ok, w0, k) = ol d, k) = J e -
Choosing 1 /4= ¢/n, it follows that, ¥e > 0,

(213 (- n)=ul) V>0

uniformly an the compact subsets of 10, + = [ Finally, (1.1) i a divect consequence of
following

23 Lusean: Let (S, d) be a metric space and w: [0, + 2% N — 5 & fumction mch
that

3'1_....._,“(-4 .,]-..u]
wniformly on the compact subsets of 10, + =1, If w(e) i contimuonc, thew

wid, el =ulr) Ve >0.




@ .ﬂm,mn.mnr.-'(m.mn.u[%]]+a(u{¥].xm), .

3. - Proor or TuEoREM 2

We make a dight change in the notation, using the same as in [Ba). We pu

By x %1]0.1[. W=l [n ke V.
“We have alceady seen thar {u}} is the scquence such that
6.2) wee forks0,
o a=BTh o),
alub g = o)+t = sle) S0 VeV k21,

o AuteDigt),
(@& Aud =0} 3 (Ad) - () S0 Voe V' k31,

whece this last relation is the dual of the previous one. Let us now divide R int the in-
tervals I¥ = [+(k ~ 1), ok[ and consider the function k, piecewise conssant whose vakue
in 1* s wd ", Our aim is to show that
63 b ) =ue) i VW0
and that wle) satisfies (L14), It is convemicnt to divide the proof in differeat
neps:

1) Stability estimates in suitable funcional spaces on the bounded intervals
0.7, T>0.

2) Statiunary estimates for the singular perturbation problem (3.3) when 7 goes to
xero.

3) Canchy estimate with respect to the seminorm induced by 4.




=y

d)hauebaklhﬂﬁxnmwmﬁmmmdﬁﬂm
reinforcement of the convergence thanks w the uniform reflexivity of

5) Unigueness of the solution w (1.14) and therefore existence of the limit
(.5).
Step 1: stabiiity estimates.

Let us fix T > Oand chaose N e \-A.\Iinl]‘zl" It is also useful to consider the:
piecewise linear function &, such

06 Gk =ad; u,m-[l,fr-Ek-ll)h,‘i-lﬁ-l,frlu,", on ¥,
We then have

3.1, Towomne: Thoe exit comtants Co.

[E%)] Hole= o, < I |
5.8 & lparm=Cr

r

[ wazena
33) I € %x(-.k

J;-u.f,(u )

¢

Marcover, if (1.27) bolds tue, then we can choase Cy = %.g.,).
Pacor: Since in general
wedple) = (wp)=ple) 4% (w)
we observe that
3.10) {Ant, 8 4 ot + 230 + 37 (Aad) = 0.
Adding up for k= 1...m < N{%
o taens 5 E )+ }; st + gty + 6 (2] = 2 st
Recalling that &/ 1) -tﬁ on i¥, (3.9) follows immediately.

14 We often use the clementary equaliy.
alv,n—w)= 4.(-“.:”-«; alw)].
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W alvcady observed that (1.27) implies

3.12) §e)=0, VeeV
and consequently (1.8); since

1 *
13.13) ‘f:. letie = T walffe

vin (1.24) we get abo (3.7).

ibelew: by affint Fubetions
e V'+ W, fuaV, geRi
(.14) PO (A RS
)= =, o) —n.
Therefore

PO o
G15)  galur)+ 5 ‘f;‘-tmn.gl Ik =

< dute) + (07 —an) 4« Bty A + 2z

5 Jatse) + [Eyllyo w7 = wollvnw + (T + atege) +201 + 5

By (3:19) theie it ' conatint €> 0 soch et
;—.:u.-n.-j:l |a§u|.4c{1+=‘)f_' .u#]].

From here we obtain the uniform boundedness of alw”) (it i a discrete version of
Gronwall lemma) and (3.8), (3.7). =

To go to the limit in the weak sense we need to control #(i?). This is done precisely

32 Tueossm: 3C, > O independent of = such that
r
316} [a-ti::nms Gy
¢
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Proos: It is enough to choase ¢ = Au¥ =% k 2 2 in (3.4); if we multiply for k= and
sum from 2 up o N we have:

5
347 r‘}:‘ kecatet) +

M &
v 2 Ut Aud) -u:-1)6'(4«%")]—=i§)i‘rﬂaf"3so
from which
e
£ et o e aal) - e cuty € 5 5 gy,
Summing {3.11) written with wr = 1 we have
s a1
=‘§:‘ kralet) "J.E. $*(Auf) + alug) — U2 - Neg* A S €
from which we obuwin (3.16). ®
33. Losowa: The sequences
(3.18) kerald)  keedtidul) k21
ane mot increasing,

Proor: Tn (3.3) we choose & = 3% ! and in the one relasive o the preceding step
we choose p = 4%; summing up we get

39) a@ n-ath<o

this is precisely the first relation; for the second one it is sufficient 10 choose # =
=Ax!"lin (3.4). ®m

34, Comotinsss As o simple Gonsoguience
(320 eI, wer. .
Sicp 2 stariowary estimares.
35. Lenown: We have
21) km_la! = wole +olul —od=0; _lim v5* (Ans) =0,

Proor: From (3.8) we immediately obtain
3:22) s} = salfe SC, ="' =0 when s—0*;




LT

St

= =

marconcr, since u} i bounded in V, comparibiity requires that u! —wg in V. If we
‘write (3.11) with w = 1 we can see that

(3.23) Il:n:\:ptlli'l = alug)
and taking into account the p_;w of a we have
'!.:?;_!(ktl*lel-ﬂ.
Finally, from (3.11) we have:
T3t Aul) S o [l|‘a) —alu )]+ (Eouf = wo) + 7

obuaining the second of u,zn. =
36 Cosouar: We have
(3.24) Im awtt - =0
aniformly with respect 1o k.

Proos: Tt is immediate if we combise the previous result with Lemma 33,

3.7, Conouazy: We find

lim  sup alu, iz + =) = 2, ()

B
329 Jim, sup ale 1) — iy ) =0, W
Bn: sup afi (£ +.7) =iy 1))
Seep 3: Cauchy estimate.
3.8 Tumons: We bave
13.26) lim sup ala, (0 =400 =0

s aditn
with T= + 0 §f (1.27) bolds.
Proor: It follows from the following lemuma:

39, Lesasar Let J, (1) be the periadic functiom that s equad to 1 f = in [0, L amd U,
0, the vtranslated functions:

27y U =w e+, Ol =wG+<)




=

then U, satisies the inequality
©8.28) (07, 0, —0)+¢* (A0) - 27 (A0) S(1 - L)[E" (AU,) = §* (AU e + ).

We choose in (3.28) = [, ; changing the role of = and z, summing up and integsat-
ing between 0 and r, we oblain in the left hand member the difference:

Lat, 0 - 0,00} - L a(lh,10) - 0,00
2 2
while in the fight hand member, due to the =-periodicity of /, (¢):

{'u = L+ (AU ) - §*(AUAT + )] dr +
8

+ (1= LI~ AU, (1) = 5% (AUT + e
i

50 that;
alU, (1) = U,10) € alu! — )} + 75° (Au]) + 2 5% (An}) + 2Cy (= + s)BAss | + 1)
By Lemma 3.5 and its corollary we deduce (3.26). ®
Prooe or Lesoas 3.9 Let us observe that
(3.29) () m b+ 7) + (1 = L) (0,
(330 wlt 4 7 = a () ==(1 = Liar ()
with 0%/, (¢) € 1. Now, thanks to (3.4) we have
(331 {a e An e+ o) —oh+ gt A+ 1) - F ) S0 Vee V'
and consequently
(3320 al@l (0.5.0) = v) + 5 A0 - 3* (Ar) €
<alie] o), () — eyl + ) + 3% (A () = % (a4 + 1))
Thanks to (3.30)

al@! (1), &, ) — st + 7)) = —5(1 = L)aliil) S 0
wehile, due 1o convexity,
(3.33) £ (A7, (0) £ 11 = L) 3" Ua (00) + L, §* U r + 7))

Taking into sccount these two inegualities in (3.32), we obtain (3.28). =



——
Step 4 passage 10 the linnit.
The previous estimates allow us 10 prove
3.10. Tiwosens: There exivt @ mebsequonce [=.) with =, 0 and o fumetion
#e €0, T) V) O WL, T V)
such dhat
G EO=s0 V. WelOT] km s sli ) - ut) =0.

Moreover ' (1) L2 (0, T W) wbtle (" (1)) and 37 (Auta)) are in L' 10, T) and
sadisfies

(335) W)+ 35 AatD)30,  ul0) =

Proor: The proof is standard: onoe we extract a subsequence (=, such that 4.,
weak®.converges to w in L0, Ti V) and &, —u' i LY(0,T: W) and in
LLO0, TI; V), it is immediate to verify that

3.36) i —wlthin V. Vral0.7T]

and that

(337 bm  sup alla,, (7)) =wlt)) = 0
mds rafoTl

thanks to the lower semicontinuity of the quadratic form a(+).
Tt follows that also U, uniformly converges to u in the seminorm induced by « and
therefore.

(338) Aug,— A in L7(0, T; V') 0).

Since by (3.31)

0.39) @, 493 (e, )30 4 in 10,71

the incusion is sell true for u: |
(3.40) w00+ 3% (An) 20 ae. in 10, TT.

We still have to check the continuity in 0; on one hand it is easy 10 see that
alute) —ug) = alals) ~ule)}  Veze.

(1) Observe that the Schwaris inequality applicd 1o ¢ gives:
ok = sp ) € Vet Vtw) = M, Vate) B
th =



T

In fact, if we choose w, = max [£: 55> &}, m, grows to infsity when & gocy 1o 0 and
thercfore

i alile) — o) = lim_alale) = u,, (N € lim sup aluts) ~u,, (1) =0
= »- o #=0® yaid 1) '

On the other hand

el ~ nal  min [, (6~ ol £ €2
and we arc done.  ®

As o matter of face the convergence s sctually stronger. At this regard we
have

311, Tamonme Let v, and u be as in the previows proposstsan. Ther
3.41)

—u' i L0, T, W)
In particular
i G t=al) iV
wniformly with respect to & on any bownded fterval
Proor: From (3.40) we get
3.42)
while from (339) we have

(ehuin) + 5% (Aule) + ple’ () =0 e in J0, + ol

(343 i@ (e, A, 00D + % LAUL () 4 pl@l () £ 0.
Let us now integrate from 0 to T (*; we find

; T
(3.44) %.mrn + [ tantopa + [[H-‘ul% + gl ()] de = %-(«,z
d v

and
T

s
3451 —;,('.,_m: + {5-(&1!,,«;]& [, e+ i, (e < %C(ﬂe)»

(%1 Thanks to {3.40) sic integrate from & > 010 T and then we let « g0 0 210, using the son-

tinuity of a in W,




=
Passing to the limit for 7, —0 we have

:
(3461 limsup [[3AU () ()0 + 94l (1 ]de <
pE

’
< [I5* (At + 1" )y 4 gl e
J

On the other hand the three functions $*, |+ Fy and ¢ are lower semicontinuous:
il

647 Jm [I-.,(t:lih::fl-’u)!hr.

s L(0.T; W) is uniforaly convex (")
Wow m LT W

Step 5 amiguencss of the solution.

Since w, (1] = &, ’;])w:dmhma,,(n-um"robemuhhmw
of the whole family {#,] we muse prove the uniqueness of the linit.

3.12. Proeosmon: Let uy, u & C{[0, + = V) VACL (10, +=[; V] & fwo
solusions of the Caucky problem

A+ 33u")30,
(0} = u.

¥ 5 i shicly convex, then a4y =ty

Proor: Usaally, thanks to the monotonicity, we obtain that £-+alu, (1) — w3 (1)) is
ot increasing, so that

aly (1) — () m 0

Moreaver, i 4] # uf,, then for the strict monotaniclty of the subdifferential we should
have

allan (T) = ws({T)) < alay () — male)) =0

for some 0< ¢ < T which is absurd. I follows that uj = w7 and, for the Gauchy condi-
tion, 1y =uy. B

) For the uniform convexity of L*(W) with W uniformly conves, see (DI,
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- Proor or Turowss 3

We repeat faster the previuos sequence, enhuncing al the changes that are 1o be
e and wasletining the specific difficulties of this case.

Wuhmd-dmmmmwammu-nhmdndwchamnm;&rnl
lowing continuous and dense inclusions:

1 VeH=H V'

in thisway the scalar product (+, +) of H may be extended ta the duality between V and

V' which we will dencre with the same symbol. Finally, |- | will be the porm in
mmqueucru. satisfies now the inequalitics (& > 1)

#eDig),

(4.2]
aa (2% 4+ At + Bub

L —g)+ ) -4l <0,

e {c!+)|u?+!u,‘"eb({"l.
(38,4 + Aub 4 Bt~ = o) 40 (8 + Aud 4 BT = (1) 50,
and alio
(Ad) gk 2t Ak Bt (Al Bl )+ et =0,
s for the subility estimates we huve
A1 Tewowss: 3C > 0 iidepersdent from = such that
4.5) llt.Bem o700 % e lemso. i £ €.

(46) lsonm=C.

[ndeC,

:
@ It

“8) 34 @) + Aw e 4 1) + Bu, (DI S T,

-

:
(a9 [t inds <.
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* Proor: We work as in the previous parugraph and we obtain from (4.4)
=5 (14 Saeh)+ a0
S%il'u)+2.-n,+(s.+{3¢.l.'—-.)+=‘zl B8 ) +atud 1)

i (15 o o room Mo 1 e bepmdedoams i s o'
| % H that leads o the following cstimate

E bttt s be 8 e g e M S g

(46), (47) and (48) are immediate und (4.9) comes in & similar way from Theotem
32 W

The stationary cstimates arc cvahuted a5 in the case of Theorem 1.6, In fact

42, Lesan: I ressles

P @y —wl=0;

i
(412). fim, (el A 4 Bu)=0 m

It is mare deficate the following

43, Provosrmion: It exists a contant € > 0, indiperdent from = such that

1 (413) sup s (0) = aiclr + =)y = Cllaet — sl
; i
1 r
(4.14) [|i;u1-s:(:+r:|?,asqu3—u.9 L]
‘

Puocr: If we work as in Lemma 3.3 we have

(g —ad ot gttt oAk 4 oBeE )5 0p
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summing to eich member the quantty (3%, 2}~ 44") and diiding by T we
<t

{4.15) ':

gt st fateh + b
< "2- st =1 4 o1 ] — bt pt -t gk et -t ) =
s Lttty (a1 + g - MR 1,

If we define

e b

summing up (4.15) from k =2 wo mr we obtain
e Ex!+Cr Ex!
i
from which
xrxlredTen,

Weak cocrcivity of 4 asmres. (4.13) and (4,14) consequendy follows from.
415 =

Before coming to the wanied convergence, let us define @ new function i (¢) that
imterpolates the sequence {uf ] quadratically:

W16 0= Tl o+ HLWEG D+ (0= L)

et =wn i)

4.17) win= (o4 )+ (L= L)l ()

Thanks to proposition 4.3 we can see easily Families u,, i, and i, have the same
linilPn&millL'(O.T:V'lnh"w.T;HHﬁuEkedvdrnMidmﬁnMU“U,
and U, (see (327).

Let us set for semplicity

0: + AU, + Bai,.
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44, Lenan: anmulbt(.'] i bolds:

(02T 4 AT+ B~ 0) + 0 (P - ) &

= (- B (V) = 45V, (0 + D] 4 bl =y, O 40, T2 -0 m
45, Lesswa: ¥, 220, 5 e [0, T] we bave

am) 180 -0 el - 060 <
v

= afuy —

1)+ E20.0) 4 E}0,5) +J Bl ) = 6,0, 07 (6) = O} 0o

Hl:. E,(0,5)=0 wniformly for s € [0, T].

Pucor: Let us choose ¢ = ¥, in (4.19); by usual caleulations we obtain:

fuﬂ:,ﬂ: — )+ at0;, 0= Oide+ [ o (P P )
d §

sj{u —p [ - e ]+ 21000 - \9:1']}& +

+ ot b= w131 ¢ 41020717+ 110 - 0 308,500
J
Changing the role of 7 and 7 and summing up, we obtain (4.20) with:

E0,0= Trut}.'v- 28 (Ve +

+ [0z - 02 4 26y =l 102 e =i Vs f00).
v
By o further application of Gronwall lemma we conchude:

6 Comounny: {i,) and {.,) ame Cauchy's families #n C*(00, T3 V) 1
nH':n'rmfa-as;r >0.
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