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V. BACCHELLI(*)

A Problem of Seakeeping(**)

Sutiry. — The paper deals with the uasteady mosion of  rigid body losing i s bounded
‘asin, under the action of ranty, of liquid pressuse and of given external forces. Existence and
uniguetes i proeed for the lincaizod model, asueingthe raditon condiion on the hterl
sucdace of the basin,

Un problems di seakeeping

1. - INROGUGTION. AND STATEMENT. G THi omomLEN

This paper deals with the combined mation of a system consisting of a fluid and of &
body partially immerscd in . The fuid is assumed to be inviscid, incompressible (with
canstant density 2} and its mation to be irrotational. We suppose the body is rigid and
that it describes a forced motion under the sction of gravity, of ijuid peessure and of
given external forces.

The smotion of the body and the fuid is assumed to be near equilibrium and we use
the same linear model as in[1] and|6).

The system may be described as follows. The position of the bedy (referred to @
sartesian coordinate system (x, ,%;, ;) with the x,-axis pasitive upward) is specified by
the vector £ 1= (7, &) where £2(¢) = (£, (1), £, (1), & (1)) is the center of mass position
veetor, while £ (¢) = (£,(¢), £, (1), & (¢)) is the vector whose components are the
angles of rotation of the center of mass. about axes through it
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mmdmmndmhdb,.fummnax,,q %y,£), the velocity poten-
u.l,vhid:hhxmmlmdowhc.ln.bm al forces, cxcept for gravity ¢
:d:mmﬂmwpmnnmmdwmﬁtldﬁﬂwdwnmtb:hﬂnﬂ
domain 0, kying in the lower half-space x; < 0, anid the body irself is at rest; the bound-
wdumdeuhf',.mmmmmn.@mﬁx
T of the immersed body in the rest posiion and a fur-sway cartificials lacral surface
I At the il time £ = 0 some extemal forces act on the body and the sysem
evalves consequently

'We samume thit the resahant of the cxernal forces s & first oeder quantity, bee
(FU), where ¢ a swiable small parametes, and that an espancion in powers of ¢ i per-
m&*wmuﬁzmur.s.

Than st the frs arder, f we: denote the firs deviation of these quantities also with
4,65 £, and ussuming =g = 1, the Enearized model i
(L1a) =0 i@,

) (P 8 T
(116) M.(z,] (E) [ 3 L,) M,(!‘)A
where v s the urit normal to I, pointing o the body, G and p the moments of F and
Y respectivel, about the ceter of mass of the body, Furthermore M, is the siametric
psﬂd'«!-dﬁltn-hnnfbedp- inertia coefficients, and M, is & non-negative matrix in-
W@Mﬂmmmoﬁmwﬂmuﬁutuﬁtnmﬂhﬂm

B wing 10 lincasization, the boundary eonditions are sssigned on the surfces
of equilibrium; they are the following:

[ B er,  wheea=().
() %-—%{ ot

(1.1e) %g: =Cads o en 'y, Go>0,
(1) fi =0, only.

Recall thac[6] (L1}, (L1f) expeess the kinematic condition of continuity of
Mnmdvdmcfth:ﬂndmuhiﬂncib while (1.1d) is the classical

I # bus the character of & plane progressive wave of velocity 1/Co, proceeding
outward, %0 that the flow of encrgy. theough I s negarive. This condition on
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7y, simulates. the usual radiation condition imposed at infinity (for & discussion
of the boundary conditions see, e.g. 3.
“The inital data are:

(1.1g) $=0,3,=0, enly fort=0,
(118} #=0, only fort=0,
(L Er(0)=gl0)=0, &0 =d(01=0

W obscrve at once that the uniqueness of the salition of (1. I]n-mlnqlmmfilh:
following energy argumen: the total energy of the system

=Ll mret [ae taiie e
E 2[ w812+ zhf‘*"’ FMEE+ s

10 (L1) the rate of energy is:

o rhieh-alg

while E{0) =0, by (LLa), (L1}, (L1}, (L1g), (1.18), (114,

I F =G =0, we have dE/dt € 0 Vr, hence Elr) < 0 Vr; than the conclusion
{sec6]) s that the system staps st rest for all ines. The solution of (1.1 is than
unique. Tn (8] existence was obtained foc the lincarized model, assuming that the
‘bounded region { in which the body is immersed has «ficed phitical laterul walls (a
bounded basin). In the present papes we obiain analogous resulis, assuming, as we have
seen, on the egeametricals lateral surface I'y the condition of radiation.

2. - THE TRANSFORMED PROBLEM

The existence of the solution of (1.1 will be obtsined, as i 8] using the method of
the Laplace transform.
We apply thi transformation I, with respect to 1 to problem. (1.1) aad we denote
with 30x;5) t= Lé(x; 1), Fird i L&ir) and fis) 1= L) where f= (F,G).

TF we scek for a solution 3 of the form

@1 Bl ) = 58 mlxis),
than ¢ and £ satisfy (1.1) if the new unknown slx; 1) solves the following self-contained




du=0 ind,

G = . only.
= o LG where 2leis) * mf':.

%=n ol

l'3“£=¢; ol

and T salves the system of algebruic equations
(2 M+ My T [ By
i
where u s the souion of (22, The problessisthus decougled since gystem (221 8-
ol

"The problem (2:2) i  vector st of ix sclar equatons of the same kind:in the
Mﬂwﬂmﬂumbmdﬁu.kmwh\ﬁmqwﬂ-hrmd
Mﬁmﬂhﬂnﬂlﬂshmmﬂumm‘

Ao cxiaenee uniquentss theorem fo the varstional solusion of the peoblem (2.2)
may. be proved casly, lke i8], i we consider on H' (), the. sesquimeat form:
alm )= [ T+ [ s
i ;

s comtinaous and coereive relaively vo L2 (42, 4¢. ¥ € C fxed, Res > 0, 3K =
= K{s) > 0 such that
R, ) + Ko o = 3 Julfean
This ensbles. s to assert the Following sutement:

olf g & L (1), these caists anly one # & HY (), holomorphic in 1, Res > 0 such
that:

24) aluo)=[d VeeHUD).
n

anmlhm!-ﬂl!lmct:l>0mdu\
@23) el = €10 laror
hm;mmmmwmm«mmmmm

&tqmpnﬁ:hbmﬂmlufmecmmlch)‘inwdﬂmhmhb:hmdﬂx
original unknowns as functions of the tme virisble.
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o/ reach this goal we adapt to out case & technique used in (4] and [8}; we decom-
ose the solution  of (2.4) as the sum (up 10 « sultable constant) of u, and uy, where
these: functions ae suweake solutions of two auilisey Neunann problems.

More precisely we comsider the linear space H! () defined by:

o)

= st ) 0te5) & (0, [yt hutxlie = 0¥ e G, R=:>0].
#
Teina Hilbersspoce with the ol g, = | | |~ru|i}”: b
o
stant independent on 1, Res > 0 {always denoted with &), such thar, Yu & H' (@)
1 5
28 -E:Ini,-".,s Ioonigy % ¢ Dl .

Furthermore we define:
(L) i= {we L3(1): 3w e HIO) w]r=w}

= o, Bl
Vin the Lax-Milgram theotemn, mmywmnurnlhwa-.m
Lessas 21 I g & L2 (), there is o unique u, & FI* () such that

(z.n J%W-Jw Vs H'(0)

udmmuc.wmdmuu Res >0, such that
(28) Bslvviy G Belusery -
Lisows 22 1 b & H'2(I) (dhe anticual space of FI(1") there is a unique
iy & H(D) such that
(29 Jv.f,w,- ( kw ) VeeH'(@D
O HYan

and there is C; > 0 independent of 5, Res > 0, such that
(210 e by % G Bl s, -
Then we introduce the following linear operators:
N:LAHI)—=HP ) Nyi=a e,
PiH-R{IY S ) PRi=ulr,

where w, and ; are the soions respectively of (2.7) and (29),
Te follows, as a consequence of Lemmas 2.1, 22, that the norms of P and N are
bounded by a constant independent on 5, Res > 0.
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Pacrosmon 2.3: Let g L{y); i ke H 13 (1) s solution of the equation.
I!
@z k4 g Ph=—x|Ng + [— in H™'2(r)
x

thanw i= uy + a3 + [ [ whese wy 10w are she soluons respectively of (27) uad
(2.9), is the solution of (2.4).
Asa mw[u:mkl(&/liu}]r, and (k, 1) = — jq

Proor: Any oe H' (0) may be decomposed uu—wum where we H'(0)
..sp(.:-(uj [ﬂ Therefore, tsking (27) and (29) into account, we get:

gl

N¢+PA+-|[LX

lfii::uiuﬁmof(lll]dun(l.l)x—"[wli-nlbrmminnﬁ:ﬂnn "

o= B [o o)A )+ [x
i r

3. - THE INTEGRAL EQUATION

Tn order to sobve the «integral» equation (2.11), it is usefull to introduce the operi-
tor Qi H (1) = H'3(T") so defined:

Qui=Pot || (v, 1),

At so0n, we have:

[E8) Ix@- e, l),] %

Prorosman 3.1: Q is an isomorphism from H 7 (1) onto H'Y (1) and dhe
porsas of Q and 1 are bounded by o constant independent oa 5, Re< > 0. Moreover
e -4 ot 75 0 o Vb & HIB (I
2] { Qb b ) =rlblioun-

TV uan
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Prioor: The linearity and boundedness of () follow easily from the analogous prop-
ertics of P. The iniectivity follows from (3.1},

Let us assume momentarely that Q is onto; we get, from (29) with w = uy:
BosBipa = ¢ ko )= o Qb= (P17, 1) = R

Ay Yy
=011 b, B -

Therefore

Bk =1 s W)y % e B, = 2244k, Q8) = 111k, 1B
hence

POkl € { B0k )

with y independent on 5. Than (3.2) follows from surjcctivity of Q.
It remains to show that s onto. Let b « H'2 (I if4” :=b—p( [x&sz),n

et 6 2 (1), owing to (3.1}, Let z @ F' () the variational solution of the mixed
problem: & = 0in 0, 2 =4 on T, &/3 = 0 o &) — I'. We claim that £ sohves the
equition.

(32) Jv;w: { #.w )  VeeH'W),
iy
for suitable choice of £« H~'(I"), Indeed, awing to the Green's formula for the
mixed problems, we have
63) jwv&-u VoeVi= {we Q) ulr =0}
Furthermore:
jv;v.a- ( &ffvw ) = lw) YeeH'O)
Fi BV Wy
Now we prove that the right-hind side ) defines & continuous antlincar func-
tional on H'3(I"). Indeed, taking into account (3.3), (v} = 0 Vo & V; therefore
W)l = [ + o) €Clleo +olyg, VeaH'(D), WoeV,
that is
)| €€ inf oo ol Ve O,
But the space H'(I) is isomorphic o the quotient space H'(0Vy, bence
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)| € " Toolinys Yo & HY (@) S0 we gt (3.2, fora sitable k'  H~17(7), and
w,u-n.symgv-zt,—r-pel: [p,‘],). Finally let ik’ +
+J’,w;,;mm,wm&mgk=s.ﬁmd=mmmsmorq-=.w=m=|.nu
e is bounded by a constant independent of s, Res> 0. ®

Now we consider a linear functional equation which is equivalent to (2111

Prorosmon 320 Let g€ L1l i & @ H 30 s soluiion of (231, than
ke sk + [af [ x & HY3 ) and sutsies the folloving equition, in Ha(
B34 Q kTt ="

£

Prooe: Let keH V(I be solution of (211%; becavse of PRl
and ,_-{w.,+ ]q,tfx]u.’m. than k& L?() indeed; mm:tkﬂ'r]k- -n].‘ So
*e L1} substituting k* in (2.11), we obtain k*+Q z*"x“;.f]:)}:
= -Nj- \.“|"lq.'lh'd| implics &* & H'7 ("), Applying the operaror Q™' we pet
(3.4), taking into sccount that @ (1) = (;E,l fx) |1} As (Q "Ny, 1) = 0 owing o
(3.1}, alsa {g*, 1} = 0. Hence we get, by (3.1)

(3.6 ]yg =0, which implies

33) 4t= 0Ny [a

Also viceversa i truc.

an (@' 1) =0
In ceder 10 prove the vice-vers, les k* & H'(T) be sohution of (34), (.3)
k= zr-,“,,’h}, than ke LT, and by verwwe of (36), [k = —j,.
b
Apgling © 1o (34), we obuin casily (211), wking into sccovar thar Q7'(1) =
. -

S
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Now we are able 10 state the following result:

Theosem 3.3: Let g € L2 (1'); than equation (3.4) admits for every s € C fixed,
‘Rer> 0, & unique soluion k* = &*(x) « H'(I'). Morcover there cxist constants
€ > 0 and =, > 0 such that, for all complex numbers 5, Res > a4, the following esti-
matcs.

(EE] Be* lniy = Cllalesr,

63) B Dy sy €1s1 2
(3.10) e Ty < €l ™" il «
(EXTH] B Diseryy = Clol ™ Ballyiry o
3:12) B iy, S Clel gyt -

As 8 consequence, we have the analogous result concerning equation (2.11),

Comotiary 3.4: Let ¢ & L(I'); than equation (2.11) admils for every re C
fixed, Res > 0, a unique solution & = k(s) & B~ (1), Moreover there exist constants
€ > 0..und 8, > 0 such that, for all complex mumbers 5, Res > 8. the following esti-

mates bold

(3:13) Vellvairy € Clllsiey

B4 el % Clsllalysus el S Clsl ol o
Ga3) Bellsgry € €l olesiry Belsiry = €VET Ballogry -

Existence and soriiuencss. We recall that {0~ Ng, 1 Than, by vertue of
koown regulaiy resuls for the souion of elpric boundary value problems n Lips-

chitz domains, the aperstor 9 ' is a bounded map of L*(I') into L*(1).
“Now we iroduce the following mmmquﬂwlm in B0

blusyi= ( Q7law )+ [
R wan

By vertue of (3.2}, &,(w, ) is H' (Mecoercive, relatively to L2(1Y, ie there is
Mix) > 0 such that

Reb, (e, u) + M) sy = Cllaffinr
where € >0 is-indeperdent on 5, Res > 0. Than the cxistence and uniqueness of
the solution of (3.4) follows from the Fredholm altemative by using the fact that
2 € L2("), that HY* (1" is completely immersed in L* (I, and that &, (u, u) = 0 aaly
if w=0 (seel2]).
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Ertirates, We adapt to our case the method of partition of unity. Let By, By , B, be
4 covering of I" such that BycT's, By Iy, B3 (P N Ty ) and [B.| —0 as c—0.

ln!, eC™ (nmbsh-mpps,cr,.o-sg,asn:LFumd}',f.-l

naw & * & H2(I") be the sohution of (3.4); than £* = Bk~ £, and k* &, & H'2 (1),

wk'!.lﬂum—aﬂwﬁeﬂx—ﬂ 45 & consequence
(5160 Bt =k el im0 —0; k" — k¥ 5 sy =0 ¢ 0.

Let us multiply the equation (3.4) by &, and than represent & in the form
(7)) QTMEE) F kT E) = Q7 kT E) = QTR + 48

Now we state & lemma, whose proof will be led at the end of the proof of the
theorem.

L 3.5 Let & 0 H'?(F) be the solution of (3.4). Than there exist constants
C> 0 and a; >0 such that, ¥re C, Res> 2y and Vo, 0<o%1/2
Q" et &) = (@& erllris % CIE per -
An snalogous estimate is valid for k* &,
Opwing to the positivicy of the operator Q. we may also state the following result,

which i a direct applcation of a classical theorem, concerning positive isamorphisms
between a Hilbert space and its antichal (see [2]}.

lf g & L3I} the equation (s* + Q") = g has a unique solution u e H'? (1)
VieC, h:>ﬂ.mmeﬂ\mdnmmnfdle¢pmﬁ‘f+q LA = HA )
is bounded independently on s, fe there exist positive constants C and ; such that
Ve, Res > ay:

Rl iy % Clelory

and akso

po= ey i e
(3.18) balyns Mhﬁk W —gEes o,

Let us now go back to equation (3.17); applying the lemma and estimate (3.18) with
0<es 1/2, and 0<7<1/2 we have Vs e C, Res > ay > 00

B el S B2l € e (e by + o Ry
Letting «— 0, owing 1o (3.16) we get

319} B By & == U~ i + o * i)




—agk.

m,nuﬂphllsl\brh.uduhusmdd: in (3.17), we have
C, Rer >y >0, and again 0 <uuz o</

20 IR b = s B B

us ke now d=z in (319, (3200 with O<=<1/2; than, i
Maﬁlc))ﬂ

hen):

3211 B e = £ ORI T TP

C
Tk

322) el < ABe* By " Busin} -

<
s

mu?.mnm (3:22) and viceversa, we obtain, ¥ Res > f;(z) >0 and

(3:23) Vel =

F *llesers

C .
= lo* busir -

Now we ke i (119) and (3.20) &=1/2 and a=1/4 if 5eC,
Res > max(as, a4l

B2 B thyrery <

525 1 Nyiniry < O Dy + B Reren)e
.26 B Dy % GBS Dy + g i) -

By vertuc of (3.23), (3.24), finally we have, if Res>a, >0
(3271 [ By € Clla® hoogr & Clilusngye  that is (38).

Returning back 1o equation (3.4) and taking into account of (3.27)
(R L P e P R L
= Gl by + B iy ) = Clalizir o

9). Analougsly we obtain (3.10). Interpolating between (3.27) and (3.9) and
-l-n hs-ml 3.27) and (3.10), we lnn (3.11) and (3.12). ®

Poos or Lesews 35; Let k* e H'3(I) be the solution of (3.4}, Owing to
gt e LA, alsa Q7 'k* e L7 and, by (37), IQ"k‘ = 0. Than the Neumann
i




problem: u =0 in 0, Gu/8v= Qk* on I' S/dv=0 on 80 - I' admits 4
variationl solution, unique up to constants; let u be the salution such. that w e H' ().
Actaally i € H*(0) (see[5)) and ufr= k*; morcover

lulpinoriy € CIE ey~ Wor 0<0€ 5.

New we consider the following mixed problem: do = 0 in 0, v = Spoa T, du/8v =
L Aokt o e e otk

1

= 0 on s ~ I". Noticing thar, ition of £,
on the dsta sre sutisfied, the wlution v & C'(3) (see (7).
Nosw we consider g = u +0 & H (0); it satisfies the varistional mixcd problem: 4 =
= 2%+ Vo in @, g = 5e-k* on I', 3g/3v =0 on 80 = I'. We notice that
gl_ “igsE ..&‘ )
B, =t g vk S el
Than we decompose 2 = g + £, where g, satisfies the mixcd varistional problem:
Agy=2Vu-VoinG,g, = Oon T, 3, /3 = 000 80 ~ I\ while g, := ¢ — g, satisfies the
mixed problem dg; =0 in 0, &= &~k on I', 8 /3 =0 on 30 -1
ice: that:

o)) -1, L2,

z
sa that

Bl _ggrig- L o-tin [kt

et & T k&

a.L s [x ,J
Finally we have
B e T 0 g e o
2|~ s e 5-|r PR I,ZQ ':\)‘Jx& Gt 3~|r'
50 that

I
Q-tikt )~ QR G =k a‘|r+IzQ‘(lIJgk{p & -

The L2 {1-norm of the fist b tecms on the right hand side sy be aly bound-
jently large. Mareovet

ed from above by the Linorm of k*, if Res suffiently
IF;'T'IL,",‘Cllt.!nu--mici"-l..-w..m < Cllulyerevigy € CH oy

Vs, 0<o<lf2.

The assertion s proved. @

—

g
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B v o ok cattmanc: the- comanane G} i (2.5
" Theonsw 36 The unique sakion 1 = u(z) to problem (22 is & holéamorpbic
B i the Bl o R > 7, >0, s W 7H0) et i n0ein s botndod
) rdemly on 5.
Mk = el -
Morcoves, i trace on 1y and Iy satishes the esimates;
3.29) Bullysapy = b, «
62300 ey, €€l ks Bl < €l Dallusir
0631) i, < Clel ' Mol Nolearyy S Clsl = figheeen, -

Proge: We know (same notations of Proposition 2.3) -l.u:.,+u,+{.;,'jz;

ence (3.28) (3.29) follow casily from (2.8), (2.10), (3.13), i Res > yo> 0. On the

 other hand = oy |-+ |+ [ af [ 2 = Mo+ Pl + [ f [ 1= kfz: taking nto ac-
count of (3.13), (3.14), (3.15), we have the desired cstimates.  ®

we return back ta the algebraic system (2.3; proceeding in 4 quite similar way
-hixi-nd using (3.28) and (3.31), we obtain the following:

Tmowss 3.7 Assume that [|M, | = K, with K, sufficiently large, and let 1) be
function o . Thece exis 7, O sich thar, i Res >, he syt of
gebusic equations (2.3) admits a unique solution £ = &(s} which is a holomorphic func
tion of r and satisfics
[Eal = Clsl 1A
where € docs not depend on 1

4. - Concrusions

IF e we combine Theorens 3,6 and 3.7 and take into account (2.1), we can apply
the inversion formul for the Laplace transform. In order to have u solution of original
problem (1.1) with the desired regularity with respect to time we need to request @ suit-




Teceomnn 4.1: Suppose that

i qe L2
i 1M 3 K, with K, sufficiently large; 4
i) fie) s & Laplace-mransformable function having support in [0, + =) and

wansform fis) satisfies

il <Cli| ™ VoG, Res> oy for some o> 0.
Than there s & unique pair
(5, $) €€ ([0, +=)) X C°((0, +2); H'(@)

such that

#lreCOUl0, + =) HAI),

#lr, = €110, + =) L) N CHID, += ) H ),

4lr, € CV R0, + w L LT N CHIO, + = HT AT,
and such that (1,1) bold.
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