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Let 0 be 4 bounded simply connected open subsct of R* whose boundary contits
of two € "-curves 307 mlwnmmnmdp-lul’mdg Let "be «curve divid-
ing U into wo simply connceted sets 3 and intersocting B ot

Consides the elliptic transnission boundary value problem:

J St
o

wo=0 o[y Blu,~Bw.=$, wo=w el

where
= 1 3
Bruy = 2 ok ) 2w con ln,n) :
g." ™

“The it nommal vectos 1o I erierted woand £ s denoted by .
Elliptic tramsenission and, relaied to them, mised problems arie in mumerous ap- /
plications and thus far have been the mubject of extensive smdies: (1, EJL M,
151, 7], 191531, [17) (e abso the bieriuse quoied in the above papes). I s
Known that for regular ellipic usnsmission problems of aay order in m-dimensional
space the Fredhalm ahernative folds in some weighted Soboley spaces whose expo
nents are different from a set of numbers. The lack of information on the set of escep-
ional umbers s compensaied by the geoeruty of the pooblem.
I this paper by restricting o, second order eliptic equations in planar domains we.
shall desermine those exceptional numbers explicitly and: show that they depend on
the contact angles at P and at € us well as on the valves of 4’ ot P and Q. Thus, when
the contsct angles are small and differeca from some excepeional ones (which are de-
termined), the solution of the problem (0.1) b in the sppeopriste Soboley space with-
outloss of the top order derivative. The result seerms new and besides being of inerest
in irs own right may be needed in the sudy of free houndary problems. The proaf is
carried out in Section 3.
ioied cars S sectoitil A (A
nwmmddkwimlmmewnnuw
In Section 4 we consider the parsholic wransmission problem:

2.The

D At wfled o400, T

w
D 5.=0 on (80° /1% 0,T),
womw, B'w,-Bw =#) onIX(0,T)

01 =ag b in 07

The cximence of # unique weak solusion of (02) & known, (Bl In
contrast 1 the elliptic case the lirerature on the regularity of the solution of
0.2} is almost pon-existent, Using o discretisation of the timevarisble and the
resulis of Section 3 we shall poove the cxistence of u unique salution of (0.2)
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in the sppropriate weighted Sobolev spaces. When the contsct angles are: small,
the solution belongs 1o the usual Soboler spaces.
Notations are given in Section 1.

Swemon 1

Let 2 be s boundeud apen subset of R whose boundary consists of tw C ™ curves
20, 3 with common end points P and Q. Let I'be a € "~curve dividing & into two.
simply conniected open sets (* and intersecting 50 at P and at O, Throaghout the pa-
por we shall write: 2= (P, 0}

Tlunllnmmﬂum-debym with I and with 30" st P arc denoted by s and

respectively. The comesponding angics st © are s and 7, We have: 0 <o < 7, 5

Pl

et k be & non-negasive interger and 2% p < @ Then WH2(£0) is the usual
Scbalev space

whrD)

e D in L7, [a] Sk}
with the norm

s
[ R
WH2() s the completion of G -functions with respees w the W™’ (}-norm.
Let #lx) be the distance from & point » in 0 to the set £ = {P, introduce
the weighicd Sobolev spaces of Kondraties (7. By H (12 £) where & is a nom-ncgs-
tive fneger and —® <5 < ®, we mean the Hilbers space with norm

We define H** 13 (0; ) to be the Hilbert space with norm
Bl =

= b on+ ";_‘J.'«m | 10t = Dl =]y

le-sl st

"

For functions prescribed o0 senooth manifolds these.spaces can be defined in &
umdmlwy The space of trces of functions in H(L£X) coincides with
H 1280

W:Mvm:.‘}’!ﬂl HEA) foc HAO;X), HE P (30 5).

Swcrion 2

In this section we shall consider 8 transmission problem for the Laplace eperatar
ins sectorial domains, We shall determine the discriminant function associated with the.
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problem, study the asymptorics of the ‘solutians near the odigin and consider the case
when the data arc in some Sobolev. spaces

Let §° be the sectors

§* = {0 0r e, O<h<al,
={inth 0<r<®, achcisn)

lﬂil:lfwf.u‘h-l}wuyﬂﬂnﬁ 6= 2 and 8= 8 respectively, [

We shall wrise H!(5*) for H!($";0)

Considder the ransmindon problem

-&,
@0
v

Set: % =, cocd, o *
o e s R B s (flul

r=0 ol  po=0 eoly.

B b o=
- v)=h onr

Z—W =rfe.

=Ff% 5,

@ b A =w L 8=0,
=heose, & lah—w el = -

—Bycos 2 = hysin = by

i e

Tatnmd, e

the. 'dsll.umvs(muuu{r
have Mellin

" snd suppose that the functions r2£, 1247, b; and by
B respectively

-tz

24 o i
L R TR S TR,



[t ln =t (00 =0; o7l w8 =0,
@5 vt (sl =97 ma) =hems,

0 lo 2l = (g, 2 = —byuina,
Lt -w b

cos 3 — () sin

Yo = lo®,*Fw® tw” 'Y, then in mavix form the sptem (24) be

Ly aay, -
Y =AY, -5,

B.=(0.8" . 0.67 .

Fargw =1, the

Awte £ite = 1) and the ci L+
+10,4, — o+ DYy (8, = 1), =4, =~ 1. The system (26} may be solved by the
method of vasiatior: Once Y. i obtained we consider the problem of
maiching the boundury conditions. The discriminant

d The n arises in his conie.
We are led 10 the problem of finding aff = for which the following sysem has o
solsion:

-f;-ru (=" # 28t =0,

A%m’ -l -2fem =0

ot 0=k, w0 =k ),
o ln g =k (2, w7 (58 =k le),
¥ tgal = e () =y e),

d

i = My =yla).

w'i(zal—w s a) m ki,
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Foraw 21, st

= ey cos (g = 10+ a0 (o= 10 4 4 con o+ 1) 4 sinls + 10,

% —af s le = D0+ o cos e = DO+ (o + 10— 4 con a4 18

Then [re® % satisbes (27)
For =0, we get: a)' +oy" =d', a7 —u =ht'. So

oy foos (2= 110 = o8 (o + 110} +a' fsin (e = Do+ ain s + 1)) +
+dy cos (o 110 =k sin a4 18,
Bt = =g fsin iz = 100 4 sk {7+ 1)8} + ;" [cos (= = 1)0 = cos = + 110} +
ki sin (e + 1004 k7 con s + 1
On the ray I, we have:

7 cos b2 = 1+ sinle = DE+
arcoslz+ DE+a snbet DE=4
—ai sinle = 1) 4 ay con (= D3+
+af sinte + 1)~

cosla+ D=k

At the imcrface, the condition: w* —w =k, gives

210) o feosla— Va—eolo + V) +5" {dinlz = 1o+ sin ot Da} ~

~af" cos e = Da—ay” sin (o = 1o = a5 con (e + 1o~ asin (74 Da =

btk singe+ a =k cos (o 1)a

With v * =" =k (a) on I}, we obiain;

@11 = finle = Dat siate+ Da} +o fconte— e cosla+ 1a} +
b sln(z = 1o - o con o — 12 —uy"sinfe + Vu+ a7 con (s + Na=

— & s (o4 Do~k con o+ D

The intesface condition. (d/d0te* = w1

+1)sin (= 4 12 = [z = Hsin

=kslo) pives

212 . =la} +

Da+(z+ Deostz + Da} a7 (e = Dainte = Ha—

4o {lz = 1lcos

cos (== D+ oy (5 + Vsin 2 + 1o s (o + Deosla + Da=

~oila=

=y ks (a4 Ui e+ Dbk (e + Dcos (s + Vs
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From (2.4), we have:

2y + (1 =0y

Lo e,

Thas,

213 & {te=1Psinle = Da— (a4 Dania + 1a} +

i {lz+ 1 costz+ Da = (o~ 1Fcos (s ~ ) — gy f= ~ 1 sin(z=Na+

#ar e =1Peos (e =Nz +ay (e + 1Psinte + Da= o) (4 1P oo+ Da=

=2k, (1= Ay kT 1+ sl os b+ x4k (14 sz + 1l
mm.mmuuzmmmmhmmumuc

i w5 = K. The coiries of the column mairix K* are the right

o Sy
hndﬂunfq GZ!JIZIHMcpumwanhzmnmCshnﬂullheq
{2.13) expresses the compatility condition and thus we have 4 sywtem of five oqu
s with six unknovns. F

Junsasine  ~2ssale-Dx Jnsintat Dz

Zinsmcoss  Zreals Zrcmlotlla

oz 1)x 0
sinie=1}F  conix —sinle—lla  ~Zscoafe-lla 0
confe+l)f  sin(el)d —eomiablla 0 2iemfer )x
snfatlld  —eoletl}s  —dmletila 0 ~Brcoale lx

The firs. three entries of K{ and the fifis one are the same 33 those of K' but the

foarth one s o
by ko & wtin (e + Da b acos o+ Da:

Since sin (2 + 1) and cas {3 + 1)3 cannot be both sero, the entries of the siuh
column of €, are not all zeros for afl o

Sec 4y =4 and consider the $X 3 mawix Cy obtalned from €, by deleting
the sixth column. A very lengshy computation yields:

et €, = Fla, %, §) = 2'< sin {70} sin (o) sin (53 + 2]

Thus, for o with Fiz, 5,820 and for 2 =4 we hme fo' o7 o0 0z 0y }
23 the unique sokution of the equation

Cola® oaf =K

(214
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where K is the obmious: column matrx arising from the sbove discussons. We
hive proved the following lemima:

Lisasaa 2.3 Suppose that o # = 1, wefa, mrfB, — 2/ + prjS whee w, o, p are iv-
scpem. Thow the tems (228} bas 4 Gucparameter fermly. of solations:

=i feoos w = 1)8 = con (= + 114) + 85" fsin (== 118 + sin o + 1] +
| 5 conte + 108~k ain (o + 1),

s (= 100+ sin (o + 114) # a;* {oos (o= 10— con o+ 118} +

H457 sin {7+ 108 4 & cos (5 4 D#

yeosfz =10+ 4 sn(z+ 10~ deos(z + 10, L3
7} i che snlition of (2.14) .

15 4 poie of onder 4 for the solutions,
S e~ o+ 5w, p pasitie iieger; are simpl peles for

One of the main cesults of the section is the following theorea.

Towonsas 2.1 Lt & be & nonnopatce imtger with | 4+ k =1 5 where 2= 1or s
o of the discrimimsnd fisction

Fla, =, ) = 2" in (s} vin (8 s '+ 99).

) HECS 52 (1) % Y5401, ), dhere et & wndge ol
15*) of (21). Mareoeer:

ey &
<Ol R+ U Bs + W ooy + Bl }

Procw: With /., by and 5, s in the theorem the Mellin transforms of r*£,* , 7/,
#y and b; are well-defined. The inverse Mellin transform of ¥, , solution of (26), be-
loags 10 the appropeiate spaces. From anmllwkmwl}u:beayunnﬂ?\(!il
has & onc-puameter oy of solucons {o*, " | For the inverse
of [=* ,w* ) to be in HY *3(5* Dubclllruul«ntdl«wnn!l'lwwhﬂww
2ero. Now the estimates. can be obeained as dose in [7]

Restame: When 5= 7, let 3, = 0, 9, = =/x and 23 = ~ =/s. Then for Res > 0, we.
should take = # 2,(mod 1), = ¥ 5,(mod 1), = # =, (mad =/} in Theorem 2.1. Those

sl il te N <l Lias B
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numbess. are the expectional ones and depend on the consact angle of the interface

with the boundary.
Suppose that £, is in HB(S* ) NHE(S® md.nb.-.puu, syand 1+

mu..su,-:. from the roos of the discrimipant

10 Thearem 2.1 we have two solutions #2", 4%, Our alm is to study the relasiombip

m-. wu?mmmhummmm o the salutions near

Snwooc o=, = refe and consider the homogeneous system arising from
(27428, We dednce from the masrix C, with == 5, that:

" sina 4 e cora = —ar s a +al cosa =gy sna ey cosa
Let D be the mairix obtained from C; be delcting the first two columns and the lasc
3 4% 4 matrix and a simple calculation:gives dot D) # 0.
o =4y =g =0, We have proved the following lemma.
Luststn 22: Let v = 5, = mafa, thew the bomogencour system avvciated with (2.7}
e paramcier family of solutions:

il Wiz (o 01=0,
0* {2, 0= )" {oou (3, = 110 = cos {3, + 118} 4 ;' {sin (o, = 110 + sin (e, + 16},
v g, 0= {sin (2, — 110+ sin (7, + 10} + 4" foos (2, — 1)0 = cos (2, + 116}

it ;" sin o + oyt cos =0,
Mormocer:

W)= 0= (050,
w )=t (e, 0,
Wb a) = (o,

& 4 slution of the bomogereous systers (2.21423).

E that 5 = a3 nd consider the homogenevus system associated with
(2:2142.8). We sty the matrix €, with = = /3. Afee some simple but lengthy roe
operitions, we obi

4 =Q=af=a=al =44l a0

Thas, we have:

Luisa 24; Let == 5, = s/, hen the bomogeoncour sytem avocisted senth
lmmlb--wmmq'mmr

o g, 0 = =i {0 (Fa = 110 -5
o (e f8,0) = oy {cos (5 ~ 100~ co8 G + 110},




8RB = e e/ 0, o E

/8 8) =~ fain G = D8+ sin @+ 16},

w? U/, ) = 4" {con (5 = 110 cos (5 + 18}

e (o300,

5. solution of the homogemevms system asoctared with (22112.3).

that 2 =3, = = 28 4 px/3. As before we study the matrix €, with 3 =

Suppee
=3 Sﬂm = 3 and the 3 % 3 matrix obtained by deleting from C; the fifth cohimn has.

Luostsia 25 Lot o =3, =

o we obtain ", a5 a5 .4y i terms

a8+, ,,=;b, shen the

Domgemeons systeme avwcsiod
with (2THZE) bus o tworparemeter farly of solums o (35,9, w* 5, 0}

AR =t 0, W) =t (5.0

i solution of tbe Bommogeneons problens (221423).
Finally we consider the case when a=0. It i -mvmn]nphnwy{nfd:

discriminant. function of Lemia 2.
after same row operstions: u;” + 4y

Seting o= 0 i the matrix G, ve gt

i = al =0,

® = conte = 10— con e + 18] +

4af frinie =10 +sindz + 110}

0% o =y fsinfa = 16+ sin (o + 16} +

+af feos (3= 1) = con (54 1)}, g = 0.

Tiwones 2.2 Let (£, 5y, 8:) be in
{Hb (51 NHEG ) %

X AHN RO HY D) x (BN HE R )

Sippone that 14k~ < 1+ by sy and bt 14k =5y, L4 =y % itk o L
b the olutions

o 1o & mot of nt function
of 2.1) m HITH(EY), HE RS *) givew by Theoren 2.1. Then:

of Lemws 21 Let v},

= 4 Betetloue)
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i extended over all the seve: of the discriminant fimetion
-nlump i+!.‘1,<)bv<lti1 a5 8% (g, x) are defimed by Lowmas 2.2-

mmﬂdd«ua‘&wﬂ'wﬂ.bhh

Procr; The theorem s an immedinte consequence of Theorem 2.1 and of Lem-
mas 2223

Since there i o injection mapping of W4 (5 ) into HY (5"} we now consider the
‘case when the data are in the usual Soboley spaces and not in the welghted ones. Sup-
posef, isin W2 (5 * ) with supp/. © By, where By is a ball of radin R centered at the
ocdgin and 2 <p < @, 1%k < =, By the Scholev imbedding theorem, 3'f, /o' &
continuous in 571N By for j % 4 - 1 and

ik

dr<m

Let

A ¥
(215 Brl= f.;.ﬂ =

The polynomial £/ has & meaning. Set:

(216 4 mhi=

Then as in(71, we have by an spplicasion of the Hardy inequaliy
PR VA PR

o simpliciey suppose that b, = 0 and that by & in W** Y2 (1,) with suppd; €
(J‘ﬂl.l As abave.

| Eb * o)

b =hin - 3 L2
s in HE VI N By Also:
@ [ 1] FEAE LN S
Istead of the problea (211, we pow have:

—du.=g, in S 0By
u, =0 on FyNB, w.=0 onl3NB,

e w2

218

~a.)=b on P08,




-, -.EDA,:uw ns*; w,=0 only, w.=0 onfy,

29 Z ;
E- A 180 | .
wi She—w)= T Lok iy

PE e

An_spplication of Theorem 2.1 gives the following resukt.
Liaus 26 Let {fo ) e in WAILS ) WAL ot 2 <o omd
L€k< o Supose dor
mm/,.mb,mmndna.ns—mbx,m.mnm&
() 2 e, o el and b — B+ i wbere m, n, J ene mowegative

Then there extes i amiue w» in H U5 ), slution of (2.18). Moreover:
b logesase # B iy S CAV By + 1A v + Bl oy}

Proor:. Let &(x) be & G5 (B} with &) = 1 o6 sipp /s U sipply. In (218), we
consider %, 5 instead of g and of b,

With our hypotheses on =, 3 and on k, we have: | 7 where = is & root of the
discriminant function of Lemma 2.1, T‘hll(;‘lh!l}}'”n-mmdw!m
Theorem 2.1 we cbtain the Lemma.

We now consider the problem (2.19). Set:

"
wa= Tt

The equation (2.19) becomes:

e
b -"I%r.,'n:,»zv.,'},

:T'lwx-u;nf. =b(); Osfsk-L
Thus,

" ) e con U+ 206+ win () + 20— U+ 207 [ b= (o) + 20 — ohidy




==

The condicion: w, 0, 0 = 0 s &) = 0. Snlarly w_(r, 3} = 0 gves:
(2200 0=cjeosli + 2+ ajsin(y+28~

P
-:,‘m-'[b,w.;)uwum-mq.

Since w fr ) = (rem), we have:
(221} afdnlf+2a-cjcmlf+ Da=cysinlf+Da=

=+ za*[o,u,,.us,.-xgn.nu:'z::r.r.up
The interface condition

s
z!w. w.ll

ien

.3 ol
i e | L,
gives:

(222) coosly+2)a e sin (4 2a— g con (i + e =

=H 4G+ 27 [{h7 ()~ o)) costs + 2o —a)d

where H, = (36 /)], 0.

From (2.2004222) we have a system of three equations with three unknowns.
fes e €5 ). An easy computation shows that the system is uniquely soivable and
IR

Tgones 2.3, Lt (£, bi) amd 2, 8 be ax in Lowwsa 2.6, Them thore omits & il
diticw v of the problems (2.1} with by = 0. Morveer.
B g 10 B s SOOI Bwrss + 1 vt + Bl
Proor: Letur, be a8 in Lemma 2.6 and et o be st above. Then: . = s = w0+
The estimate is now wivil to esuablich,
Swenon 3

In this section we shall stidy & transmission problem for second ondec linear
elliptic cquations in bounded planar regions. Let

@)




We asume that:

Assunanon (1): (1) af ), " (x) ave ralociuad €= fameticns iw (0" ).
llid'hl}r>ﬂlﬂdlﬂxllnl’!.xtrl-l,‘h)
% 4 WL 6l £ R and a5 i 7).
() 0d (P) = a3 (P, 43 Q) =44 1Q),

Resane 3.1: The bypothesis (i) Is caly nesded in crdes o sinpdy the algebrnic
calulaons, involved 1n the determination of the. discriminant. funeion assodated
with & trammision problem for (3.1,

Cosider the tzanamision peoblems
o7 (A w, =f* in 0%, w, =0 on 30" [r,

(e =0, B'w, ~Bu.=3 ool

where

The uait normal vecios 0 1" oriensed woward £ s denoted by # and the interior
angles made by 30° /1" 0~ /I with I'at Pand at Q are (=, 3 = a,) and {2y, § = 2;)

3
uscom b, 5}
& i

We shall first establish an s priori estimate for solutions of (3.2) and clearly the
‘main difficulties are the estimates near P and 0. Without loss of generality we may a5
sume.that £ is the origin and that 80/, 30" I and I are gen by

wenlal, meni n=w),

with g in € and g (0] = £2(0) = g (0] = g7 (0) = 0, g (0) = coranx, £/ (0) = tan 5.
Set

(3.5

i 40) =] 045 0

Ayinto it normal form, Tt i knoven that for ellipeic operators of ses-
mmmmmmemm. transformaion ¢ exists. Since Aq has
constant eocfficients the transformation | may be written exphcitly:

iy xs) = x4+ = Ul ) + Vi)

where m = { =g (0) + ey (0)as; (0) = (a3 (00F1" }fay, (0). Ep £ 13 p. 88




=1

I terms of the new coorndinates {3, = Uley, 55), 32 = Visy, 1), the equation (3.31

B4 bae, =F* i N*(®)=D*NBRY.

The coastant & is given by the espression

&=,00)]

R “a"ﬂl: }

The transformmation maps 3% /T and Finto " and I, The jacobian of the trans
Formation i 4 on-zero constare. Let es be the angle made by ' with I' then by sct-
ting % = &(x3) we obtain by an clementary argament:

631t = o 040 0) = (o007} fays 0) catana + s (01).

So if A" = 4, we have s=x

Let y be the angle made by I'* with 1" Settng x; = g3 () ane computing v, we
e

58

rany = fay (000 0) — laya (00} fuyy (0) cotan + s (01}

vith y=rda=n

Again If A7 = 3, then y = 5.

Consider the tramssion
&
i (Agw, =F= in0°NBy,  suppus By,
E 67 w, =0 on (30° /11 N By,

o, =, Blu,-Biu.=§ onI'NBy

n the new coorinates {3, 31} the problem (37) becomes:

58 4. =0 on I*NBIR): »y—e =0,

hao, =F* @ N*(R),  suppe. cN*(R),
Ve, = Vo ln=¢ oal*NBK)

It s known (e.g. of.(16]) that there exists & conformal mapping taking N (R)
o §° A1 By where

5 m{indk0sr< =, D<O<u),

S ={ntr 0<rcm wetey)




The problem (3.8) becomes:

(&0, =f* in 5" N5y, wuppw. < By,

o9 w,=0 en 0By, w =0 on I,NB,
o=, Lwa-w)melb on rNBy.

Fo, T and T, are the rays =0, 0= o and 6= . respectively,

3.2: The condition {iv) of Assumgtion (1) is needed so that in (3.4) we
| have b= 5" = b It then allows us to et in (3.8), the simple condition ¥ie, ~ r.)-
“n = $fb on I" NBIR). IF the condition (iv] is replaced by the weaker one:

()" a3 (00 0) = w3 (O fars (00 a3 10/ (0) = a5 (0)fays (0)

then we st bave = . = .. i the definiion of the transformation ¥ bt b, =5_.
Thas i (3,31 we arcled o the boundury condidon £ (9/0011e, ~ £~ 8/80)w. = b
on I', M B, The computation of the discriminant function in Section 2 becomes toa
complex although there s na technical difficulty. We assume (i) oaly in order 1o
make the paper more readable.

Liows 31z Let A* be two linesr ellipic operctors on 01" satiging Asory-
oo (). Lat w, 1 be as im (3.5)-03.6) awd let k by & mom-megative isteger with 0 % 5 < 1/2. ]
gt 134 e oot oLl sl W[
megative inieger: Them there exists & comtant € indepemdent of & mich
[P P T P

€ CA* o e g + 1A 0 B coma + 1B w0, = Bt By}

| Jor all w, 1n HE*2(GE VB), muppuiy € By and iy = 0w (90° /1) N B, with e, = .
o "N 8,.

By it the bull contred at P with radine &

Paoor: Set

L

ET

As abevve we frst transform Ay into s normal form and then use & conformal mapping
1o reduce 0 the problem {3.9). The transformations are all of class € and are 1-1.
The fanction &, becomes o, and from Theorem 21 we get:

(N TR T T

SOl s bt na + 17 bt nsy + Dol e ona}-

o SRS R
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Revurming to the original varibles we obtain

e Bt o # - B v

< CllAw. b g + Mo b o #1800 = Bow eemnns)-
| Since the cofficients of A, B e in C7, we have by & seandard srgument
{el. [71):
00 = el i ey (1 = el v o €

& ClIA* o nma + A0 e nag 1B 20 = B0y srnash

o D <3< Al

Take £ 0 smal and the lemma i proved.

Totwomene 3.1: Lot A* be two linear clliptic opensios satifying Asumption (1) Let
§ be a mornegslioe ateger such that |+ k=3 # 5, where 5, =0, 1, wfoy. wxfr, =
= w7, + Py, with oy = wlP), 0y = Q) 7y = rmrz'ﬂﬂlﬂlﬁrwb
(3514361, Suppose that 0 %1 € 1/2. Then there exiss € mch thar:
Bl rons + o oo %

< C{IA* gy + 140 b 4 1B 2 =B e vin}

Sfor il wy i HEVH0®), u, = 0w 807/ and w, = u_ on I

Puoor: Let ;) be  finie prtition of ing to s corering of 0 U

unity correspording
ug wmunﬁuamhmm.umdr

1) For all & with supp M {I'UNE)UNQ =9, we bavc the kenoun
estimaic:

Bgms e vy €
5 C{IA " G ey + 1A~ G g + Bwe o + w- Bewni b
C i independent of /.
2) For all & with suppé, N (N(P)UNIQ] = 0, then Lemma 5.1 gives:
T v + I oo oras's %
S A" Gue ey + 147 (B Moy + 187 (o) =87 Em s win )

3) We pow consider the cuse when suppd, 11" 0 and supp ;1 {20°/I'U
UNPIUNGQI} = 0. set

"X(An. An-)‘ M_(n; 7—’1}' "'l::‘,)-




We have the eliptic syems:
Ayl =F. MAu=6 onl.
Thus by the wsaal theory of ellpic systems we get:
{ P T TN Ware
S (A" G oo + 1A G ow s + 1B ) = B (o e vngy +
+lis b+ B b .

(Muhnhdﬂmndlhzhmwhmw;,wmby
» sundard srgamen

0.30) e Lipesigey # - bpesigey &

& C{1A " w liprars + A 7w gy + 1B 8 = Bt fypoinin +
# o brwrs # e s}
for all w, s siated in the theorem.
4) We now show thar
b Do + o e <
S C{IA a3 bisiors + B g # 18wy — B D).
Seri=u, onfl* UT, = s on0", Sice u, is in HY(0%) and w, =0 on 30/ ur
with = u._on I\ we have i ko Wi {0, Let glx) be the distance from a point x of 1 3
1P, Q). ht follows from Hardy's inequality that 2~'i_ & in L¥(0) and: ¥
| T e ks + - oo % Clilegocn %G (s B + e oo i

w

Lt e an arbisary dlement of 1324 anl e 35 n the theorem. As integra-
tion by parts gives:

+ [uu.w*]}, wz«j NG o
o i /

| 'nJ'A~..¢.a+JA'-_M.

e —amsunps I
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From the sbove argum<nt we may take = & Then:
Colhe B+ BB} % [ #1417 o L 4

g

e Rl uo g i [ 1B =B [ Pl [
S ‘

Since we awume thet 0 € 5 € 1/2, we obtsin:

B Brrey + o o %
< el wa B+ 1A= B #1850 = Bow By + el Brinaei}
t;:m-m.&m,mp.lyhsnmmm

b Foa %
€ G (1A By + 147w Bowy #1870 — B w Bpniry}.

The estimate of the theorem follows. from (3.103-0.11).

Tsomin 32 Suppose ali n/?&up)lwuw {f.4)
bh}t‘w‘le,‘""U‘l.Mﬁwd:-m e of 320 in
HE*(0). Moreover:

B e raes # Do ot % s Bogrmars + Y- losaay # Wi}

Proor. 1) Let X be the Hilbert space

X={mu=iu, u.), w, in H*HQ®), w, =000 30* /1, w, =w. on I}
with the obvious norm. Set:

¥ HNEY )% HAGO) % HEVA),
We define the operator @ from X o ¥ by
(A s AT oy (B0, =BT )i

From the estimates of Thearem 3.1 we deduce that @ is 1-1 and the range Ricl) is
dlosed in ¥,

Suppose RICL) is siritly contained in ¥, Then there exists {g, g .5} i ¥ with
{5+ .52} not in Rial.

By the Hahn-Banach theccem there exisy {6, b-. 5} in Y wixh thac
0.12) Uy g + e g b + U gl # 0




with
B33 A et AT Wb D B =B w, By =0
ot all = s, ) in X
2) Lex
Ze{rmp=(pep) ve in WHHQ%, va= 000 30° /1,
po=u_ ool A*p, in HUO%) 8% v, —B o, in HEHVR(Y),
By regularity theorem (see Appendix)
o dgury F AT b gy F (B W, =B u, Bl =0

for all &= (u, ) in
Sll..ﬂ\'htheﬂuknm

S fwiw=loe,wo), wy dn WHOT), u, =0 on 3071w, =4 0a I}

with the wsual norm. Withs in S, 517 =¢, on " UT'and ¥ =¢_on " ThenFisin
W) and the Hardy incquality ghe:

Iz e by S el o < el
Thus, the lincar form:
Lk, v = [bowidet [boodet vt
o v i

s welldefined for (b, b, b} in ¥ and o in 5, We bave: Lib. b
in 5. The peiring berween 'S and its duul 5* is denoted by
Let &, v be in § and consider the bilincar foom.

En, o) = ﬁ U 2 7u,ﬂ+j-5. L xu Jxl

)= {G.r) o all

+=!: . a..mnfr ok
Then: [£0u, 2)| € Ml[ull Ell for all , v in § and thos, &0, #) = {(Au, v).
oar assumptions on A, we get:
lulf < 210, 0] = (A, w) = o, Au
By & well known argument we have & unique u in 5 such that:

Byl =Lb, b kvl forallvin S,




——
Taking v = (., 0) with %, in G577}, we obrain:
Atpimb,.

Senlarly: A", =5
Since u, isin 57107 ) and A w, drin G, B Sy isin WV 5L Let g be
in G 4), then:

At wengds A pdem (B u. = BIw 90 ¢ g
- o

The puiring berween 17/ (1) und i dusl W30 is denated by (). It then
follows that: L
0B w. —Ba, +b 0 =0

for all ¢ in Gy (1), Thercfore: B*wy — B w. =b o0
Replacing (5, b, b} by {A %, , A”u, B o — B u ) in (3.14) and we de-

Atu,=h,=0, A= Bu, ~Bu.=ba0.

mekahi).ll!ﬂum-mmmk:‘m R{a) = ¥ and the the-
orem s peoved.

Comoriasy 3.5: Supgose all the byposbees of Thooreses 3.1:3.2 are saifed. Sup-
e funber thats

1) 0 < o< mfC1+ ) j = L2 woith B= 1,2,

2 sfll )<y <m ymarsfl + &), =23,
Then for {f* |amw':xm V), dhe umigue solation u, of (3.2) given by
Theorem 3.2 i alio ju W4

Proor: One of the hypothescs of Theorem 3,1 i that
Vik-swo whew 5=0 L wnfe. wefn, — iy bealy.

mu,-n,“m..h.,-:.,tuw.namnbuy,m,-,-m,tu
withk = 1,23, .. andm = 2.3, ... Thenw, isin Hi **(0*) und from the definiton
&h:ﬂ:lm&ﬁiﬁhlﬁehﬂﬁeﬁr—nﬁu'.wm whrii(ga).

T i clear that when 0 has » smooth bowndary, 7, = 72
quently u, will onky be in W* 1107
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Sreron 4
In this section we shal sudy o trassmision problem for ncar parabolic
equations

i #A%u = BOTXOTH  w.=0 o 0NN x0T,
wymu,  Btu, B w_ = onl'x(0,T),

s 5,00 =" 1) i 0%
Set b= T/N where N is s large positie imteger and denove by

W
.".w-b"J fobeilds, OskEN-1.

W consider the discrete version of (4.1):
fuh —ad ' 404l =t 0% wi=0 o 30Yr,
@2 qui=at, BYul-B ad=gis) ool
b2 =af ) W0 1SkEN-1

Prorosmost 4.1t Lot wy, vy be tn WEHO ) and loe A be a5 m Aswomption (1),
Thew:
£o)] % o Gt 0 D o P

s

swbere
T+ e Lk
[ §: J £

Proor: It ks an immediste consequence of Theorem 29, p. 33 inlel.

Lusoin 41: Sgpowe all the bopotbescs of Thoorow 31 ane savified Lot
(ﬁ,wnuwufru )% HIF() % W20 ). Suppase frtber that = 0 o
=g om ', Then for coch k there exas & sl w of 182) im HIQ").

Mmum
Bt ey & 6147 B <

+ I sy + Il o + h.g

sc[|...-rﬂ,.
C i independent of b, k.




==

Proor: The existence of a unique solution w4 of in HIQ") with A" w! In
L’m‘lﬂbnﬁmﬁm).sz,hhl’m'ludbemmﬂ'u.l ) We
o establish the estimates of the lemma.

We muliply (42) by A*#! and integrae by pans. With @, (v @) ws in
Proposition 4.1, we get:

o, td ) #BRAT MY

oo
day TN [r.du‘l — b s,
’

It foliows from Proposition 4.1 that:
@3) atud )+ BIA By
Sl + 0. 04 4 2[Brud d —ad e
.
Simlaly
WA ao et t) + S gy €

bl oy +a- Tt

2[B st
|
The mims sign on the right hand side of (44) s duc w the oricntation
of the nomal w I\ Since wh =’ on 1) we obuin by adding (4.3), 144}
actud ot btk 2 AR e B + B4 Al [y €
< U oy + U ) 400

da et vaf gt —ad e
7

Adding from k= 1 to / and we have;

&
.5 -.k’..-'.H-.(h!.«flfb.;](ld‘v!ﬂj + At B ) =

ol o)

) +b S Ut e + U2 B )+ 2 e = b,

Since 015 1/2, it i clear that;

[ tutda | % o Il € Chthurn i beoar-




gy

The estimate of the kmma then is an immediate consequence of (4.5) and
of Assumption (1).

Lesauin 4.2: Soppose all the bypoohess of Lemess 41 are o and shat f, 1 in
L2(0, 73 L3@*)). Then:

Jlet w2
€ i independent of k. .

Proow: Let w} be as in Lemma 4.1, then:

the Inpotbesss of Theorems 3132 are saniied, Lot
L‘W‘))i#’”b‘)x LT i 0% L ant

0.on 30° /T, WS I Then theve oxints @ wigue wlution 4, of (4.1) fx
E200. 7, MO0 M

Ig l + oo woen + [ b 5
i

% Cllld b I by + Bl # U loria v+ L Revin v}

Procw: 1) Let w} be s in Lemma 4.1 and set:
Wl ) mub ) forkb<rs ks DA
Trom the cximare of Lemma 4.1, we have:
T e i+ 1A =0 it € .
By uking subsequences, we o —u, i the weak®aopology of
Lo (0, T; WHIE5), A%w" —A%s, ety n L300, T; LG ¢ B e 0
Let &° be & plecevise lincar fumcrion; contimuous in [0, 71 and such that

Bl k) =l €T EN - 1 B 0 = ad
Fram the estimate of Lemma 4.2, we have:

L ;‘;—‘ weakly I L0, T: LH0%)) s b0




A standand angument gives-
S AT = W@TROTh we =0 on (37T X OLT)
o =u_, B'n,—B-u. =) oaPXOT)
o (6, 0) =l b} 0 0.
“2) The solusion obtained is unique. Indeed suppote that ¢, is anather solution.
of (4.1) with the properties stated in the theorem. Then:
E‘:"'“"""“ mG X 0,T);  w.=0 (@00 X0.T),
=w., B'w.-B"w =0 oal'x(0.T),
oy (00 =0 in 0* with w, =u, =¢,.
Mukiplring the equation by w. und integrating we obtain:
(b B + b o) # s Bossars + oo Brerars) €0
Sow, =u_ =0
3) Witing (4.6) as.

S
#. ==, B'u.-Bw.=¢ ol

s LS
e {A,F fimZe, m0Y,  w=0 oM

for almast all ¢ in 0, T), we have an elliptic problem, Since F* is in L*14* | and hence
in H(G*) for almost ll 1, o follows. from Theorem 3.2 that

B b + B € Ol 5

‘c[v (-.rluw-ﬁI!.(<.fl|1-n-u*“fg,-l ’)H"v")' -5.,[-,4||M|]-

Hence: u, s in L3(0, T HA@™)).
We shall pow procced to <stablish seme global reulrity resubs.

43 Suppowe all the bypotbeses of Thearem m«i Let
s, (8/o0f.} be in LU0, T; HU D 0*)) % L*(0, T; L¥ () n-fk (9. }h--
n.m'nx{w"m') H ))m.g-n_ .'
e of WD) goem by (0,7 i ‘)J .ub
lla,'a:.‘.ta’,‘ar%.; i L3 {0, T: HP O hJ % L’m.T 1.'19*:1 for 0E5€ 1/2
2-1m .,,vam,, r,-r--
<nfz<n .-sm ey tabe 5 =0 and
e 218/} !rn-.L'ln,T el




i

Pucos: Set: v, =u, ~uf and we have the iniial boundary-value problem:
2
a
BomE,  Ble,—Bel=3o B R —E7aY) o FX0,T),
G0 =0 @l

With our hypotheses on s, A% 2 isin LG ) and B wf ~ B~ a® isin H)7(1),
Let dgsolx, o) = aotx, ¢ + 5] = wix, 1} 5" be the difference quotient with respect to 1.
The entimates.

AR A SRR |

for T, < T. The constant € s independent of
Letb—0" m«m(:aﬁ,’aﬂn..(aﬁnwa 1) in L3(0, T: L340 )): Con-
sider the problem:

M[g ] a/.ffw,n mat Zee0 o,

(] ()0 mr

From Thearem 5. L.w(a,tae:.,u.i.-‘m ; HIL0* ). S0 now with (3/38)u
inL*(0,T; ﬂ*m’n.ﬂf, in 12(0, T; H}(2")), by applying Theorem 3.2 10 (47)
we obtain &, in L0, T; H! (")) for 2 =1 = x/y. (o=~ efy-

s ccarhat 10 < sy, < /2 < 7y, 4 < A (e 02, e e may
ke 1= 0 and u. s in L7(0, T; W32 (07 ).

Lustsia 44 Suppse all the bypocheses of Lewemsa 4.3 ave sanigiod end sppose fur-
dher dhat 1, , 8,08 ) im L2 00; ‘m‘J)xH‘":nxww‘:m)—uwm
. G = n,w,'f,ubmp-l:, < and 1% f & 2, Then the slution &, of (4.1) u 3
L‘W.Tiirn

¥ 0<w, -,c:,uc,., ri<r and yelpe - w3 then w, i i
L0, T: HAG ),

Proor: With our sckiional regularity hypotbescs of /., § and w2, the sated re-
sult follows from Theorer 3.2,

Areroi
Here we woald like 1 outline two differcnt methods of

completing the prook
of Theorem 3.2 The first method consists of showing the existence of @ solution

oAt = = AT O XOT)  ea=0 in Q0T X(0,T),




—
of & perturbed problem, the other one i based on local esimaies pear singulac
poines.

1) Let Ao = (A . AT} be an elliptic operator (satisfying all staied sssump-
tions):

Ay = ’)l.‘k ibn(" o

where bow 37 (x) = a(P) near P and i i) = a(Q) pear @, 165,152,

From e 23 a3, v Gt Ot it ol ot b
exstor A, (and corresponding to it boundry operazor By} possesses u unique strong
solution, s in Theorem 3.2 Lot A= (4, A~ be our original operstor and define
aperatars:

Ly Ly: XY

b

Byu.l

Lo = Vou, , Apar_ , Byl it —
and

Lywwm (A=A o, (A7 = A" Dae -8B a, -

L s imverible and bounded. (Theorems 2.1, 3.1 and existence of & weak sob
tion), We write our original trapsmission peoblem as & pernurbsrian of the problem
for Au, in the form:
n Lo [f*. " #1+ L, weX,

and show that equation (1) sdits 4 unique sobution in X, under the sxsumptions of
Thearem 32 We wiite (1} as

U=L'Lmmf* 9

and then i s gven by w = (B = 171,185 1 7 0 oy L Ly Ben ©
<1, It s ey 1o see that due to Asimpion (1) (¢t [7)) we have

e Lyl < B - DLl = ML Bk < ke
and thus [~ Li*Ly is imvereble in X. This ends the peoof.
2 To be abic 1o show the higher regulrity of a weak solurion by Jocal estimates
near singolar points we need somewhat sironger assumpEions, namely

| ) - P € G4

(B =B a1,

1D (a7 )~ 4P| < GF*



—%—

.up(mdmu.rmn—u Q). These assumptions llow us 1o keep Ly in
¥, where sow # s 8 weak soketion of U+ Lw =£/* , £, 9], First we proceed as

SaT4) 10 gt i HAAF2 (%), het s thet Ly Y i the e e Theo-
tem 2.1 to prove the demanded regulaciy.
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