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1. « Ivmeooucion

Recently many papers have been devoted 1o the study of functionals of the

(181} I,’(x.v.bm:+Jw,n‘.u'.|rldbf'".

where v i o real unction defined in the open set 1 € K™ b 3 1), 5, s the set (s priori
nknorvn) of discoriniry of v, and # * are the traces of r an the fwo sides of $,
is the pormal unit vector to 5, snd %~ is the (w ~ 1)-dimensional Hausdorif

Wwwmkmmbwmmmﬂ-cwd&
sical caleulss of variations and modem geomerric messure theory (see [AMI]
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[AMZ], [PAJ), and in spplicd mathematics. (sec[AT], [CL1],
[DCL, [DMS], [MS}, [MT] sbow compuier visun theory, sec[AV],
[€L2), [ER), (FOJ, [MO], [VI] show phme tramsisons and liquid cryseab.
theory). Functionals like {1.1) seem to be useful for schematization of problems in
which svolume energye and surfice encrgye play @ tolc.
A suitable subspace of BVIG), sy the clase of fimcrions with special bounded vari-
-mnSBMJ muudlxedbrﬁﬂeﬁu’mdL Anixmnmﬂ)(b\] is 0 powerful
the study of functional (1.1). The space SBVIL) enjoys compaciness
ergarca for wlskatig matancasof (L1 (oclAMI) ...a lkows the sudy of
with pon tniqueness. of minimizer and

‘minimizers.

Analogously to the fumctionals (1.1) it is interesting to consider functionals where
alio higher order desiatives appear in the svolume tcrmue and akio the traces of the
deshatives of o and some kind of curvaturcs of the singulat set appest in the surface
teme.

The weak plate model for image segmentation in computer vision theary, pro-

A, Blake and A Zisserman for piccewise smooth grey-levels functions
{sec (BZ), p. 98) has an energy that fits inio the sbove framewusk. More precisely
this energy could be expressed in the following way, by mean of ou notations,

(12 [Pl b anm 1) 4 50 e NS ¢ [\-—sl’d-.

positive parameters, g € L™ (), » & SBV(O), Vi is the shsolutely contin-
ous part of the distributional gradient Dy with respect 10 the Lebesgoe measure and
Vo e SBVID, R™). The enc dimensional case (o = 1) of (1.2) has been recently stud-
ied in[COY, [BC].
In this paper we consider funciionals of the following kind

15 JQW’»}&+W""|5»]:J‘ H%”ur-'—m-),

where 1 is a real function belonging to the Sobole space W0 with Dve
@ SBVI((}, R™), w and [3e/3u] are respectively the narmal unit vector sssociated w the
set Sy and the fump of Dy scross such set,  is a posiive defirite quadratic form and
L a lncar fanctional.

In the two dmensional case the functional (1.3) is related 1o the theary of thin
clastic-plastic plates: aswume that the bounded connected open subset G R is the
undefornscd shape of an horizontal thin plate, o s the vertical displacement and the
quadratic form G i given by
[} QUV) = (i1 - )| T2 + &),
where &0 denotes the absahitely continusus part of the distributional leplacian of o,

1F we assume also that v & W7102) then the second and the third term dissppear in
the funcxional (1.3} so that the functional reduces 19 the mechanical cnergy of the
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phumd‘&mlnfu:-rd-lmymlDLiTNH]}mdcuh:W
%), where d > 0 s the stiffoess  is the Poisson

tions and, possibly, to uniatersl constraints, existence and properties of the fotal en-
ergy winigiizces in this wodel have been smdied by many suthors (sce L1, (LS],
{FL. (P, (573, BeT)

When vlhnl}ndgmqllﬂlﬂammmd'lm-lﬁb
pﬂw&nﬂq’llﬂl\-ﬂmnmm cannot expect to find displacements in
the Soboley space W*4(0); for this reason the fallowing deformation encrgy has
been propesed (sce [DE1], [DE2), [TE, [PEI)

3 [uner.
‘

where ¢ s » convex, proper and lower semiconsinuous scalar function vith lincar
growth at infinity; in this case the domain Is the spuce

BHUW) = {os W' (@) D bounded matrix-valued Radon measure},

‘which has been thoroughly stadied by F. Dmﬂnmﬁ!lmu]ldmran
denoted HBIL) =i In frangaises). This space allows creasing withour fracture: relevant
cxamples showing gradient discontinulty slong lines, in 0 = (=1, 17", e the dihe-
dron el %) = I:.lmdlbeyrmodulr. xp) = 1 - ma (|, hll

The exiaence of minimizers in BHU) is proved. in[DE2]. bt po regalriy of

i
H,
%

partial SEJ.
mwumwn«-m«:&mﬂm{mmﬂ.w
denote SBHIL) (functions with special bounded hessian); this spuce sill allows creas.
umm“mnwmmdmm:wwunm
a5 (13) and &
-mdnw.hmmﬂmh--zmnm

aplasticicys mareover the additioaal energy
cresse the plate along Sp, is modelled as the effect of # hinge of low elstc resistance
whose energy density (with sespect ta ') i the jump. (01|

1-dimensional sct of

hhmwmrﬁmmsﬂﬂw;ufnwdhwtlsl
under Neumann, Dirichet and unilateral conditions with suitable Ioads L Moreover

{*) The livear Elamments of the plate perpendicular te the middle sarfice hefore deforma-
o0 remain seright 49 perpendiceia o the mide surface afer deformution 1 wel
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we study same pecessiry conditions and some further properties of & local
sinimizer.

The existence theoroms in sections 3, 4 and 3 can be proved, by the same args-
mepts, for the variational problem. studied n[DCL) with sn sdditional juimp
term:

m{[:mm LR [ S | }.-.m}.
| < F

and aha for the variaional problem

mljw’upaa»x- a)+ [ \(u-m(m'ldx"ujlral’&}-
i “ g

We remark also that studying (1.3) may be & preliminary step to the swudy of (12),
possibly modified by sdding an integral depending on the curvaare of 5, .

In & forthcoming paper we shonw thar, in the two dimensnal case, for 4 minimizer
® of (13) there it an open set O (where elasic deformation takes place) such
that

18 SactNG, x'Ga)=2'TunD <+ wel @ NCUNT)
The main results of this papes were announced in[CLT), [TO).
The outline of the paper i the following:

1) Introduesion.

2) Functions with Special Bouaded Hessian.

3) The Neumann problem.

4) The Dirichles problem,

3) The obstacle problem.

) Necessary conditions.

) Local minimizers in R

2. - Funcrions wms Seecia. Bouste Hissis

Given n connected open subser (1 ¢ R ( # 1) we define the class of real vaked
functions with. special bounded hession SBH(L) and we point out some of its

properties.
Pw-me:R"quzquU U/ ias wpological closure, inserior,
boundary; maccoves we denote by %™ (U its oy = 1) imensional Haosdorff mea.
sure and by £ (U1 (o shortly | U] is Lebesgue outer measure. We fndicate by B, <)
the open ball {y € R™; |y = x| < g}, und we set B, = B, (0). 112, 0" arc open subicts
in R, by Qcll’ we mean what [ is compac and Dcdl',
Weumdnﬂwfnﬂnmlmwa.\s-m(u..i;,=v;=mn€x,p) for
every . 8 & R My, staods for & X m matrices. Uk 2 1) and | for the dentity in Moo ;
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given tw vectors a = (g ), b= (), and two matrces A4 = {4}, B = (B}, we set
b=3 ab, Dbl =ab, B} = EM.. 1Ay = ZA.A. By = X AuBy.
8 EA‘B.

Let £ 0~ R be n Borel funcrion; luuomizu'-n‘ulw!m.m
pamoompmﬁum.{a‘)“u, fallowing [DGA], that = is the spproximate
limit of ¢ st %, and we write

T=mp Eena(y),

| aleip)idy
i

Ll S 7]
for every e CO(RY). I
The set
S.-(xll):q;lhxf(!]dnuaﬂu'-)‘
s & Borcl sct, of neglighle Lebespue measure (sec ¢ (FE], 28.13); for brevity's
sake we denate mrﬂ\s.—-n*hiwm
Fix) = ap i ely)-
Letx e 0§, be sch that D<) @ R*; we say that v is appeasimarely differentiable
at 3 iF there cxists o k X m marete Voix) such that
b foty) — iitx) = Velxiy ~2)|
M S
ﬂuh.mhfmmmww‘mumn-m I the following with the nota-
tion | V| we mean the
l!_un.u).udmuhrl.-m m.JMwW"um.ihhbun
 and Sobolev spaces of functions with values in M ., endowed with the usual norms

Ibu\dlur..mpmmh We denote by TR0, My o) the space of the boundod
‘measures on £ with vahucs in M. and by || the total varistion of a measuce of

RN, ), e
A {sz. HeCHOLE v‘,s-ma}
1A 5 op s e e el e e w5, A
dctioe 4 Bore mensure ] wting for cvery Bore set B2
|aliB) = inf{ |ulyui B A, A opea}.
We recall the definition of the space of humerions of bounded variation in O with



wabues in RY:
BVIL, RY) = (e L'(0, R*); Dv e Wi, My},

where D = (D denoses whe diswibusionsl derivatives of v. For every v s
BV, RY) the follewing propesties hold:

1) i) & R* foe 507~ Lalmon: all x e G5, fsee[ZI), 39.6);

20 5, is counably (%" ~ 1) rectifisble fsce [Z1), 39.65

3) Wir exists w.e. on £ and coincides with the Radon-Nikodym derivative of Dy
with respect to the Lebesgue measare (see (FEL 4590260

4) for 2%~ almost all ¥ & 5, there exist w = m, () € 3By, 07 ix) 0~ () @ R

(outer o innce tac, sspecively, of o o x i he direcion ) such that (e (21,
3143

lim 27 |etz) = o * b dy =0,
L Py ity urol
fim 7= lely) =0~ W] dp =0,
7Y pakiyecn)

and also

2 |w\,a[\v.-|a-[\;-w-|u--‘
d <

(Krl'FE}.A.S?(l”J

In recens papers (e DG), [DGA, foe sudring some frec _dlscontinaisy
problems, & clas of functions with special bounded varition has been consilered.
S e Ty o e ), kR
following definition.

Drmmon 2.4: SBVIL, R*) denotes the class of all functions o w BV(D, R*) much
@2 ;o.|,-J|v»|a+j|p' —p~ |
By the previeus defintion it folows as in[AMI], Proposion 3.1, thar v
« SBVI, %) if and oaly if # ¢ BVIG, RY) and
Dy=Wodc 4 (" =07 ) @ndd™ IS,
where %75, (B) = 5 (B (15,) for any Borel set 5.

In the theory of clastic perfecly plastic plaics developed by F. Demengel
ia[DE1], [DE2) the space BFIO) of the functions with bounded hessian in & hax




been introduced. Namely
BH(D) = {pe W'

;D e O My )} = (o e L 10); Dee BV, R7)]

where D%y denores the distributional hessian of o, The space BH(O) is endowed with
the norm.

23 Tl = bl + el + 12%)7.

and i s the dual of a Banach space.
In the present papes we itroduce the spoce SBHIL) of the functions with speeial
bousded hessian.

Dermmon 22 We define SBHID) us the class of all functions v & L' () sach
shat Dv e SBVU, R™).

1) the distributional desivative of # i absohitely comtinuous with respect 10 £7,
bence we have for every v & SEHID)

TomDo, VDe=Vh, VDi=d'v,
‘hrﬂ"-tkwmmdymduhdm'ﬂnuy«tbrofﬂgd-ﬂnhd
Laplacian 4 (i the following we shall use ahvays the notstions in the right hard side
o the previous equliies)

2 5n= Usan:
3) |D‘-\,-J|v’.|&¢ ] |De1] o=,
-

where (D] = (Dv)* — (Dei~.

MNow we s some exabedding results for the sgace BH0) which follow immed-
stcly from thearems peoved in (DE1-2)

Tuuwossa 24: Let ¢ R™ (w > 1) be a bounded open set with the exierior cone
. Then

24 BH(D) < W r @),
with continuous embedding & 4 % /(s ~ 1); the embedding is. compact if ¢ <
< mfim = 1}. In particular

23 BHO) cL*(0),
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for & mflon ~ 2) (compacily when the inequality is strict) if 7 > 2 for any g 3 1
(compactly for finite g) i m = 21 G R is.a bounded imerval then BHI) s com-
pactly embedded in €1 ()

Since we want 1o consider buth the case of smoth domains snid polygonal oncs,
we introduce the following definition,

Dosmon 2.5: We say that & st & € R (m 2 1] satisies the property & f it 364
bounded connected open set and
£ is strongly Lipschitz and 30 is the unioo of finitely many C7 curves, if

0 i CF wiformly regubar, i m> 2 (see g [AD], 4.5, 4.6),
Thwossm 260 Let f cRY be an open set. v & BHIO) has compact support in £
then

28 Ik 4 10%
1 & satisies peoperty & then

an BHI) (@)
{sec Thearem 33 and Remark 3.2 i [DEIT)

The following extension theorem holds (sce Theorem 22, Remark 2.1
in(DEL)

Tomowess 27: Lot 22€ R with property & and ket ¥ & 0. Then there i a constant
M = ML} >0 and a lincar cootimuous map [1: BHD) — BHIR™) such thar

Hr=¢ aeinfl, spuCER) where t=2diam 0,
tiarsr, % Mlelmn o
HOWHIm) e W (R}

Resuask 28 I 4 does not sath & both Theorems 26, 2.7 may fal
ke, for Instance, ¢(x, ) = log V=" + 3% and @ = (b yk 0 < x < 1, |y] <x°}. Then
©ly belongs to B but Ik s usbouaded. OF course |, % BHIB,)

In the space BHIZ) the following race thearem holds

Twrosss 29: Let £cR™ with the property ®. Two bounded licar maps

.

T BHID) = W1 (a),
i BHIQ) = L'20),




for every v & 00, where N i the ourward poral to 0. Morcaver 77 & ‘onto
{see [DEL), Appendi]

As an application of the previous theorem the following matching lemmas can
proved.

Lasa 2.10: Ler A, A :R'In:qxnmn MA* = 0, mod Jet ' be 2 € uniformly
regular (rebuively) open subser of 34 such thar P=ANA". Let v e BHIA)

-'-BHM'J Exs |

s wn

Then
FeBHAUAUL i and only If yolo) = yole’) In I',
and in this case
D5 =D+ Dl = (o) + i R & AT
where 3 i the unit nomal vectoe to T' pointing tovard A’
Al = (Do)R,  n) =0 (=R)
For the proof of this lemms see ¢ [DEIL Theorem 2.1 snd Appendix
Reatarx 2,11 W notice explicitely that € * (1) s neither dense in BHI) ror in

SBHI) with respeet o the sirong me..maumdﬂmdh
ummnmmmmamw
dissace

e ==l | 10201 1o |
s in the case of BVUI and SBVILH with
o= =sha | 1041 [ioel].

tmm:l.m 28 and 1, 1.3, where the result is obtained by mollfication of the vefv-
ial exension),

From pow oa we denots by @, (0} the space of the affinc functions. We define the




lineac mag p: BH(O) —» ,10) by
8 () = ug # (Volg-tx - ) Vo« BHID),
where

v |01 [ode, (ol (0] [Fode, o= 0] [xde.
¥ d J

Obrioauly

29 pme Veed,
(210 He-pi=0 WraBHE).
Now we can prove s Poincaré type inequality.

Teeomess 2.12: Assume ¢ R with the propeny . Then there are constants
C=Citl >0, 5= 1+ VWCIL + ) such tha

211) koo = €I w.avmn-amjm-u.
i
212) To = polsnsn € S|D*0}; Vo e BHIG)

Buoos: Take ny€ G ~(2), such that, referring w Remark 2.11,

A i =0, [ud=o,
E

then the well known Poincaré inequaliy in W' (1) gives the cxistence of 8 constant
€= Cll) such that

Ik = Dl = €100yl WoaN
and siece | Doy~ (Dolr, we get (2.11).
“Then, by chovsing & G * (2) such that d ey, ) = 0 and by usig (2.10), (2.0
we gt
I = posloansy = s = pesbr =
= les = poalieon #1000 ~ puo ey + 1D ko €
<0+ CDlo - palr, e + D ko €
< {1+ VGl + D n ki =
=5Dn 5.
Taking the Hmic-as 5~ + %, inequality (212) follows. ™




.
By sumemarning Theorems 2.4, 26, 2.7 and 2.12 and with & simple calculation in
the case = 1, we gt
Tremoness 2.131 For any set £ € R™ with propersy &, there is 8 coastamt 3(0) >0,
such that for every o & BHI)
lo = priosm gy € 20| DPelr e >2,
le —poll-n S HOD|D30)y  Ewm 12
More peecisely 4(0) = (1If)MS if m =2 and i) = (1/D]0] i mw=1
s 214 We remark that if = s a continuaus seminorm on BHIO) nd &
mm?;.&ﬂ\uiﬂli‘|B’vhh|mun!ﬂ(ﬂlwnlhﬂWznlr
set for instance

o]+ 8 foes ]

hh&mmwmmhmorﬁmmdﬂm
waix of s foncton peSBHIO). On this subject we refer alio tolAG]
and [AL].

Tueoiass 215 Let 1R be an open sot and v e SBH(L). Then

1) Dy = mls-tr-'..,qb-[ ]-s.m--'..s,,
2 ww’-ﬂr-kj \LMHN'”-J 1[%“ e,

N D |r= 14wlr,
mh}h--mwlp:'ma';ﬁmmwm;wdd‘h
wributional hessian and laplacian of » with respect 1o £7.

Brd:dﬂhdl!mm“hwﬂllﬂwﬂl ) 50 that the first
ql.ﬁlnhl)udl\l)lmmdﬁnb By Lemma 2.10 we get
-[&]-
D+ Ii-] ;
Since the singalar part of the hessian matrix s rank onc and symmetric, again by Lea-
ms 210 we grt

uo'u:'hsJ "%‘-] L-.x

a0d the proof = achieved.  ®

[| Zopota domt = 1.
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Wcmmhm:mdum&ﬂvﬁ-mm‘dmwmhunﬂedwdumdknu
of 2 minimizing segoence for the functional (1.31. The fire i a compactoess property
and the ather ane is related to semicontinuity.

Tomowsn 216 Let ¢ R be an open sex with peoperty %, l.uﬁm
=0, + =] be a comvex, non decressing function satisfying the
(213

let 4,k be strictly positive constants. and let. {z}uox be @ sequence of functions in
SBVID, R*) such that

):,&:n Vhen,

[P+ [+t =5 Dot < 1w
i =

Then there is & function £ @ SBVIG, R*) and  subsequence g}, such dhat
1) 2~z swongly in L' 0, R*):
2) Bz, =V weakly in L'(0, M, . );
9 Doy = Tk = 05 — 1 ) BndX™ g, comenes  weakly' in
Ml Mya) 10 Dr = Vrdem 2* —27) @™ 15,
4 [zae=0.
Puccie: W can ssssme 305} 323 — o for evety s 80, 4 =1, s0 that there exiis s
<onstant. € such that
IDafrect
and, by Theorem 2.12,
[T Tt
Hence there exists e, will denated by 4, and u function =& BV, R*)

components are &) = () Ax) V (~a) (] k). Then for every = we
have ot 2% in L1(0, R*) and

upll.-.-&-a[m:.-\l«m

by Theorem 21 of [AM2] there exsts o subsequence ruch thar of —z*e
© SEVIG, B} in L'102, RY). Since + & BVAD, R*) and 2 ¢ SBVILL, R l&nnrrr:)ﬂ.
then we oheain = & SBVID, R*).

The second wsseriion s proved in [AM2], an 2.2, The third assertion fol-
fows by difference and the fourth one is vl
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Temoms 217 hiu}l.,hlmmmﬂv{ul)wﬁﬂi 5 bhan
converges in measure 10 £ and that (V2 huon B8 -ﬂuvuwMInL‘M.Ms..)fﬂ
every open set A cc ). Moreover et &0, + (-1, + %[ be 4 concave, non.
£ Then

Jﬂ(ll L 8 LR Sl [
15

Procs: Sce Theorem 3.7 im[AM2]. ®

5. Tom Novsse smaman

Lot 1m denate by £ € R* sa open sat wih propenty & {see Defnition 25). We
stdy e Tolowing variational probk

a1 misimize the functionsl 7= £ — L over SBHIG).
Pahert: (akiog oo sccunt Reiick 23)

® )
02l %"HIQ""}""*‘J(‘*HI]”M i

QM. [0, ) s 4 given positive defnie quadratic form such that
B3 2> 000 malel’ VieM..,
nd L s the prescribed transverse load satisfying
()= [ae = ; »mr-u‘!mx-*‘.
4 ri
Al risa OF hypersurface in RY, g@ L0W0), bel'l), feLl(E0)
-'.Lpfg-. revm—1 (31 im=21
Firt we consider the case m = 2, 30 that £ may be regarded as the natural state of
an unloaded elsticplastic plate. We remak that for the load L we have
12 = Belsan + Bilirs + MHercn
Tiwonene 3.1: Assame m =2, the propety &, 3.2), 33, (3.4) and
13.5) (L) =0 for every affine displacement ¢ {eompatibiity condition!,
346 1Ll <455 toae lowd condiion),

where M. § are defined in Theorems 2.7 and 2.12. “Then the problem (3.1) has o sol-
ction. Moreover (1.5) s 4 necesary <andition in onder 1o have inf 7> = .
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Puocr: The necessiy of (33) follows from the simple remark that
o Ele) = {L,s)  for any o affie

Let us show now the sufficieney of (3.2)3.6). Refesring ta {2.8) and Theorem 2.13,
for every v & SBHID) we get

38 (Lowh = (L =g} < Ll ko = polleen S 21L 1 D0 v
by Holder inequality und by the inequulity 5 2 23 ~ 2° /4 Va, e R, we gec
3) J‘w'.-m.; |m"U|v’.,|£.)’rnf|v'. - @

By Remark 23(3) and by (32), (33), (38) and (39), for every v e SBHIL) we
have

19]
=

010 oot 2 [ 19001 e [ (a1 - L1
4 %

3 (la A1) =4|L1:)| D7l

Then, by (3.6) the functional is bounded from below. If {ry |y, v is
quenee for  there Is €* >0 such that

(LA8]] 1Pyl
Sex
w=n=m,
thanks 1 (3.5) {s |3, x is & minimizing sequence tom, and by (2.12) and (3.11) we get
the existence of C* such that

@12 by < €7

“Then by Theorem 24, up to subsequences, there s u & W' (L} such that
a3} wsu in W),

By apphing Theorem 216 10 5 = Dy, we et

G149 e SBH{O)

By (3.3) we may ssume

Vo= Vla  weakly in L1i0).




—1—
By lower semicontinuty of positive definite quadratic foms
613 n]a:v'umﬂm.m’]mw..m

By applying Theoretm 2.17 with 2 = D and #65) = 1+ 5], duc ta la Vallés Poassin
criterion. and Theorem 2,13, we get

B 3 kY .
3.16) I(|+ H;]”m (un_nij[n![a' ]1){;{.
45 -

By Theorems 2.4 and 29, and by the Rellich Theorem for W' (30)
(317 L fs linear and w” -BH(0) continuous;
‘bence, by summarisiag (3.141-03.17),

ﬂk!‘lhn‘LnI'Miﬂli?-ﬂn!-ﬂ-‘h
50 that » minimizes & over SBH(D). &

W(;.s:-.uﬁumﬁmmmnﬂau‘wdmlﬁe

plate when submitted 1o a balanced system of applied forces.

Rusiar 3.2 m!a-ﬂu&mmLhmhtmlwm
functional £ tha is w* BHIQ) continacus on the sublevels of

sop i) <+, -t o= bl n = (05
Oe intesesing example i
s 2=Foh v Flal<tm xs0,
a5 shown by the fallowiag stiemcat,
Lasssas 33 Let m =2 and let 0, £ be s ke as in Theorem 3.1, Assume
neSBHIN Ybe N, .?E(-.Jqf-. e in LH0).

Then lim () = olx) for every x €2, Moreover, if (3.18) hH-!knl.kyu.n)-
={£)
Proos: By the sssmption we have
P D lr< ¥,




bence, by Theorem 212,
suples ~posln < + 0,

and by Theorems 24 and 24 we conclude that (5 — pry) converpes stongly in

WG and i bounded in L mbw:dadn-unﬁw,lnl'wimdlhtmlhm

of pry entail that also (s} converges to v in W () snd is bounded in L* {63). By The-

o 216 we have aiw o e SBHIL), Following the arpument of Theorem 13

OF[DE2], fis x, & £ and 3.8 G (R?) with 50) = 1, 5 2 0, 5 decreasing with respect

mm Let 534x) = pibix = x5)) for every 6 & N. Sct ay = [, — v]. Fm.bbgmm‘!«
4, has compact support in 2, bence by Theorem 2.6 we have:

%) = 5 Ogary ) % | D (g aen) |y <

< [niznal 2 fIDaliDnlis [ 1%l
i

Since both w0 und ¢ converge to 0 serongly in W' () and D% Is bounded in L',
then for any ja N we have:

l oy ) b [ 50173 | < s [ 171 ] = [
‘ 0 ‘

where, by Theorem 2,16, is s oo atormic ressarc. By the wbirariness of § we ges
hnwpq‘pi{kalj—ﬁsolhnwhnymtdi?la%!'vh)

The last satement of the theotem follows by the boundedness of {1}
L™ (0 aed by the dominated canvergence theoren in the space of sbsolurely camver.
ot serice. m

Argaing 23 likc = in the proof of Theorem 3.1 we can show the following state-
ment for an desticplesic rod. Tt i worth remarking that 5 Is the coonting
measure

T 3.4: Assume = 1, 0 s bounded open interval in R {the unde-
fosmed sate of the rod), and the deformation energy £ satisfies (3.2), (3.3). The trans-
verse load L & a measure with bounded total variation in € satisfring (3.5) and

SAL
Itie< 252

Then the preblem (3.1) has a solution. Moreover (3.5) is a necessary condition in or-
der o have inf 7> ~

We conclude this section. by conidering the case (¢ R® with > 2.
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Tutwonsns 35; Let su > 2and £ R with the property . Assusne (3.2), (3.3),
that

nal >0 pch

13.4) and (3.3). Then there exists § = 50,
019 Bk = Relkon + [ + Moo <2

‘eneaibs that the problem {1.1) has & solution. Condition (351 is nevessary in order 10
have inf 7> - =,

Procr: The argument is the same as in the proof of Theorem 1.1, except when
showing inesaality (381 und the w *-contimiy of L. By Theorems 24 and 29 we
have foc every v € SBHUY)

0200 (Lo (Lr-pri €
S leloanle = pellim-mun + Beles il = pelle e +
+ e alle = poe b i S PR 1D

where £ follows by Theorems 213 and 29. clu-u.-numn,'n‘ we ohtain «

cormpact minimising sequenes #s in Theorem 1.1, Marcover L i * -BHIL) contin-
L s N T e ebeke s Thastine 4
2.

 Rastank 3¢ Analogouly 10 the framewok of suskous sedels for inage segen-
tation (see [BZ1), i is interesting 10 cansider o differeat «persurbation termss added
o the functional (3.2), namely one can consider (for anv ) the functional

o fiate

We conphasize that the functional (3211, under the only sssumptions (331 and e
L i83), with (4 satisfying propercy (%, har a misimizer in SBHIL) by the same wrgu-
mensof the proof of Theorem 33.

‘Ban fgfv'rm :J’( 14

4. - Tie Dot racmiess

Lt £ R be an open set, o R” — R nd let Ly be the prescribed load. We study
the varistional problem.
i winiciae the fanctional 5= By~ L, over tly.
where ¢y = (¢ @ SBHIR™),e = w in R*\D).

@i Eale) n'jmv*um+‘-]'{n H%}”.w .
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Qs u quadratic form with property (3.3), and the data m, Ly

wa WH(RT), sptew compact,

{Lavt) = [avde s [ boaimt,

b

Iis 0 C7 bypersarkuce in R7,  geLO(@), ke L'il}

wihg> Zoom—1 43 1im=2)
As usual in non reflexive problems, we prescribe the Dirichlct datum by imposiag
coincidence with a susablc function oursde 7. As 8 comsequerce the Dirctct condi-
tion on the gradicnt is relaved since an sdmissible displacement o € @, may have 1 dis-

continityse.for the gradient even on the boundaey o U;in such case the smount of
the is (as follows by using Lemma 2100

el (&) e
where +, — denote respectively the outes and inner trace.
At first we set m = 2; in this case problem (4.1) may be regarded as a weak formu.
Iation of the clamped elauio-plartic plate.

Tomomess 4.1; Assume m =2 and O s any open set, Assume o (33), 42),
14.3) and

(4.4) |Eslr < 4la A1)
“Then the problem {4.1) has a solution.

Proor: Referring 1o Theorem 2.6 we have
us b€ el = Jlbalr D%l Wed,

HAssume spew cB,. Then, aguing w5 in (39, (3.10) and replacing £ by B, we
obusin

15,1
=

Tly) =.J|v*.|.ﬁ+ f 100e)| doct = g, u) = &
o =

2(wAn- 1t Dol =L woea,

‘hence by assumpeion (4.4] the functional 7 is bounded from below and coercive in
SBHRY). mxl..,u-m-mmmmt«sa.mh;rzsammm 214
we get (312) and the conclusion follows a5 in Theorem 3,1 ®
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Bymﬁm&mn-l.mmﬁuvhmw&r
an elatie latic clasped rod

Tomonsar 4.2 Letw=1, M is sy open foteral i &, w e WEHR), sptw com-
pact and the dy 13.3), (4.2). The load Ly is & mea-
mmmmvﬂmmﬂd,\q

Lalr<2aAn).
Then the problem (4.1) has & sohsion.
We conchude this section by considering the case 0 ¢ R” with & > 2.

Tuieoesw 4.3; Let m > 2 and U ¢ R™ is any open set. Assume (3.3), (4.2], (43).
“Then there exits = = 7(0, 14,7, 4) > 0 such that

ol S ek + Bl < v,
entails. that the peoblem (4.1) has 2 solurion,

Proce: The argument s the same as in the peoof of Theotem 4.1, except when
showing inequality (4.3). By Theorems 24 and 29 we have

u...q.el;;,,.mu...,..ﬂuL.A.,.I:L--_-m‘r'll-.l.lﬂ'-\n-n

-heeﬂwnb'nq-u-zw,zu,-dznumuw-mm
miing sequence. and the conclusion follows & in Theorem 3.3, @

Resupen 44 We enphasize that no regalisiy of 30 is required in this section.
The fact s that property %, sssamed clsewhere, is used anly to extend outside 0 the

competing Factions.
Al the statcments of this section will bold when the datum w satisfies
weSBHR™), spw compar, Efw) <+

I thin section we study the existence of equibbeium for the el peectly pltc
Mmmq-hwmﬂwnmmm We sill
‘assumc that the matural stte of the unloaded plate s an open bounded subset 8 of K

*5b peopeny B (e Do 23).
We introduce the following weak formedation of the obstacle peoblen in sy dic




gir) =

{nn‘mniz the following functional ever SBHI),

Ete) ~{L,s) He200nU,
ww elewbere,
where E, L are given by (3.2)43.4), and UcR" Is » given closed set {nssuming U
chosed s not resisictive if m % 2 due 1o the continuity of the functions in SBHIC).
‘The inequality ¢ # 0 has the wassl sense in the case o = 1,2, otherwise (refearing 1o
sections 4 and 5 of [BBGT]) & has to he underszood in the sense quasi everywhere
with pespect. 0. g-capacity, where, ¢ = e/l — 1) and, for sy set. T'CR™,

cap, (T) = inf {lrcigeso 0 Lo, and wix) 1 Ve T}
Netice that the functional § shows a lack of cocreivencss due to the fact that o
Diichles type conlizion is imposed: say, the plae is free at the boundary, and fulfis s
unilateal comtraint on the unknown contact set.

Demsmoss 5.1: Whenevee 1 hay sonvanishing resultant (ie. (L, 1) # 0], we can
define the center of mass ¢ of the fgiven sysem of forces by

(52) emia, = :‘_‘X{: U=t m,

where (5, .., e} s amy orthonormal coordinate: sysem in &7,
We cn now siste the main resuls of this section whase proofs sse post-
poncd.

Tirorem 32: (Necessary conditions for any r.) Assume there s a solution 1o
problem {5.1). Then

53) Ly=o,
and
13.4) (L )=0, then {Lx)=0 (/=1
53 #{L,1)<0, then cecoll,
where coU s the closed convex bull of U,
By reinfoecing the neecssary eandiions we obtain the exisiencc
Tuwcesn 5.3: Lee m = 2, and 2 ¢ R with the propeny &. Assume (3.2), (13),
(3.4) and
(5:6) {Ln<o,

k) cell.




—
Then there ks 7 = 164, U, 4) > 0 such that the folloving smullness: condition
58) Ilr<n.

cntit the existence of  sobution for problem (5

Resaans 5.4 T\:uﬂmp\!ﬂnﬁﬂmknbnmdbyrllool’)'.ui:mbe
dheac froen the
wmmmumnrmmmmuhwm
seict inegualiy entalls compectness of the minimizing seyuences.

TF(2 1N coll) § O then ivequality (5,8) is stricter than [3.6) in the sense that, iF the
conant M. S (defined in Theorems 2.7 und 2,12) are opeimal, then 1, is smallr than
e A 1)/MS, a5 one can sce by the proof of Lemma 5.1,

Russam 5.5 Theorem 5.3 abo holds modifying the funciional L as kke as in Re-
mark 32

Ranane 5.6 For any s, i {L, 1) = 0 the problem (5.1} has solution if and orly if
(L5} =0 for any j = the oaly if part follows from (5.4)),

awowaod 5.7 Let s = 1, £ is aay open interval in R and the deformation energy
E satisfies (3.2), (3.3). Assume that the transverse koud L is & measure with bounded
total variation in @ sstisfing (5.6). Then there b = wl@, U, 0) > 0 sich tha

ILlr<p.
entails that the problem (3.1) has a sohusioa if and only if ¢ € coU.
Tinomes 58 Let m > 2 and (1R with the property ®. Let UCR™ be a

dosed set. Awune (32), (13), (34), (56] and (57). Then there exins T=
=0, U, [ g7, 8) > 0 suoch ther

Bl = Mo + Bl + Mo < €,
entadls that the peoblem (3.1 has a solution.

Finally we give a statement which inclles the case of this néstcier, where the na-
sation i denotes the reative intcrior of a set, say the set of the intcrmal poines in the
topology of the ufine comex hull, and U,,, denotes the essential pat of the set U with
wespect 1o the capaciy (see Definition 4.3 of (BBGT])

Uy = NC: C closed, cap, (UNC) = 0}

Temomes 5.9: Assume (L, y} = 0 for cvery ¥ L spa {U — c}. Then Theorems 5.3
and 5.7 siill hold when (37) is subsitmed by

oar
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Theorem 5.8 will holds when substitoring (5.7) by
[t 5 cerlol,,).

We recall e definition snd rwo statements of the sbetraet theory of minimization
of namcoercive and noncomve functionsls (sce [BBGT, and Defnition 2.1, Propo-
sition 2.3, Theorem 2.3 of [BT]).

Dervsmon 3,00 Given, G: V—s (= &, + ] where V is the dul of x separable
Banach space, the squential mvesion functional of G is

c.(»z-u{uqinr ) u'—V_QA-}ﬂ}_

Thpossw 5.11: I G is bounded fram below in V, then
3) G20 YouV
Toemomsat 5,12 Assume Vi the dual of 8 sepersble Banach space, and assane
G Vs~ @, +=] it & proper w"-sequenially lower semicominuous functional
sach thar
(5.10) G0 WeaV,
GAl s 4w, e Gltn) bounded) =0 — v strongly in V',
512 Glo=2)=Gip) VewkerGa, WoaV.
Then G achieves a finite minimum.
We can now prove the cxstcnce of wesk solutions for the obstade problem.

Lewsas 5.13: For any m 2 1, assume = B(c)c U for some ¢ > 0. Define the
map py: BH(D) 7, in this way

1313 (prw)e) = oy + (Velylx = o),
where
ﬂ,=|3|“|‘wh, (Vely = 18] [ Vo
J i

pe=v Veam,
@30 VoelBHIO) wihex0in 0,




e
lle - piele-m S CID%)r  Hm=12,
~ pruliwe-ngy €C|D|; Hm>2.

315 3C=C@, U

We posice that the smaller i the bigger 1 €, since, referring o the Botations of
Theorem 2,43, C(8, Bote)} 2 a(Bc).

Proor: The fest part o the statement i rival, Let us show the existence of C.
s enough showing the existence of € such that
(5.16) T = pyelassn € €| D20l nay

~ and the inequality follows, by contradiction, in u standard way. Enequality (5.16) is &
consexpuence of Theorem 212 W

Pusor or Trwosus 5.2 We apply Theorem 5.1, By exglicit computation of the
recession funcional . we get

Jlmeliasc {4 e
=

Oandw20in U,

DA Saln =
e elsewhere .

Assume peoblem (3.1] bas a soluion, then i) is bounded from below in SBHIO),
sobsiuting v % 1 in (39) we get G (1) = — (L, 1}, say (53).
Assume (L, 1) = 0; then there ara & *, &~ & K such thar each one of the
BRI EE 4x, ) =k -, wmv,wbymmMuﬂ.v)
we et {f, £x) €0, for f =1, .cm, that is (34}
Assume (L, 1) < 0; thea ¢ is well defined: since any displacement o & , can be
itten a8 o) = ole) + io(x = o] for suitable 4@ RY, we gt by (59)
U t)olel = (L) %0 Vead se e20im U.

‘This means #ic) = 0 ¥e affine Einear and nonnegative oa U and Hahn-Banach Theo-
rem enmils cecoll. W

Proor o Teows 5.3 Wewmﬂm!uﬁndﬂmmﬁ
the unilateral consraing and Theorem 2.13 imply w™-Jower semicon-
mvmmm.-t".puﬂ,) (L,Q}hﬂlj.l\nnhl!ﬂ 514
and (3.15) we get

(L) = (Lo} + Vel —cH = (Ln} €0 Vo with w2 0.0n U,

L} S {Low —p} S (Ll = pirhem € CILIP 1D

Arguing as in the proof of Theotem 3.1 we get for o suitsble conmam C* the
inequality

T

18 gel 3 AL -Ct LD e Vo sBHDLe 30 00 U,
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By comparison, taking ito sccount (38) with n= A 1)/C7 and (5.07), we
e

- ) 2 Vi e SBHW),
19 !5 el

Sale)=0 D' =002 000 Uand {Le)=0

Then (3.9) is satisfied.
Assume now

h—+®, wSre,  Slhn) boundd,
then, by (3.18) we et
4(s A1 =C|LIHI|D n ]y <7,
w0 thin
D=0
By the. compact embedding SBH(DT ¢ W) (xc Thearem 2.4),
f—y  wrongly in SBHIC)

o the compactness propery (3.11) & fulfiled.
It s left to show the compatbility (3.12), But (5.17) and (3.19) imply

kerg. = [vs #:0 20 on U,{L,5) =0}
and, since {L.v}= olcl(L, 1) Yo & 9, by (56) we get
kerga = {vaPi:o 3 0on Uieled =0},
Finally assumption (5.7} gives
kers. = {0},
ind then (3.12) bocomes trivaly satisfied. @
Puoos cr Timomen 5.7 The only i part follorws from (55). The if par, if c &
alco U Y, follows exactly in the same sy of Theorem 3.3; i ¢ & 8(co U ) we take the
solui u, of the saime probiom with & teduced obstacle {c} snstead of U and then,

since the right and left derivative of u, exist finine everywhere, ooe pets that o = #, +
+ {05~} =0 on U, for suitable , is u sokution of problem (5.1). @

Prew r Tuzoues 3.8 The anly differences with the proof of Theocem 5.3 are:
the closedness of the sdmissible set {vs SBH(Z): 52 0 on U}, which follows by
Proposition 4.8 of (BBGT, and the estimate (3.18) which s substiruted by

5200 s e A1 - €T, qul.-\,—.% Ve e SBHIO),

Estinate (5.20) can be chasiried as ke as in the proof of Theotem 35, ®




T —

Proor or Thpomas 5.9 mww:wmemummmm
ing prools. The oaly difftsences ae: Lemma 313 and veeihation of necessay condi-
(sumdafwmmwmum The modified Lemma 5,13 consists
mwl which is a disk of the same dimension of the affine comvex hull of
the obstacke und is contsined in co(U,.), and setting

(Folle) = g+ (Felsebr = o)

then (3.14) becomes 3 20 Vo @ SBH(D): v 3 0in U mnd in (5.15) # = o may be
Bvﬂ P = nwhm{mmnlv-).tn-dma:m&
projection on {span {U/ ~c}*,
We bave
ker G = {ee i3 0'on U{Ls) =0} =
={vedir00a U, Vel {U=ct},
which, now may be pon trivisl. The ecessary condition foliows from {L.y) = 0
About the compatibiity we have
c—keDom§ VreDom, Ve ke,

and € s invariane by wdding or sbiracting any £ @kerg. snce (Lix =g} =
=0 =

6 - Nucussiey conpemons

mnrl’kmwsﬂ;n&kmumddhd-q\-&uxlmﬁhw\
der 10 deal with the lastc perfectly-plastic plate submitted 0 tranversc load and
e consder the local functional (referring to Remark 2.3)

161)  Fw, A = [J:u- VTl + 2P
+atisana+ | tw»Jin'f.]n-t.
sha

for every open st AGL, v SBHIA) and
(21 Oxv<l, d>0, gelfl)wihg>1.

1n the following we use the natation Dy = D,D,v #nd, for any unit vectar e, we use
o 33 = oD,

 local minimizer of the functional -

Durmimon 6.1: We say that u
Ty

Fu A< 4w

weSBHA),



i, A) % Flu + 2.A),

for every open subset Accl and for every e SBHIO0) with compact support
ind

R 6.2 Ulg&‘:ﬁ,nbequhlhnlminhnizﬂﬂ'ﬂ-,m if and only if w +
s bocal mindmiset of F- 0) for any 6 R

I g = 0, then u is a bocal minimizer of 7, ) if and oaly i # 4-x i & local
miimizer of ¥, ) for any # @ R'.

Next we want o evabiase the fist variiion in certsin direciions. of the energy
functional (6,1) ssound a Jocal minimizer. Fiest we secall a Green formula. Heze and
i the following we assume the funcions o, regular chough 1o have il the traccs that
wre needed. Let 0 € v < 1 and consider the following decomposition of the biharmon
e operator:

&= (1D + D} + 2D} + vD + Di + 2Dy Da).
Let A be an opes subset of 2. For cvery . 5@ W*?id) we ser

P ju — DD ) 4 J'uu.n,a,
i b

Since 0% v < 1, the form o is blincar, symmetric and positive definite on W7 (4). 1
du{f'm‘um}yw&lmﬂn{ns{mﬂmb{-l&mﬂn‘lmrnmn!m@t\-ldb;
+ the wnit tangent vector which ore ex clockwise, then we obtain far every
9¢W”ul)nd{mnwyvlwuubn(nr.l’ﬂi.L‘M)}Ih:fdlwm&vcnﬁn
mala (see(L1), pp. 75-76):

©3)  apinp)= Iu’n;-ﬁ4j((l = viSis) & ];4:»‘+
i )

+ [-u7e+ v S,
o

=B Do
Ste) = - Zr-D'on),

Tie) = a-Dvm.




—28—

For instance, i
identities:

At postion of A parallel W the x; wds, If v =0, one gets the

&5
S,

LAY A P
501 e«{a.a Dy, Tw)

Tuzonsss 6.3: Let u be o local minimizer of M-, (). Then
f..-;:,. in ONT

Procr: For every open'set A € 0 S, for every ¢ @ R and o every p& G 1)
we have

05+ mm—mm-.(m.u.p)— ndr)nm.

aln = éJ:sﬂ-

o every & €7 L), The thesis follows imtegrating by pors. W

Trmomnsa 64: Letg e L2 (01) with g 2 2, aid ket b & local minimizer of (-, £)
such that Sz M B s the graph of » C7 function. Denote
] o B\ S, Let m = (wy, 5] be ihe ot
normal vectoc to S, pointing toward B, and let £ = 14, 1;) be the unit tangent vector
Stn, defined By =2y, 1= = n. Then the folloving relaonships bold on
5B

8. T P
[1-wZwwam s L]0,

(®.4) (1= vm- ¥,

i e
e = ]
= S e
(0= Wl Pl ™ 4 W) v""[a,.]-
where for a function w we denote by w10~ the traces from B, B and we st
Wl=wt -
Proor: Let 56 C*(0) be u function such that sptecB, sf5zeCB7) and
#li e C* (B ). Then 7 € SEHIB) and for every ¢ a & we have
oo sy
moseoves, sinee for every ¢, 6.6 R with [6] < la] it holds |s 4 6] = la| = b sgna,
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taking it sccout that the possible dependence o 1 is even, we have by (63)

um.vmmfm,mnh( -, 8+ - G 5) = iﬁ""‘)'
s

- Lz g
u.(.wf it = I”k

.J[m —v>r,+u-x:§]m + ﬁJ[%_E].@[ & 1,';;-)“:.:.

JEEI — S —4' ]pa‘

T&m«bm-mmmhm&!mdhnhrn(mmm';-dm'mrmumvl
32/3u on the two sides of Sp, we obusin the thesis.

Rusions: 655 By Theorsin 64 It ollows tht
[u—n%‘;-‘su]:n o 5B,

More explicithy, on a flat portion £ of Sp, . the first condition in (6.4) and the previous
one become

[o-o{52)e g5 (58] -+ ==

on X

Now we want 1o compuste the frst varstion of the functiondl (6,1) with respect 10
sotme. directions which ste dificrent from those considcred in Theorems 63 and
64

Tumoues 66 Let g C' () and let % B, =, ¢ be as in Theorem &4, Then for
every e GZUB, RY) the following equation holds:

Id(<l DT+ AP} vy —
¢

-unJ'(u = WP (2PuDy + DuDn) + w2 wiD-y 4+ 2V u: Drjlde +




S oo
.J’cp.-u.an;:m.

Puoos: Let 50 CF (8, R?) and let ¢ @ R small enough, 5o that the map =, b) =
=+ tyix) s & diffeomorphism of B onto itsclf. Set n, (r, x)) = alx). By using

D) =l+eDgix) and  (Dn))"' =1 - cDolx) + ole),
where ole) s an infiitesimal of owder greater than ¢ uniformly in x, we compute
[(¥u e, [ = |F2ulDr) ™ ~ DulDr,) = D 5, (Ds, 7| =

= |Vull = 2Dy + o)) ~ e D D*r + oe) [* =
= ¥l = 2e¥lu: 2¥0u Dy 4 DaD i) +ole).
Similarly we obtain
[, o, [P |40u]? = 204512870 Dy + Duc dg) + ofe).
Taking into sccont that
detll +eDg) =1 + e +olu),
and by using the change of variablcs # = =), we get
63 0% 7w, B) - Fr, Bl =
-j.r(u =T + o]0 ) ey = [0 = I Pan)] = |20 b +
i b

+ [ D - [ D] -

e it

—‘[m..(,m + [ stetatde = aJix: = | P+ ) i —
i

—Hj(u—u)V‘.uWuIMi-lND’::)+u4'-|zwu:m+u-q:)¢+

+ ! 1+ 1D Do ) — 1 {1+ [ Dut)| i ) —

A Sahe

—.jn;.r,m + edivy) = ghudy + ole),



—m=

7 be ' parscsctrizaion of Sa. (VB by arckength defined o 10,L] and (00 =
+45) + lyis): them st30)) = 70} and

S, VB = [im'm-

+aDy iyt + oD T bt e Dymirl + e Dy | T1Vs =

L
= [0 % er'Bry'ids ok,

i DB = ¥ ¥ Dyl G + ole) =

s ]’ £-Dtd + ole)
4

(Da} o5, = DDz, = Dilt = ¢ Dy + o))

| utanldse )~ | IDwtclldoc st =

- J (|{D% = ¢ Du Dy +alal][{1 4 w-Dr s+ ofad) — |IDe)| 1 =

Bt

=c [ (1Dulle-Des  |Dul D) wldX’ + ate) =
PN

:,‘JH[%“ Dyt |[%] ||vw.r.}zm" Yol

Moreover we have
68 [u,‘,. 2L+ ediv) - ghuds = .]mg-r, + pdiv ghards +old)
. i

From (6.5)16.8) the thesis follows.  ®
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Resnnx 6.7: We nosice that since £ = {ry, =), then

eou=Ban:
Mq-n-.,SI.‘,D,.,uwm-um&..muc‘tB,:’)I:-

vector field such that slx) = wlx) for every x @ $p, 1 B, let p @ Cg* (5) and set 7, = gv..
Then, ssguing as in[GI], p. 120, we obtain

[mmnr = jupdxa
- -

where H is the curvature of the curve Spy .-

Rusuans: 6.8 k-mﬁmhmmhméﬁmmf.ﬁhﬂl
finite unios of € curves possbly exinguishing in

7, - Lovar, sz o R™
In this section we show a Caccioppoli type inequality s 3 preliminary step t a fur-

hmamwwmﬂﬁwwmumhr with finite
energy snl bounded sinigalur set, ure afine. For the sake of simpliciy, we sssue in the
following

@1 m.n)-}'mv‘-m+r*‘u,.m)+ [ 1ozt
i

' where ACR" i an open set, & SBHIA) and Q i specialized s follows
OFe) = (1= ¥+ starell.

71: Letxe R and yeR="", For any ¢ # 0, the finte dibedron
‘mindmizer for

Prorosmon: 7.
wls3) = ¢lx| is not a local
Proo: Without Joss of generality we assume ¢ > 0. Define 2, as follows
x| <= byl <5,

@ DDE +l £1-pF | <na<bi<ps,

awof.y) =
B2-pha <@+ 2—plia
mdp+isfylS4+2,
sl clscwhere.,

If we choose @ > 2% (2 + 1) and same §, depending on a and ¢, lage enough we




havc, foe any r > 2 4342,
o, B) < 71w, B,

which contradicrs the minimabiy of u. W

The following proposision gives & Caccioppoli imequality for - ocal minimizer
£ 5.

Procosmon 7.2 I u i alocal minimizcr of 71, A) then for every ¢ 0 such that
By A nad fos every R we v

Jwv'.m:

where ¢ s o constans independent of 5 and
Proor: By Remark 62 we con sssume 5 =0, £= 0. Let o e € (B,,) such tha
wszsl, sEimd, |DslsS, D%
For |e] <1 setw, =a + r3'u, then

Du, = (14 a5y D + 4wz Dy,
Stu, = S 1D, ] =1+ ) (Dw)

Now we have
19, = | Pon e+

#2015" |47 + 82 Do Wiay + 1257 DV Dy + 46T w: D75) + ole),
Wa =3P +

+26(4 (0l 85D 0Dy + 1257 Dpl* M + 45 A ud) + aie),

| 1D do= =t = | |Dul o=t 4o [ o fODu| =
o i &




By the minimality of & we get
- llI{p‘lv’lFi 85! Du ¥ D + 126'u Ds Wa D + 45%u Va: Digldy +
n

+o [ (5L + 85" Du st D + 125D 4 45 u Fudphdh +
N

+ [ Lo |medsen-i=o.
iy
By i he sbove equation and Holder inequality we obisin
Ip‘ch.msj'fgv'.me J Lot e
- £ LSS

‘(’!(lﬁ’w"ilpmbﬂ + 18Vl [u] 1Dp1° 4+ |# ¥u] [ D5 ) <
"
u'[.!.'tvx.va)“ %( I |m|i¢)“’ ( _[ .=a)"'.
LAty £t

ence by Yourg ncqualisy ve have
[gm-s.em_[e'qw'nu?" [ i [
5 3 L) ‘ A

and the inequality s proved. =
We give niw an application of the above inequaliy

Prososmmoss 7.3: 1 a is o local minkmizer of -, £7) sich that S, is bounded
and

72 Jomam < ve,
-
then u is affine

Procr: Assume Sp, € B, and ¢ > . Hy using Proposiion 7.2 with

A= BB [ Dud, = IBNBIT [ wa,
(R ot




g
and sppiying Poincart inequaliny w0 x & W24 (B, N, B, we ges

Juv'..&‘ [ |Du =i+ £ \f' s

s,
s I |Pafdrs I QW) de
nln (X
Setting ¢” = ¢" /(1 — ») and filling the hole we cbusin
[ .z:[qwum«'!p«w.m.
LS LS ¥

Jmnmsﬂgww wich o= 157

and, for every £ € N,
qum.a = j QUF ).
s a2,

By the assumpeion (7.2) and the arbirariness of & we conclude that
[@Fud=o.
s

By the arbitrariness of 7, is affine in £ B, and then, by the minimality, u s affinc in
R m

Renpnx 7.4 1 s cleas from the proof tha Proposisions 7.1, 7.2, 7.3 hold e for
any Q saishying (3.3,

Rusons 7.5, The Caccioppoli type inequalisy and Proposition 7.3 hold wue even
For local minimirers for & ~ L, where L satisfics (3.4),
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