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Asstract. — The composition operator T defined by T[f gl(x)=£(g(x)), from
C™*(clQ;) X C™#(clQ, Q) to C™7(clQ) and the inversion operator ], where J[f] is the in-
verse function of fe€ C™*(clQ, clQ,) are considered. Conditions on 7, «, 8, @, Q, are given to
ensure continuity and boundedness on bounded sets of T, J. A few counterexamples show the
sharpness of such conditions.

Proprieta e patologie degli operatori di composizione
e di inversione negli spazi di Schauder

Riassunto. — Si considerano [loperatore di composizione T definito da
T[ £,gl(x) = f(g(x)), da C™*(clQ;) X C™#(clQ, clQ,) in C™7(clQ) e Poperatore di passaggio al-
I'inverso ], ove J[f] & la funzione inversa della funzione fe C™*(clQ, cl@,). Si danno condi-
zioni su 7, a, B, Q, Q; che assicurano la continuita e la limitatezza di T, ] sui limitati. Alcuni con-
troesempi mostrano P'ottimalita di tali condizioni.

1. - InTRODUCTION

In this paper we study the composition operator defined by
(L1)  TIfex)=f(glx), feC™(clQy), ge(C™F(cQ))", xedQ,

and the inversion operator | defined by
(12) JIf1=/0,  fe(C™(da)y,

where Q, Q, are open subsets of R”, g(clQ) ¢ clQ,, fin (1.2) is one to one with inverse
/Y, and where C™%(clQ) is a Schauder space. Operators such as T occur in the study
of nonlinear differential equations and are well-known in the literature. We mention
the work of Berkolajko (1969), Berkolajko & Rutitskji (1971), Bondarenko & Zabre-
jko (1975), Drabec (1975), Valent (1988). Extensive references can be found in Appel
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(**) Memoria presentata il 19 dicembre 1990 da Giuseppe Scorza Dragoni, uno dei XL.
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(1988), Appel & Zabrejko (1990). Particular attention has been devoted to find sharp
statements on the continuity and boundedness of T, ]. We show the sharpness of these
theorems by producing several counterexamples. We encounter several pathologies of

. T and J. Similar facts for T in the case 7 = 0 were pointed out by Berkolajko (1969)
(as reported by Appel (1988, p. 240)), and our counterexamples have that of Berkola-
jko as a starting point. Most of this paper is devoted to the case 7= 1, and is to the
best of the author’s knowledge, new. Our methods are different from those used for
the «Nemytskii» operator g~ T[ £, g] when fe C"*(clQ,) (cf. Drabek (1975)). Final-
ly, we mention that the study of | has required a characterization of injective transfor-
mations which extends that of Lanza (1987, Lemmas 13.22, 13.27) (cf. Lanza &
Antman (1991a, Lemma 4.11; 1991b, Lemma 3.4)). The author was motivated to
prove a part of the statements contained in this paper in order to support the analysis
of Lanza (1991).

2. - PRELIMINARIES AND NOTATION

We denote the norm on a Banach space X, by || -: ||. Let &, Y be Banach spaces.
We equip the product space X X Y with the norm ||+: 3 X Y||=||-: || + || : YlI, while
we use the Euclidean norm for R”. We say that X is imbedded in Y provided that
there exists a continuous injective map of X into Y. Let B ¢ X. We say that a nonlinear
operator N: 8— Y is bounded provided that N maps bounded subsets of B into
bounded subsets of Y. The inverse function of a function fis denoted /" as opposed
to the reciprocal of a real valued function g or the inverse of a matrix A, which are de-
noted g~! and A" respectively. Let Q be an open subset of R”. The space of -times
continuously differentiable functions on @, is denoted with C” (). The space of those
functions of C*(Q) which have compact support contained in Q is denoted @(Q). Let
f€(C™(Q))". Df denotes the gradient matrix (3f;/9x); j=1, .., Let n=(ny,...,1,) € N",
|nl=n; + ... +7,. Then D" denotes 3" /(8x7: ...3x7). The subspace of C™(Q) of those
functions which are uniformly continuous in Q together with their derivatives D f of
order || < is denoted C”(clQ). Let fe C™(clQ). The unique continuous extension
of D*f, |n| < to clQ is still denoted by the same symbol. Let 2 be a bounded open
subset of R”. C™(clQ) equipped with the norm || C™(clQ)|| = | IZ sup |D" £ is a Ba-
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o<
nach space. The subspace of C”(clQ) whose functions have 7-th order derivatives
that are Holder continuous with exponent « € (0, 1] is denoted C™*(clQ), (cf. Kufn-
er, John & Fudik (1977)). Let BcR”. Then C™%*(clQ,B) denotes
{fe (C™=*(clQ))": f(clQ)cB}. If fe C®*(clQ), then its Holder quotient is

| fx) — £(9)]

If:lel,,Esup{ == :x,yeclQ, xaﬁy}.
Jx -y X

The space C™*(clQ) is equipped with its usual norm
If: C™=(cl @) =] f: C™(cl Q)| +I |Z |D" f: clQ|,.
n|=m
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Let G be a closed subset of R”. C%(G) denotes the subspace of C°(G) of those func-
tions f which are restrictions of elements F of C”(R”). Namely
CH(G)={feC’G): IFe C™(R"): Fg =f}. Let Q be a bounded, open connected
subset of R”. For every x,y € Q, there exists an arc vy, of class C' such that

@.1) Yoy 0,152,  1,0=x, 7.,,(0=y.

The geodesic distance A(x,y) is defined as

(22)  Alx,y)=inf {length of vy,:7s, is of class C' and (2.1) holds}.
Let

hi Alx,y)
(2.3) Q] =sup =5 X,y €, xFy;.

If c[Q] < =, then Q is said to be regular in the sense of H. Whitney. Note that c[Q] =1
if Q is convex. The following Lemma collects a few elementary inequalities involving
Hoélder norms.

2.4. Lemma: Letm,neN,n=1, a,B€(0,1], y=min{a,8}. Let Q be a connected
bounded open subset of R” such that c[Q]<o. Let ¢[Q]=2cQ](2 + diam [Q]).
Then

n

i) |£Q|, <cQ](diam [Q])'~ 2

m)“

Vfe C}(clQ).

' vl

@) [|If: C™=(clQ)|<eQllf:C"* (), VfeC”*!(lQ).
i) |£: clQ|, < (diam [Q1F~¢| f: Q| <TQ]| f: 1], Va<pB, feC¥(Q).
@) | f: C™*(clQ)||< (1 + (diam [Q1F~*)|| f: C™A(l Q)| < 7]l f: C™*(clQ)l,
Va<pB, feC™*(clQ).
V) |luw: C™7(cQ)|| < (@1 * lu: C™=(cl Q)| lo: C™A (L),
Yue C™*(clQ), ve C™*(clQ).
Proor: Proof of (i)-(iv) is elementary and is accordingly omitted. It is well-known
that (v) holds for some constant. We include a few lines of proof to show that the con-
stant is (c[Q2])”*!. We proceed by induction on 7. Case 7 =0 can be verified by a

simple computation and is well known (cf. e.g. Gilbarg & Trudinger (1977, p. 52)).
Now assume the statement holds for 7z — 1=0. Then by inductive hypothesis and the



(L
definition of Holder norms, and (i)-(iv), we have

25)  ||u: C™7(clQ)|| < |lu: COclQ)|||l: C°(cl Q)|| + e[Q1” -

3

[[o: C™ = (1 Q)| + ||u: €™~ (L)

i

@ Om—la
R C (clQ)

Qv cm=1e(dlq)
ax,-

J

+c[Q]” [”u: C™*(clQ)| c[Q](diam [Q])! ~ = (l ’E 67 v: Co(cl.Q)”) +
n| =m

+(l IZ 67 : CO(CIQ)”) c[Q](diam [Q])! ~#|[: C””ﬁ(le)”} <
n|=m

<260Q1" |lu: C™=*(clQ)|||lo: C™#(clQ)|| +
+2¢[Q]” (1 + diam [Q]) c[Q]lu: C™=(cl Q) [lo: C™#(cl0).

Hence, (v) holds for 7z. =

By using (i), a simple inductive argument, and Ascoli-Arzela Theorem, we easily
see that if Q is a bounded open connected subset of R” such that Q] < o, m =0, then
C”*1(clQ) is compactly imbedded in C ”(clQ). Then by the well-known compactness
of the imbedding C%%(clQ) ¢ C%(clQ), «>pB (which holds also if c[Q2] = ») we de-
duce the compactness of the imbedding C™*(clQ) ¢ C™#(clQ) for a > §B. By a simple
contradiction argument, it is then easy to realize that the following holds.

2.6. Lemma: Let 0<B<a<1 and let m, n be nonnegative integers. Let Q be an
open bounded subset of R*. If m> 1, we further assume that Q is connected and that
ClQl<w. Let {f,} bea sequence of functions on clQ that is bounded in C " (clQ). If f,
converges to f€ C°(clQ) either pointwise a.e. or in the sense of distributions in Q, then
feC™*(clQ) and f, converges to f in the norm of C™F(clQ).

3. - Tue COMPOSITION OPERATOR

We now consider the composition operator T defined in (1.1)

3.1. Lemma: LetNsn=1,a,8€(0,1], y=min {a,B}. Let Q be a connected bound-
ed open  subset of R" such that dQl<owo. Let wueC™*(clQ),
V= (v, .., 7,) € (C™A(clQ))", v(clQ) cdQ,,

lo: (C™4(cl )y = lg":l loy: C™# ().
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If m=0, then
32a)  [lu((): CO*(clQ)|| < [lu: C¥*(clQ))II(1 + [lo: (C¥¥(clQ))"|]*) <
< |lw: C¥*(cl2y)||(2 + ||v: (C*(c1Q))*])) .
If m=1, then
(328)  [lu(e()): C™" (@) <eQ)™* Vllu: C™*(cly)(1 + Jlox (C™A( )" )™
Proor: The statement is trivial when 7 = 0. We consider » = 1. By using Lemma

2.4(v) and the inductive hypothesis together with Lemma 2.4(i) for a=1, we
obtain

33)  |lu(e()): CP7 ()<

81)[

< |ju: CO(clQ,) : C%(clQ)

v()): Co“leH

< |lu: COdQ,)|| + 2lQ]||w: C1*(clQy)|[lo: (CH4(clQ))*|| +
+2lQF |lu: C1(cl Q)| |o: (CH(cl )| |lo: (CHA(clQ))*||<
< lw: CH*(clQ)|[ELR1 (1 + [lo: (CHE(1Q))*]))?.

Now, let the statement be true for 7z — 1, with 72=2. Then

B4 |lue(): C™(dQ)|<

<[l: CO(clay)| + ca1” gy (0()): C™~ ladaH Su . cm-1a(d)|| <
=1 1
< lu: €Ol Qy)|| + FQ)™ 2 yaee 1=l g; )H
il=1
%% em-18d)|| (1 + o: (€~ ()]
ax,

< |lu: C™*(cl Q)[R * D (1 + [lo: (C™F(lQ))*|)” .

and the proof is complete. ®
From Lemma 2.6 we easily deduce the following

3.5. Tueorem: Let myneN, n=1, a,f€(0,1], y=min{a,}. Let Q, Q, be con-
nected bounded open subsets of R”. Let [Q] < . Then the following hold.

(i) Ifm=0, T is bounded from C**(clQ,) X C*#(clQ, clQ,) to C**(clQ) and is
continuous from C%*(clQ;) x C%(clQ, c1Q;) to C%*(clQ), for all 6 € (0,ap).
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(i) If m=1, T is bounded from C™*(clQ,) X C™F(clQ, clQ,) to C™(clQ) and
is continuous from C™*(clQ;) X C™F(clQ, clQ,) to C™*(clQ) for all 6 € (0,7).

(iii) If m=1, a>B, then T is continuous from C™*(clQ,) X C™P(clQ, clQ,) to
C™7(clQ).

Proor: We first prove (i), (ii). By virtue of Lemmas 2.6 and 3.1, it suffices to
show that if lign(f,,, =(f,g in C%*(clQ,) X C%(clQ, c1Q,), then hrxln TS, g.1=

=TI[f gl pointwise in clQ. This can be easily inferred by using the elementary
inequality

(3.6) | £, (g,(®) — flg®x)]| <| £, (g, (%)) — fg.(x)] + | flg.(x)) — Fg))],

We now prove (iii). By Lemma 2.4(ii), C™?(clQ) is imbedded in C”~%!(clQ). Then
by (ii) of this Theorem, T is continuous from C™~%*(clQ,) X C”~*1(clQ, clQ,) to
C™~1%(clQ), for all 6 <a=min{a, 1}, and accordingly for 6= 8. Then, by Lemma
2.4(v), the nonlinear operator

n agl
fg)'”"(g |: A gj|a_x,),'=1,...,n

is continuous from C™*(clQ) X C™#(clQ, clQ,) to (C™~"#(clQ))". Hence, by (ii) the
proof is complete. ®

It is now natural to ask whether the continuity statements contained in (i), (ii) hold
for 4 = B, 8 = y respectively. We now produce two counterexamples to show that the

answer is no. The following example shows that in general T is not continuous from
C*(clQ,) X C*¥(clQ, clQ;) to C®#(clQ) even though T is bounded.

Exampre: We consider the operator T from C%*([—2,2],R)x C%#([0,1],
[-2,2]) to C**#([0,1]), &, B€(0,1], B<1. Let

f(u)Esup“{(u—%),O}, &) =(1+n7) [ —supﬂ{( 1) H
x)=x—supﬂ{(x—%),0}.

Clearly, lim(£,g,) = (f,g) in C**([—2,2]) X C%#([0, 1], [—2,2]). However, for # suf-

ficiently large, we have
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Hence, for those # we have
| flgn) —f(g): [=2,2]| 5 =

 11/(e,(1/2)) ~ flg(1/2))] = [ Ale,(1/2 + V/m) — flg(1/2 + 1/m)]| _
|1/2 = (1/2 + 1/n)|#

—a

and consequently {T'[ £, g,]1} does not converge to T[ £, g]. In this example 8 < 1. How-
ever, in the next example we see that similar facts hold with g=1.
The following example shows that Theorem 3.5(iii) does not hold if 8= a.

Exampie: Let 0<a<f<],

X

f(x)Efsup“{(u— 3) }du L@ =1+2NYx, gx)=x.
0

Cleatly g,, ge C*([0,1],[0,2]) c C*#([0,1]), fe C**([0,2]). Since [f(g,(x))]" =
=1"(g, (%)) g, (x), then

lim[ A(g, ()]’ = [A(g()T

in C%*([0, 1]) if and only if lim T[f',g,]=TL/f',¢]. By considering the Holder quo-

tient at the points 1/2, (1/2) — (1/#) it can be shown, as in the example above, that
this is false. (This also produces the counterexample for 8=1 announced above.)
Hence {T[f,g,]} does not converge to T[f,g] in C>*([0,1]).

Similar counterexamples can be deduced for 72> 1. It is interesting to note that in
the example above, all the functions g, are linear, g is the identity and hm g, = g even
in the Fréchet space C*([0,1]). Hence, T is not continuous even from ol »%([0,2]) %

x C*([0, 11, [0,2]) to C**([0, 1]). This fact is somewhat in contrast with what happens
in Sobolev Spaces, where higher regularity and injectivity of g, together with the con-
dition sup{|g,|™} < imply the continuity of T (cf. Lanza (1991)).

4. - THE INVERSION OPERATOR IN THE CASE 72 = 1
AND A CHARACTERIZATION OF INJECTIVE NONSINGULAR TRANSFORMATIONS

The goal of this section is to study the operator | defined in (1.2). Let Q, Q, be
bounded open subsets of R”. Let 6=0. We set

41)  X,,.Q,9)=
={ge(C™*(clQ))": g is injective, g(clQ)=clQ,, |detDg(x)|>3, VxeclQ}.
42. Lemma: Let myneN; myn=1, a€(0,1], 0<é<1. Let Q, Q, be connected

bounded open subsets of R” such that [Q]<®, [Q,]<®. Let T[Q]1=2Q1(2 +
+ diam [Q]), and c* [Q,Q;]1=sup {n max x|, c[Q],2[Q,1}. Let ve X, ,sQ,Q). Let
xX€
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7= c*[Q,Q], 0= ||v: (C™*(c12,))"||. Then there exists a constant (8, m, n,v,0) depend-
ing only on & m, n, 7, o, and otherwise independent of Q, Qy, v, such that
1272 (C™*(c12,))" || < (3, 72, 3, 7, ).

Proor: We proceed by induction on 7. By virtue of Lemma 3.1 and the well-
known formula for the jacobian matrix of an inverse function, we have

@3) o (o))<
<t [0,0,]+ 20,177V [[(Do) 7 (): (C™~ 2(cl@)” (1 + |02 (C™ = 1= (el @,)) )™
when 72=2 and
44) o0 (CP(day))|<
<t [Q,Q,1+ (D)7 (): (CO*(d @)™ [I(1 + [|o¢: (CO(cl@2,))"])

when 72 = 1. Now, let (Dv)~!(x) = ((—1)"*/ V; i(x)/ det (Dv)(x)). Then we have the fol-
lowing inequalities for all 7= 1

@45a)  [[Vi;: Cm=2(dQ)] < (n — D1EQ]” 2 =29 ||p: (Cm= (@) | 1,
(4.56) ldet Du(): C™~ Ll Q)| < »!12Q1 V) p: (G (clia)a=:

By Lemma 2.4(v), Lemma 3.1, (4.5), and inequality

l, m-1,1
~ :C [3, max ]detDv(x)l]

S (m+1)18~+D,

we conclude that for all =1

(4.6)  [[(Dv)™*(): (C™~*(clQ))” ||can be estimated in terms of m, n, 8 o, 7.

We now prove the statement for 7 = 1. Note that in this case o = |: (Ch*(clQ))"||. By
virtue of (4.4), (4.6), we can estimate ||o"?: (C**(c1Q,))"| in terms of #, &, 7, ¢ and
lo"V: (C*1(cl2,))*||. By Lemma 2.4(i) we have

4.7) o0 (CO Yl Qy))?|| < c* [Q,0,] +7Q, (D) (): (COcl Q)™ ||.

Hence, by (4.6), [[»™9: C®!(clQ,)|| can be estimated in terms of n, 8, 7, . Now, let the
statement hold for 7z — 1. Then (4.3) and (4.6) together with the inductive hypothesis
imply the validity of the statement for 7. ®

For a proof of the following cf. Lanza (1991, Lemma 3.16)
4.8. Lemma: LetQ, Q, be open subsets of R”, n= 1, Q bounded. Let $, ¢, continuous

and one to one mappings of Q onto Q, . Let ¢, ¢ € C°Q). If {¢,} converges uniformly to ¢
in Q, then {$\""} converges to ¢V pointwise in Q,. M.
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By combining Lemmas 2.6, 4.2, 4.8, we easily obtain the following
4.9. ProrosrrioN: Let m, n€ N\ {0}, a € (0,1],0<é< 1. Let Q, Q, be connected
open bounded subsets of R” such that c[Q], c[Q,] < . Then the operator | defined in (1.2)
is bounded from X, , +(Q,9Q,) into X,, ,(Q,,9Q). Furthermore, ] is continuous from

Xn,0,0002,9Q1) 20 X, 60(Q,,0Q) for all 0<6<a.

It is at this point natural to ask whether Proposition 4.9 holds for 6 = a. As the fol-
lowing Example shows, the answer is no.

ExampLe: Let

il -1 _(HH)]_ILI .
2,(x) {2+(a+1) 2 T b,(4) du;

g(x) = {% + (a4 1)_12_(“+1)}_1fb(u) du.
0
Clearly lim g, = gin C**([0, 1], [0, 11), g(0) = g,(0) =0, g(1) = g,(1) = 1, g, >0, ¢’ >0.
We now show that the sequence {g{"?} does not converge to g™ . Since lim g, =¢'

in C**([0,1]), a simple computation shows that

[Sup{“:gn( o V)T =g @) ] -

~le @) — g @ o) e~} }

<li’{n{[nﬁn|g,i|]'“sip{f[g,i(u)'l —g @ - [g@ ™ —g @) lu -]} }=0-
Then it suffices to show that liminf 4, >0, with

JnEsip{Hg’(gi'”(x)) P b i
x#y

[ @) —g' @) | |x— 97}
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Let x=g(1/2), y, =g,(1/2—1/n), n>1. Clearly
g (@ 0y)) = %{% +@+ 1)"2“"’“"}—1 =g' (™).
It easy to verify that g,(1/2—1/n)<g,(1/2)<g(1/2). Then
e om=HL 4@z

and

It follows that
5,2 [g (@) =g (@) T - [’ @ 0.0 — 2 (@20, ] |2 =, =

2[2{% +et 2] - [g' (g,a-" (g(g)))]'l]u—y,,ra.

It is easy to verify that for every ce (0,1/2) there exists 7, € N such that

1 = ~(ax+ == ’ = l 7
2[5+(a+1) 225 1’} {g (g,‘, ”(3(2)))] >
>2[%+(a+1)“2““+”]—[g’(

Then a simple computation shows that

N =
N3

hmmf:l,,ahmmf{ [2 (@+1) 12_(a+1)]—{g'(2l+%)]_1]|x—y,,|““>0,

However, the following partial result holds.

4.10. Lemma: Let m € N\ {0}, « € (0, 1). Let Q2, Q, be bounded open connected sub-
sets of R”, c[Q] < o, ¢[Q,] < . The operator | defined in (1.2) from X,, , o(Q,Q,) into
Xin00(Q1,Q) is continuous at g if tbe nonlinear operator Tp,[] from X, . 0(2,,9) to
(C™b2(clQ,))” defined by Tp,[h1=Dg(h), Vhe€X,, . 0(2,,9), is continuous at g~V
when X, 4,0@Q1,Q) is equipped with the norm ||-: C™(clQ,)|| for some y € [0, ).

Proor: Let m=1. Let l.i”mg,, =g in X, ,0(Q,9;). By Proposition 4.9, we
have

(4.12) lim g™ =g in (C™"(dQ,))", Yre(0,q).
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Hence, it suffices to show that
4.12) lim D(g{™) =D(g™) in (C"~>*(clQy))".
Note that D(g"")(y) = (Dg)~" (¢"""(9)). Then
(4.13) D) = DgP): C"~ (@) || <
<[|(Dg,) 7 (gV() — (D)~} (g0 ()): €™~ be(cl,) || +

+|(Dg) 7 (g50()) — (D) (g1 ()): €~ b=l ) .

Let0<é< mm |det Dg(x)|, ¢ < 1. For # sufficiently large, Jmin |det Dg, (x)| > 8. Clear-

ly the map {A GR"2 :|detA|>8} 5 A A1 eR” is of class C”. Hence, Theorem
3.5(iii), (4.11) and the assumption on Tp, imply that ]if‘n(Dg)"l(g,(,_l) ()=

= (Dg) "' (g""Y(-)) in C”~%(clQ,)™. Moreover, Lemma 3.1 and the boundedness of |
stated in Proposmon 4.9 and (4.13) imply that hm(Dg,,) Lgl M () = (Dg) 1 (g ()
in C"~%%(clQ,)”. Hence, (4.12) holds. =

Let m=1, 8=0. We set
(4.14) Y, .:Q)={ge(C™*(clQ))": g is injective, |detDg(x)|>¢, VxeclQ}.
Let AcY, . Q). We say that JA is bounded, provided that

sup 11+ (C™(e(el@))} <.
ge

We say that ] is bounded on Y, , 5(2) provided that JA is bounded for all bounded
subsets A of Y,,, , +(Q). To study the boundedness of ], we need to characterize the ele-
ments of Y, , (Q). We first introduce a few definitions and preliminary lemmas.

4.15. DerFinrTion: Let Bc R”, x € R”. We define A(B, x) to be the set v e R” \ {0}
such that there exist sequences {x,}, {y,} in B with x, #7v,,

limx, =x=limy,, lim oY g,
4 ¢ 2 |xn ~Yn |
It is easy to verify that the following holds

4.16. Lemma: Let Q be an open subset of R”. Then A(B,x) = {v e R”: |v| = 1} for all
x€clQ.

Let BcR”, . B—R”. We set

| fx) — £()]

e — |

(4.17) lB[j]Einf[ :x,y €B, x;&y}.
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Note that lyz[f1=14[f]. Clearly f is injective on B if B[f]>0. We now show
that under suitable circumstances, the converse is true.

4.18. Turorem: Let K be a compact subset of R”. Let f € (CY(K))". The following
statements are equivalent.

@) kl[f1>o0.

(ii) f is injective and for at least an element F € (CY(R"))" such that Fx =/, the
following condition holds
(4.19) DF(x)-v#0, VxeK, Vved(Kx).

(ifi) f 45 injective and for all elements F € (C'(R"))" such that Fx = £, condition
(4.19) holds.

Proor: (i) = (iii). If k[ f1>0 then f is clearly injective. Assume that for some
Fe(C'(R")", Fg = f and that there exist x € K, v € A(K, x) such that DF(x)-v = 0. By
definition of v, there exist sequences {x,}, {y,} in K such that

Xy = Y
| =l

liﬂmx,,=x=li£ny,,, =y,

Then

| fee) = fla)l _

lxn—ynl &

1
Xp — Yn
J’DF(y,,+t(x,,—y,,))- o _’; .

By taking the limit as #— %, we conclude that
| fix,) = f(3,)] 03

0,
" lxn_yn|

in contradiction with the assumption /[ 1> 0. The implication (iii) = (ii) is obvious.
We now prove (i) = (i). Assume by contradiction that there exists a sequence
{(xn)yn)}neN in KXK SUCh that

& |f(xn) —f(yn)|

=0.
% |xn_y»|

Xy F V>

By selecting a suitable subsequence, we can assume that there exist X,y €K,
v eR"\ {0} such that

lim x Xpe — Vi
" lxnk Y |

m x,, =v.

=%, limy,=y, lim

By injectivity and continuity of f, we must have x =Y. Moreover v € Aa(K,x) by defini-
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tion. Now let F e (C*(R"))”, Fx =, then

| fx,,) — f®,)]

|xn,,_yn,,l o

1!
X, — Yn,
fDF(y,,‘ + Hx,, —¥,))" —Ix" —yk | dt|.
0 Ny n

By taking the limit as #— », we deduce that 0=DF(x)-v, which contradicts
(i), =

4.20. Lemma: Let Q be a bounded connected open subset of R”. If c[Q]< x, then
Ci(clQ) = C!(clQ).

Proor: By definition Cj(clQ) ¢ C'(c1Q). Now, let fe C'(clQ). By virtue of the
Whitney characterization, it suffices to show that }in}) pda (@) =0, where

edo(@) =sup{|R@,x)|: 0<|x —y| <4, x,yeclQ},
R(y,x) = {[f(y) — f(x) = Df(x)- (y — x)1|y — x| ' }.

By continuity of f, Df on cl, it suffices to show that }in’(l) pa(@) =0. Let £ >0. By uni-

form continuity of Df in clQ, there exists ¢> 0 such that [Df(v) — Df(x)| < ¢(2¢[Q2]) !
whenever |v — x| <2c[Q14, v,x € clQ. Let x,y € Q, |y — x| < &. By the connectedness of
Q andlthe definition of geodesic distance, there exists y € C1([0, 1], Q) as in (2.1) such

that f |y'|dt<2A(x,y). We now consider the function defined by g.(y) =f(y) —
0
= Df(x)*(y —x). Clearly g, () € C'(clQ), Dg.(y) = Df(y) — Df(x), g,(x) = f(x). Hence

1
420 IRop= BB i g i [l
|y xl te[0,1] 2

<2

Alx,y)
| Y sup |De.(v()|<2d0] sup |De,(y(8)].
J’_x| te[0,1] te[0,1]

1
Clearly |y(s) —x|< f |v'| d¢ <2c[Q] 4. Hence,
0
IR(3,%)| <2c[Q] sup {|Dg, (v)|: v € 12, |v — x| < 2c[Q] 8} <,

and the proof is complete. ®

422. Lemma: Let Q be an open subset of R*, peQ, fe(CYQ))" Then
|det Df(p)| ¥ = [, £1.

Proor: Let veR”\{0}, |v|=1. For all ¢ such that pt+weQ, we have
LUAS|f(p + ) ~ f(p)l|zv]™". Hence, [Df(p)-o|= kI and

(4.23) Ll f1? <v-[(Df () (Df(p)) 2],
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for all unit vectors v € R”. Since the matrix (Df( )T (Df(p)) is symmetric, it has # real
eigenvalues 1, , ..., A,. By (4.23), 2;=0. Let A, = min{};}. Clearly 5[ /I <2;. Then
LU <X <(detDf(p)’. ™

424. CoroLLary: Let Q be a bounded connected open subset of R such that
JQl<w. Let fe(CH(clQ). Then lyo[f1>0 if and only if f is injective and
det Df(x) #0 for all x € c1Q.

Proor: By Lemmas 4.16, 4.20 and Theorem 4.18, Lol f1>0 if and only if f is in-
jective and Df(x)-v#0 for all x € clQ and for all unit vectors veR”. ®

By Corollary 4.24, we clearly have
(4.25) Y, 00(@Q) = {g € (C™*(clQ))": laa [g] > 0}.

426. Lemma: Let Q be a bounded connected open subset of R” such that c[Q] < .
Let ge (CY(clQ))" satisfy gl >0. Then g(Q) is open and
(427) Ag(@)1< o (g1 |Dg: (C(cl @) || 101

Proor: That g(Q) is open is a well-known consequence of the injectivity and con-
tinuity of g. We denote by Ag, Ay the geodesic distance in Q, g(Q) respectively. Clear-

ly g establishes a one to one corrispondence between the C'-curves in Q and the C'-
curves in g(Q). Then

1
M) (gx), g(9)) = inf [J |(gor)'| dt: v € C'([0,11,2), v(0)==x, ¥(1) =y] <
0

<||Dg: (C°(12))” || Ag (%, ),
and

Ao(x;J’) ]
— X, YyEQ, XFY¢"
-y 7 4

1e@)1<Dg: ()| sup[

lx— |
- suy (X, YEQ, XFY,
2 { o) — o] 7 5
which implies (4.27). ®
By combining Lemmas 4.2, 4.22, 4.26, it is easy to deduce the following

428. Trrorem: Let Q be a bounded connected open subset of R” such that
Qi< ». Let >0, >0, >0, g€ ((C™* (1)), Lo [g]> 8,
llg: (C™*(lQ)"|| <7, sup |x| <3, c[Q]<o. Then there exists a constant c(8,m,n,7,c)

xeclQ
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depending only on &, m, n, , o, such that ||g=?: (C™*(clg(@)))"|| < c(8,m,n,7,0)
and the operator | defined in (1.2) is bounded on {ge ((C™*(clQ))": lyq[g] >4}

Finally, we note that the following holds

4.29. Prorosition: Let Q be a bounded connected open subset of R such that
dQl< . Then gr> hlgl is continuous from (C*(clQ))” equipped with the (gradient)

seminorm p defined by p(g) = é‘,lﬂag/ax,-: (C°(clQ))"|| to R.

Proor: Let {g,} be a sequence in (C'(clQ))”, g€ (C!(clQ))”, li,ltnp(g,, —g=0.

Let > 0. By definition of infimum, there exist X, y € c1Q such that |g(x) — g(3)||x —
—y|7* < lp[g] + ¢/2. By assumption, there exists 7, such that p(g, — g) < /(2c[Q]) for
all #=ny. Then clearly L[g,]1<c[Q1p(g, —g) + |g&) —g)||x =y <flgl+e If
LIgl =0, then clearly |[g,]— klgl|<e Now let [[g]>0. We can assume that
2¢<lp[gl. Then for all n=ny, x#y, x,y € clQ, we have

lg.00) — &) _ | le®) — e _ |lg, — glx) — [g, — gl

- =

=yl T |x-—y lx — |

=gl — c[Q1p(g, — g) > hlgl —¢/2,

and the proof is complete. ®

From Proposition 4.29 we can also deduce the following variant of Hirsch (1988,
Lemma 1.3, p. 36).

4.30. CorovrLarY: Under the same assumptions of Proposition 4.29, the set Y, 4 o(Q)
is open in (C'(clQ))" equipped by the seminorm p.

Remark: Theorem 4.18 is to the best of the author’s knowledge new, although
some of the arguments used to prove it resemble those used in Hirsch (1988) to prove
Corollary 4.30 in a slightly different setting. Corollary 4.30 finds application in Elasto-
statics, where Y ( o(Q) represents the set of admissible deformations of a body Q. That
the affine maps of R” into itself were interior points of Y] ¢ ¢(Q2), was observed by Va-
lent (1988), who used a different method.

5. - THE INVERSION OPERATOR | IN THE CASE 72 =0

Considerably different from case =1 is the case 7 =0. We first introduce the
following Lemma.

5.1. Lemma: Let a€(0,1). Let Q, Q, be bounded open subsets of R”. Let
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fe CclQ, c1Q,) be a bijection of c1Q onto clQ,. Let

| fx) = F ()]

(5.2) ldn[a—l,ﬂginf{ I — y| =

:x,y €, x#y].

Then  lygla™, fl=kla ', f), and Y eCo(dQ,,cddQ) i and only
l(:l.O[a—1 ) ﬂ >0.

Proor: The continuity of £ is well-known. Then the statement follows immedi-
ately from the following inequality

| £70 () — f O ()|

|u—of*

(5.3) sup[ cu,vecQ, u#v}=

"
I el 10, x#y|.
Sup[lf(x)—f(y)l BRSSPl TR

Accordingly, we introduce the sets
(5.4) Xp.s(@,Q)={f€ Co*(clQ, clQ;): f(clQ) = clQ,, is injective, Liola™t, f1>6}.
From Lemmas 2.6, 4.8, and from (5.3), we deduce the following

5.5. Proposrmion: Let >0, a € (0,1]. Let Q, Q, be bounded open subsets of R”.
The operator | defined in (1.2) is bounded from X, , +(Q,0,) to C**(clQ,, Q) and is
continuous from X, 5(Q,0,) to C**(clQy, clQ) for all 6€ (0, ).

It is now natural to ask whether the continuity holds for 6 =a. The following
counterexample shows that the answer is no and that Proposition 5.5 is sharp.

Exampre: Let a€(0,1), n>2. Let f(x)=1—(1—%) if x€[0,1], f(x) = (x—
— 1)Y=+ 1ifx e [1,2],f(x) = xifx € [2,3]. Letf,(x) = (1 + n™*) f(x) ifx € [0,2],1,(x) =
=x(1-2n"%)+6n"" if xe[2,3]. It is easy to recognize that h';mf,, =f in

X0,4,0((0,3),(0,3)) and that 700, /=Y e C**([0, 3], [0, 3]). By using Lemmas 2.4, 3.1 it
is easy to verify that sup{|f":[0,2(1+ 7 )]|,} < and that sup{| /i ":[2(1 +
+n7),3]],} <. Henc:: sup {| /472 [0,3]|,} < and by (5.3) therenexists &> 0 such
that n;xf hoplat, f1>0> 0”. Hence h{ln f, =fin X, . 5((0,3), (0,3)). We now show that
{1} does not converge to £ in C>*([0,3]):

lim inf| 5™ — 70 [0, 31|, = lim inf {n | £, (0,317
(LA (A) = AP L] = LAY (A - =LA -]} =
= lim inf{| £, : [0,3]]:*| = 14+ 2% 1 =% -2} =2 ' liminf, | £, : [0,3]|7* >0.
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For a=1, a similar example can be constructed by considering £, (x) = (1 +
+(1/m)[x27" + sup(x — 1,0)] if x€[0,2]; £, (x) = x(1 —27~Y) + 617, if x € [2,3].
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