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Bounded and Almost-Periodic Solutions
of a Navier-Stokes Type Equation (**) (***)

Soluzioni limitate e quasi-periodiche di un’equazione di tipo Navier-Stokes

Riassunro. — Si illustrano alcune proprieta delle soluzioni limitate di un’equazione del ti-
po Navier-Stokes in tre dimensioni e si danno alcune condizioni sufficienti a garantire che la so-
luzione limitata esista, sia unica e sia quasi-periodica.

1. - INTRODUCTION

In a recent work[5], Prouse has studied the Cauchy-Dirichlet problem in a
bounded 3-dimensional domain for the Navier-Stokes type equations
du

(1.1) 5—Aq)(u)+(u-V)u+Vp-—Vdiv¢(u)=f,

(1.2) dive=0,

having denoted by #, p, u, f respectively the fluid velocity, its pressure, its viscosity, the
mass forces, and by @ = (¢;,,,9;) a function from R’ in itself, of the form ¢(x) =
= o(|u|) w, with ¢ € C' ([0, +)).

The equations (1.1), (1.2) are deduced from the general equations of conservation
of momentum by assuming that the relationship between the stress tensor T = {3}
and the deformation velocity tensor
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is given by

(1.3) fi=%(faxf+ —— |- % ij=123.
‘i i

It is obvious that, if o(&) =g, (1.3) reduces to the usual linear relationship and equa-
tions (1.1), (1.2) to the classical Navier-Stokes equations.

While we refer to[5] for a more detailed discussion of the physical significance
of (1.3), it should be pointed out that, by an appropriate choice of the function o, it is
possible to modify the classical linear relationship between T and S only for «large»
values of the velocity, for which there is no experimental evidence that a linear law
holds.

The main result proved in [5] consists in a global existence and uniqueness theo-
rem for a weak solution of a Cauchy-Dirichlet problem posed for (1.1), (1.2).

The aim of the present paper is to illustrate some properties of the bounded solu-
tions of (1.1), (1.2) and to state some conditions which allow to guarantee that these
solutions exist and are almost periodic. More precisely, we shall study at first (sections
4 and 5) some asymptotic properties of the solutions of (1.1), (1.2) and prove, in parti-
cular, that if f is bounded and «small», there exists a unique solution bounded on R
and «small» (sections 6 and 7). Subsequently (section 8), we shall study the almost-pe-
riodicity of the solutions, proving that, if f is «<small» and almost-periodic, there exists
a unique almost-periodic solution.

2. - NOTATIONS AND BASIC DEFINITIONS

Let Q be an open, bounded domain in R? with boundary I' = 8Q of class C? (*) and
denote by V the space of vectors v € (C* (Q))* with compact support and null diver-
gence in Q and by H, V respectively the closures of V in (L2 (Q2))? and in (H* (Q))?, with
(#,0) = (4,)12¢q), (,0)y = (8, V) (0) -

Assume moreover that the function o = o(é) satisfies the following conditions:

2.1) ceC([0,9)), O0<E< +o;

2.2) e=u>0, o =0;

2.3) if £=+ , then o(f)=af (a>0), when £=y,;
(2.4) if £<+ o, then y_xf%a(£)=+oo.

We turn now the the definition of solution: assuming that fe [2, (—, +o; V'), we

(*) This assumgtion on AQ is made in order to ensure that v € (H3 (Q))’, dve (L2 (Q))
imply v € (H? (Q))’; less stringent conditions are given by Grisvard [3].
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shall say that u is a weak solution of (1.1), (1.2) in QX R, satisfying the boundary
condition

(2.5) #lpxr =0,

if:

weli(—o,+0; V) L} (—o, +0; (L°(@))*) A HL, (—, +0; H),
Ap(w) = Ao(|ul) u € LE (— o, +o0; (H2(Q))') ;

)

en | {( 2,50, = (@0u(r), 4Bl +

+b(u(n), u(n), b(n)) — (fin), b(n))12 ) }dn =0,

V4,5 €R, 4 <, Vhe L}, (o, +; (H (Q))’ N V), having denoted by b the nonli-
near form

3 3y,
b(u,‘v,‘w)=f 2 u; — w;|dQ .
=1 ax,-

Remark 2.1: If u satisfies (2.6), then by Sobolev imbedding theorems (see [1],
5
ch. V), (w-VyueLp (-0, +o; (L' (Q))*) and consequently [ b(x,u,b) dy exists.
4

3. - Some ALREADY KNOWN RESULTS

We collect here some already known results that we will use in the sequel. First,
we recall a relation that is a special case of a more general one, due to Prodi[4], and,
for this, denote by G the Green’s operator, from V' to V, relative to —A.
Then

Lemma 3.1 (see[5], sect. 3, lemma 1): Ler ve (L’ (@), ueH: then, Yu>0,

6.1) (- V10, Gu)| = &l + dllells ol

(3.2) [{(2-V) v, Go)| < %Il‘vlliz«» +&ulls @l
where & is an appropriate positive constant depending on u and Q. ®
Now, we turn to the main result of [5]:

Treorem 3.1 (see[5], sect. 4, theorems 2, 3, 4): Assume that o satisfies assum-
btions (2.1)-(2.3) or (2.1), (2.2), (2.4) and that fe H (0, T; V'), ug € Vn (L™ (Q)). The-
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re exists then in Q=[0,T]XQ one and only one function u satisfying:

#el?(0,T; V)L’ (0, T; (L’ (@)’) nH' (0, T; H),

)5
Nl Ap(u) e L2 (0, T; (H*(@))') ;
T
(3.4) f {( %% il h)L, o b, u,b) = (o(u),4b) 2 (m}dn =0,
0
Vhel?(0,T; (H*@))’ nV),
(3.5) #(0)=u,.

Remark 3.1: Since the function #, whose existence and uniqueness are proved in
Theorem 3.1, is a global solution of the Cauchy-Dirichlet problem and [0, T] is an ar-
bitrary interval, then, by an appropriate choice of the test function, one can deduce
that u satisfies (2.6), (2.7), that is # is a weak solution of (1.1)-(1.2). =

Remark 3.2: Again in ([5], sect. 4, remark 2), the solution # is stressed to verify
the following «energy» estimates:

)

(3.6) %”“(fz)”fq“ %Ilu(tl)llfq +uf () I dn < Jl(f(n), u(n))|dy,

4

th,fQ ER, 4L <t2;

)
1
(3.7) %‘ll”(tz)”%/'_ 2 ””(h)”%’""“f ”u(ﬂ)”i’(o) dn=
4

¢,

= f |b(u(n), u(n), Gu(n)) — { fin), Gu(n))|dn, Vt,4 €R, t, <b;

7

1 ’ ’ ’
68 Liw@lh— L w @l e [ e olhdn<

4
5 t

= f |b(s’ (), u(n), Gae’ (n)) + bla(n), ' (), Gu’ (n))| dn + f [ f' (), Gu' (n))|dn,

4

for almostautl,tz ER, H<b. L]
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4. - SOME AUXILIARY RESULTS

We prove here some preliminary lemmas and theorems. In the sequel, we shall
suppose that the function o satisfies (2.1)-(2.3) or (2.1), (2.2), (2.4).

Lemma 4.1: Let fe L} (—,+0; (L2(Q))’) N HL.(—, +%; V') and let u be a
weak solution of (1.1), (1.2). Then u satisfies the following inequalities:

@0 2l = L+ [ e lfdn <

Bt

3

< [ Inollalfedlom, Vo eR, 4<s;
5

)
1 1
42 L1l — L+ [ o) oy b=
B
b &
= clf ””(ﬂ)”%l””(ﬂ)”vdﬂ + j |,u(77),|V' “f(n)“V’ dﬂ > th ’t2 € R; tl < tZ >
4 f
with ¢; positive constant,
]

@3 Liwel - Liw @i+ & [ lw ol =

2t

I 5
<a [ I ol It andn + [ 1l Il i,
Bt

4

for almost all t,t, €R, t, <t,, and with ¢, positive constant.

Proor: The function #, being a weak solution of (1.1), (1.2), satisfies (3.6), (3.7), (3.8) by
Remark 3.2. The deduction of (4.1) from (3.6) is trivial. About (4.2) observe that, by Holder’s
inequality and Sobolev imbedding theorems, it follows:

(4.4)  |b(u,u,Gu)| = |b(u, Gu,u)| = f(u-V) G-ud

Q

=

< |lwellerlloellzs | Gaell = = Naell el v < [lell el v,

with ¢, imbedding constant of H!(Q) into W~1->(Q).
Moreover,

45) (£ G = N fllv IGully = I fllvllsell v
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Relations (4.4), (4.5) allow us to deduce (4.2) from (3.7). The inequality (4.3) follows by (3.8),
observing that, by Lemma 3.1,

(4.6) Ib(u’,u,Gu’)+b(u,u’,Gu')|S%||u’||§1+26‘||u||i9<a>l|u’||2'- .
Lemma 4.2:  Assume that fe [£.(0, +; (L2 (Q))*), f' € L2.(0, +%; V')and

47) e f fen) 2@y = K< +co.

t>l

Assume moreover that u is a weak solution of (1.1), (1.2) in [0, + =) X Q. Then, denoting
by [t—1,7] an arbitrary interval in [0,+), the only two following cases can be
verified:

i) max_ ||u )y <K/c,
T-

for an appropriate constant c, sufficiently small, depending only on Q and u,

i) _max [l =plu@)|E
t-l=t=<¢

for an appropriate value B> 1.

Proor: Let [—1,7] be an atbitrary interval with 7= 1; moreover, let us fix arbitrarily
B>1 and a positive constant ¢ smaller than 1/28. Setting

U=_max [,

t=-1=:=<
assume that
(4.8) v>X,
(4.9) U2 <Bllu@ll}; -

By (4.1), (4.8), (4.9), we have for any # € [ —1,7]
@7 = [|#@ | — 2UK > ||#@ |13 — 2K8|@) [}/ U> (1 - 280)[|# @) I3 -

Consequently,

f Iy = 1 -2l

being o the imbedding constant of H!(Q) into L?(Q). If we take
2

(4.10) A= m :
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then

(4.11) st |y = ﬁ; PGl
1

F—-

Therefore, if A satisfies (4.10), by (4.1), (4.8), (4.9), (4.11), we have
(412) @)1= 1~ 1)1~ 2 1@ + 28D 3,

and consequently

(1=22=280) @ |} =< luE - 1)[|3;.

Hence, if 1+2/X—28c=p, that is

2
(4.13) A=< m,
by (4.12), we obtain
(4.14) G~ D= 8ll=@ .

We remark that (4.14) holds provided that both (4.10) and (4.13) are verified, that is

2
[ I 2

w(l—2Bc) = B+2Bc—1"

and this last inequality holds provided that ¢ is taken «sufficiently small» and 8 is «sufficiently
close» to 1.

Relation (4.14) contradicts (4.9); hence, (4.8), (4.9) cannot hold at the same time. The theo-
rem is proved. ®

Lemma 4.3: If the assumptions made in Lemma 4.2 hold, then

(4.15) M = maxlim|u()lx < X
t— 4>

Proor: Let n:ax+]im”u(t)|| #>K/c. Then, there exists a sequence {#,} divergent to + =,
such that RS

lete) > X, vaen.

Denote by #* a point of this sequence and examine the interval [#* — 1, #*]. By Lemma 4.2, case
ii), there exists #*f € [#* — 1,#*), such that:

2!
(4.16) IIu(tf‘)II%IEﬁIIu(t*)II%>BK?-

Since by (4.16)

2
(e 1 >ﬁK7,
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we can repeat the same argument about the interval [# —1,#]. Therefore, there exists
8 e[~ 1,4) such that

2
el = luter) I > 5

In this way, one can construct a sequence of points {£*}, such that £+, , <z*, rr—* <1
and

K2
|g=pr =.
)= >

Since #* is arbitrarily large, ||#(#)||y is unbounded in a neighbourhood of ¢= 0; but this is ab-
surd, since an existence theorem in [0, +®) X Q (see Theorem 3.1) holds. =

Lemma 4.4: If the assumptions of Lemma 4.2 hold, then

M* = sup|lu(t)||g< max(max lle@)|a, K/c).
t=0 0=s=1

Proor: Assume that

(4.17) M*> max )5,
=t=<
(4.18) M*> % :

Then, by Lemma 4.3, there exists an interval [7— 1,7] with 7=2, such that

_max _|u(t)||g=M*.
t—-1=<t<t¢

Therefore, there exists #* € [f— 1,7] and 8>1 such that

Bla) |3 >M2= max |u(@)|}.

oSSt

This last inequality contradicts Lemma 4.2, case ii); on the other hand, (4.18) excludes case i).
Hence, (4.17), (4.18) cannot hold at the same time. This proves the assert. ®

Lemma 4.5: Assume that fe L{, (0, +; (L2(Q))’), f' € L. (0, +%; V') and

t
sup [ I llydy< +o.
t=1
=21

Assume moreover that u is a weak solution of (1.1), (1.2) in [0, +%°) X Q and

t

sup f””("i)”i’m)dﬂsd,
t=1

=11

with ¢’ positive constant. Then denoting by [ — 1,#] an arbitrary interval in [0, +), if ¢'



— 79—

is sufficiently small, the two following cases only can be verified:

i) esssup [’ (|| =K'/,

F-1=¢=<7
for an appropriate constant ¢>0 depending only on Q and p,

i) esssup ' () = llw’ @I,

t—-l=:=7}

for an appropriate value B> 1 and for almost all 1= 1.

Proor: Let [#— 1,7] be an interval with 7= 1 and let us fix 3> 1 and ¢> 0 arbitrarily for
the time being. Setting

U= esssup_ ll2e" O]y,

T~1=¢t=<7

assume that
(4.19) U>K'/e,
(4.20) U <Bllw' @I .

Since Lemma 4.1 holds, by (4.3), (4.20), for almost all € [7— 1,7] we have:
@21) &' @I =llw @l —2(qe’ +K'/U) U > (1-286,¢" = 280) |’ @3 -

On the other hand, if ¢’ is sufficiently small, we can take ¢ such that 1 —28¢,¢’ —28¢>0 in or-
der to have

7
[ 1w lfdn= L1~ 286,¢ 26010 @I
75 P

having denoted by p the imbedding constant of L?(Q) in H™!(Q). Therefore, if

2

@

4.22) T TR
thén

“m) J wotia> 1ol

Consequently, if A satisfies (4.22), by (4.3), (4.19), (4.20), (4.23), we have
I @l < 02~ L | @1 + 280+l @Iy
that is

(4.24) (1 + —Al— —2Bgc' — Z,Bc) lle' @3 <U2.
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Hence, if 1+ 1/2—28c,¢’' —2Bc=p, that is
(4.25) A= (B+2Bcc" +2Bc—1)71,
by (4.24), it follows that
(4.26) U2 zg|lw’ @ .
We remark that (4.26) holds provided that both (4.22) and (4.25) are verified, that is

¢ 1

©(1—=2Bgc" — Bc) = B+2Bcc" +2Bc—1

and this last inequality holds provided that ¢’ and ¢ are «sufficiently small» and g is «sufficiently
close» to 1.

Observe now that (4.26) contradicts (4.20); hence, (4.19) and (4.20) cannot hold at the same
time. ®

Lemma 4.6: If the assumptions of Lemma 4.5 hold, then

M=n}ax+lim”u’(t)||vl <K'/ec.

Proor: Suppose max lim||#’ (¢)||y» > K’/c. Then, there exists a sequence {#,} divergent to
+ o such that iy

’
”“I(tn)”V'>KT, VneN.

Denote by #* a point of this sequence and examine the interval [#* —1,#*]. By Lemma 4.5 ii),
there exists £ € [#* — 1,#*) such that:

”2
(427) I =l @l > K,

where y is a constant such that I<y=g
Since by (4.27)

!
e )l > X5,

we can repeat the same argument about the interval [# — 1,#]. Therefore, there exists
& e[t — 1,4) such that

K: 2
||u’(é*)”%r'>7'2( cz) :

We construct in this way a sequence of points {£*} such that £+, ,<z*, R 3]
and

KI 2
I () >y L

A

Since #* is arbitrarily large, |#’ (#)|y is essentially unbounded in a neighbourhood of ¢= 0; but
this is absurd, since an existence theorem holds in [0,%) XQ (see Theorem 3.1). m
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Lemma 4.7: Under the assumptions of Lemma 4.5,

’
M' = ess sup||#’ (¢)||y» < max (ess sup [|#' (@®)]|y, KT)
t=0 0=¢t=1

Proor: The proof can be carried out analogously to which of Lemma 4.4, by substituting
K, |luly by K', |lu|ly», and referring to Lemmas 45, 4.6 instead of Lemmas 4.2,
4535 Al

5. - BAsIC RESULTS ABOUT BOUNDED SOLUTIONS
We present now some basic results about bounded solutions.

Tueorem 5.1: Assume that fe L (0, +; (L2(Q))*), f' € L2.(0,+%; V') and

t
6.1 sup [ [fliardy =K< -+e.
=1
t—1

Assume moreover that o satisfies (2.1)-(2.3) or 2.1), (2.2), (2.4), u is the weak solution
of (1.1), (1.2) in [0, + ) X Q corresponding to the initial condition u(0) = 0. Then, there
exists a constant v,, depending only on Q and u, such that

(5.2) ll2ll= 0, +;n < 71 K.

Moreover, the solution u is bounded in L}, (0, +; V) N L{,. (0, +, (L* (2))?) too, and
precisely, for any t=1, the following estimates hold:

t
(5.3) A f ()} dn =<1y, K?,

8=51

with v, = (¥4 + v1)ls;

t
(5.4) fhm%m@smw+wx

e—1

with v positive constant depending on Q, « and v, .

Proor: Let £* be the point in (0, 1] in which [|#(s)||; takes the maximum value. Then, by
4.1)

i

el <2 [ Do)l fo < 2 K,
0

(5.5) |lee(e*) ||y =<2K.
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By Lemma 4.4 and inequality 5.5, it follows that (5.2) holds. By (4.1) with , =¢—1, ¢, =¢,
t=1, bearing in mind (5.1) and (5.2), we obtain:

# f lut)|%dn < 2K? + v, K2.

=1

and, consequently, (5.3). Moreover, (4.2) implies

(5.6) afllu(n)llif<a)dv5p2ﬁf<2+cn'sz f “u(r;)llvdn+pthJ' I fo) 2 @y,

t=1 t=1 -1

having denoted by ¢ the imbedding constant of I2 (@) in H'(Q). The Holder’s inequality and
(5.3) yield:

t t i
5.7) f llu(n)llvdns( f “u(n)”%zdn) <Vr.K.

Therefore, by (5.1), (5.6), (5.7), we deduce:

t
o [ I dr SRR+ afVRE +énEe.

t—1

TueoreM 5.2: Suppose that the assumptions of Theorem 5.1 hold and, moreover,
that (5.1) holds with K «sufficiently smalls and that

t
sup f IfF )l dp=K'<+oo.
t=1

t—1

Then the solution u of (1.1), (1.2), corresponding to the initial condition u(0) = 0, verifies
for almost all te[0,+) the following bounds:

(5.8) e 0, 40, vy < 74,

59) [ e olfdy=s,

-1
where y,, vs are positive constants depending on ., Q, a, K, K' and
]im Y4 = 0.

K,K'—=0

) Proor: By Theorem 5.1, the inequalities (5.2), (5.3), (5.4) hold. Moreover, being K small

[ ll#()||35 @ydn is small too; therefore we can suppose all the assumptions of Lemma 4.5 are
-1
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satisfied. Consequently, Lemma 4.7 asserts that

! ! K'
(5.10) [l ||L=<0‘+m;v.)5max(ess sup ||l#’ (v, T)’

0=:<1

for an apposite constant v. On the other hand, by (4.3), we have:

1

ll#' (®)|% <%’ (0)]|3 + 2¢, ess sup ||z’ (t)||%/,f l|2e(n) (135 @) dn + 2K ess sup [|u’ (B)]|y,
0<:<1 0=t=<1
0

for almost all ¢ € (0, 1]. Furthermore, by (5.4) and observing that, as can be deduced directly
from Faedo-Galerkin approximations (see [5])

s’ @1y = Il fO) v

we obtain
(5.11) %’ @)% < | A} + 267, (K? + K*) U2 + 2K U,
having denoted by U the number ess sup ||#’(#)[|v. By (5.11), we have:
0=¢=<1
U =26,k + ) P2 < fO) I+ 2K2+ L,

that is
{1-4er; (K + K} P <2| fl0) |} + 4K".

More explicitly,

esssup ||#' (8| <
0=¢=1

2| AO) [} + 4K? \1/2
1-467;,K2+K) |

provided that K is sufficiently small. Hence, setting

2|l )3 +4K> \v2 k'
ax Iml gy
1-4do7; (K2 + ) v

by (5.10), we have (5.8). Moreover, again by (4.3), one can deduce (bearing in mind (5.4) and
(5.8));

73 t
o [ 1 oy I 6= D + O+ 26 [ T )l Bt sy +

= =1

t
12 [ 1w ol 1 ol dy <203+ 267y (2 + K) 4 2,K'.

t—1

We have so (5.9). ®
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6. - EXISTENCE OF A BOUNDED SOLUTION

TaeOREM 6.1: Assume that feLi (-, +o; (L2(Q))), flel} (—»,+w; V)
and

¢t
©.1) sup [ Iftr)landn =K<+,
t
(62) sup f If* @l dnp =K’ < +o0,
te

=1

with K «sufficiently smally. Assume moreover that o satisfies (2.1)-(2.3) or (2.1), (2.2),
(2.4). There exists then at least a weak bounded solution u of (1.1), (1.2), for which the
following estimates hold:

(6.3) “””L“(—w,+w;H) =7K,
t
(6.4) sup f e I% dn =<y, K2,
teR
-1
¢
(6.5) sup f ”u(n)”is @ dY] = Y3 (K2 + KZ),
(6.6) o o -, vy =74,
t
(6.7) sup f llse’ () [y =< s,
teR
-1
where yi,...,ys are the positive constants defined in the preceding section.

Proor: Let #, denote the weak solution in [—7n, + o) X Q of (1.1), (1.2), with the initial
condition #,(—#) = 0. We recall that u, exists and it is unique by Theorem 3.1 and that Theo-
rems 5.1, 5.2 yield:

(6.8) sup ||, (8)l|g=<1,K,
t=—n
2
69) swp | )=,
t=~n+ }_ 1
t
(6.10) sup f ey () 123 @y d < 75 (K2 + K2),

t2—n+1
" =1
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(6.11) ess sup||u, (&)l < 74,
t=—n

(6.12) sup I e, ) |lrdn=<rs .
I>-—-n+l

As a consequence of (6.8)-(6.12), there exist a subsequence {#,, } of {#,} and a function # such
that:

Jim_ w, =u,
weakly in
L2 (=, +; V) A Hb (=00, +0; H) n L5, (—, +; (L)),
weakly* in

L® (=, +0; H n W™ (=0, +0; V')
strongly in L. (—, +; H) being HY/2(—, +o; H 1/2()) completely continuous imbed-
ded in 2, (—, +oo; L2 Q)). Therefore passing to the limit as £— +, and being #, solution

of (1.1), (1.2), it follows that u satisfies (2.6), (2.7), that is # is a weak solution in R X Q of (1.1),
(1.2). Moreover # is bounded, since (6.8)-(6.12) hold for # too. ®

Remark 6.1: It follows also from (6.3), (6.4), (6.5) that, if K is «small», then the
bounded solution # is «smalls in L®(—, +; H)nL3(t—1, 5 V)nL’(¢—1, £ (L’(Q))%),
for all teR. =

7hoto UNIQUENESS OF THE BOUNDED SOLUTION

We start by proving a property of the bounded solutions and, then, we use this
property to obtain the uniqueness.

Turorem 7.1: Assume that fe L3 (—%,+%o; (L?(Q))), f € Li (=%, +o; V')
and that o satisfies (2.1)-(2.3) or (2.1), (2.2), (2.4). Axsume moreover that u is a weak so-
lution of (1.1), (1.2) in R X Q and that, setting

&y K=swp [ Iftdllzardn<+e,
te

t—1
2
(7.2) K* =K'°—(1+zi),

where o is the imbedding constant of H}(Q) into L*(Q), there exists t* €R such
that

(7.3) l|ae(e*) || > K*.
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Then

max lim||#(¢) ||y = +o0.

Proor: Let us assume this is not so; that is, having set

(7.4) M= max|lim||u(?) |,

let us assume 0 <M< +,
By (7.3), we deduce that

sup [|s(6)[|ps = [la(e*) [l > K* .
t=t*

Then, arbitrarily fixing o> 1, there exists 7< #* such that

(7.5) l#@lle=llu@)lg>K*, sup ||u@)|y<e lle@ |5
tse

and consequently

(7.6) sup [|u(®)||s =< sup [lu(8)]| 5 =< @ | .
t=7¥ t=t*

Let us consider the interval [7— 1,7] and let us prove that, if ¢ is sufficiently close to 1, there
exists A>1 such that

7 f It o= Ll

Let 7, in fact, a point of [f—1,7] such that

@l =_ min _[lu(®)]y;
t-1=s¢=<7?

by (4.1), (7.1) and (7.6), we have

IOl = o~ 2K 0l w0 =22 Dl = 1 - 25 |t

||“®||H
Therefore
[ 1eliednz= L [ lutmliudn= L el = %(1 - &)numna.
x A ¢ ¢ @ |l

Relation (7.7) is then verified provided that ¢ is sufficiently close to 1 (in this case, by (7.5),
l#®||x >2Ke?) and

2
7.8 A= (- 2KZ \-1
& #( PP
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On the other hand, by (4.1), (7.6), (7.7), we may deduce that

(7.9) |G- Dl @+ 5 |u@ (- 2K max ()=

2
=(1+% -
( 2 O“ )nu( M.

>

Consequently, if 3>1 and

2

(7.10) < s
B~ 142K/ ||u@ |y

by (7.9), it follows that
(7.11) %@ - 1)E=pll=@ % .

By (7.5), there exist ¢>1 and B> 1, sufficiently close to 1, in order to verify

||u(7)"H22Ka-2(1 +2ﬁ2)(1 +2£2 _g)
e p

or equivalently

ﬁ(l_ 202K) - 2 _
5 l«@le) — B—1+422K/|u@|y’

then both (7.8) and (7.10) are verified and (7.11) holds. On the other hand, (7.11) is true for
#—1 too and so on. Hence, we can conclude that

maxlim 4@l =+,
that contradicts the assumption 0SM<+®, =

CoroLrLary 7.1: Assume that fe L} (-, +0; (L2(Q))?), fleld (—»,+w; V)
and that o satisfies (2.1)-(2.3) or (2.1), (2.2), (2.4). Assume moreover that u is an H-
bounded weak solution of (1.1), (1.2) in RX Q. Then, for any teR,

(7.12) l|(8) || < K*,

with K* defined by 72. Furthermore, if K is «smalls, then ||u(t)|y is «smalls
too. W

Treorem 7.2: Under the assumptions of Theorem 6.1, the H-bounded solution u is
unique.

Proor: Let #, v be two H-bounded solutions on R (remark that #, v are also
L2 S8%V% and L’ (¢—1,4 (L’ (@))*) bounded, for any ¢€R). Settmg w=u—v
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and reasoning as in [5], (sect. 4, th. 4), we have, V¢, €R, 4 <b:

L,

ool ~ el + 2 [ oty =
4
£

<2 f |b(w(n), #(n), Gw(n)) — b(v(n), w(n), Gew(n))|dn.
4

By Lemma 3.1, we obtain
)

7.3) @l ~ )l +24 [ i) rdn =

4
b

523}2?2‘ ”‘w(t)”%ﬂj(”“(ﬂ)”i’(n) + lot) |17 @) -
1 =i=0n
4

Moreover, by Corollary 7.1, it follows that, for any #€ R and for an appropriate con-
stant y >0,

le@lla<yK, |o@)|a<7K

and consequently, by the same arguments used in Theorem 5.1,

¢
r=sup [ (ol + ol dr= G2+ 0.
te
t—1

We now apply (7.13) to the interval [7— 1,7], 7€ R, and obtain

7
014 JwG- 0l =l +2 | fotlid -2 ma_jul.

-1

Let us prove, to begin with, that, if 8> 1 is «sufficiently close» to 1 and K is «suf-
ficiently small», depending on g, then

(7.15) max ?Ilw(t)ll%n = Bllw@|3 .

T-1=st=<
Assume, in fact, that (7.15) does not hold, i.e.

(7.16) max__[lw(®)|f <plw@|f .

rias
Denoting by # a point € [f—1,7], we have then, by (7.13) and (7.16)
lee® % = lw@3 — 2678w |} =

= (1—23TB)|w®|f} = (1 - 2887 K2+ K)) |0 ® |13 .
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On the other hand, assuming that K is so small that 1—288y" (K2 + k%) >0,
7

7
lwtlfidr= % | It dn=
1 =

1
2

L min _|w@lp =
p t—=1=<t=<7} p

(1—24r8)|w@|} .

7—

-~

Hence, if we choose a number A such that

-

P
(7.17) A=

we obtain

f lwtoldn = -L il

For such a value of A, we have then, by (7.14), (7.15)
lw@[ <llw~ DI} - >l + 2678w,

that is
(1+ £~ 2678)llw@If <l DI

It therefore A is such that
(7.18) ASQrg+p—-1)71,
then

lew - DI} = llw@|l3-,

which contradicts (7.16).
Hence, if g is «sufficiently close» to 1 and K is so small that both (7.17) and (7.18)
are satisfied, then

2

ki YIS _si=l
#(l_zapﬁ)s(za‘rﬂ+ﬁ s

then, necessarily, relation (7.15) holds.

Let us fix arbitrarily a point 4 €R in which ||w(%)[|y» #0. By what has been al-
ready proved, there exists in [4 — 1,%) a point # such that

”w(tl)”%/’ 2:3”"”(10)”%/' » B>1.

We can repeat this procedure for the interval [#, — 1, 4], and so on, constructing a de-
creasing sequence {#,} such that

llew(te+ )13 = Bllwz) |3 .
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We have then, necessarily,

max lim [lw(,) ||y = +.
k— 4o

This contradicts our assumption that #, v are bounded on R. The uniqueness theorem
is therefore proved. =

8. - ExasTENCE AND UNIQUENESS OF AN ALMOST-PERIODIC SOLUTION

We now recall the definitions of (see[2]) almost-periodicity, weak almost-peri-
odicity, almost-periodicity in the sense of Stepanov, and then we state some condi-
tions that imply the existence of an almost-periodic solution and its uniqueness.

Let X be a Banach space, X* the dual space and let (,) denote the duality be-
tween X and X*.

Der. 8.1: Let fbe a continuous function from R into X; fis said to be almost-pers-

odic (ap.) if to every ¢>0 there corresponds a relatively dense set {r}, such
that

sup At +7) _f(t)”x =¢, Vie{r},. =

Der. 8.2: Let fbe a function from R into X; f is said to be weakly almost-periodic
(w.ap.) if the function (x*,f) is a.p., Vx*€X*. =m

Der. 8.3: Let fe Lf, (R; X), with 1 <p < +=; the function f is said to be almost-
periodic in the sense of Stepanov (SP a.p. or x—SF a.p.) if to every >0 there corre-
sponds a relatively dense set {7}, such that, Vr € {z},, we have

. 1/p
U f||f(t+'r+n) —fit+n)|kdnp =e. m
0

We now turn to the almost-periodicity result.

Tueorem 8.1: Let us suppose the assumptions of Theorem 6.1 hold. Let us suppose
moreover that f is L* — §? w.a.p. and f' is V' — §* w.a.p. There exists then one and only
one H— 5% a.p. solution of (1.1), (1.2).

Proor: Since the assumptions of Theorem 6.1 hold, by Theorems 6.1 and 7.2, there exists a
unique H-bounded weak solution # of (1.1), (1.2), which is H-continuous on R too. By the
Bochner criterion [2], we must show that from every real sequence {/,}, it is possible to select
a subsequence {/} such that

t
i [ o) 2t ludn =0,

t—-1

uniformly on R. )
Assume this is not so; there exists then a sequence {/,} with the following property. In cor-




S
respondence to every subsequence {/,} ¢ {/,} there exist two subsequences {a,}c{L},
{a} c {4}, a sequence {#,} and a number >0 such that
tn
8.1) f luen = ap) + w(n + ap) =y, Vn.
-1

’

We can obviously assume, since f is L? —§? w.a.p. and f' is V' — 52 w.a.p., that

82 im s [ [(fin+ 4+ )= fi, by )| =0,
t—1
(®3) dim s [ G704 b, + o) = i By =0,

Pt
Vb, e L2(t— 1,5 H), b, e L2(¢t—1,¢ V) and correspondingly
im u(t,+a,) =2z, lim u(t,+a,) =2,

n— +o n— +ow
in the weak topology of H' (:— 1,5 H nL2(¢t— 1,5 V)N L (t— 1,5 (L°(@))?), the weak*
topology of L* (¢ — 1, t; H), the strong topology of L2 (¢ — 1, ¢; H), for any fixed ¢ € R. Moreover,
z,, z, are solutions, bounded on R corresponding to the function f; defined by (8.2),
(8.3).

By the uniqueness theorem of a bounded solution, it follows therefore that, if K is «suf-
ficiently small», then z, =z,. Hence,

t

(8.4) HQ f”u@+&+a”—u@+g+#m%@=0, VteR.

il

Relation (8.4), written for £=0, contradicts (8.1) and # is H—§* ap. =
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