

Rendiconti Accademia Nazionale delle Scienze detta dei XL Memorie di Matematica 109° (1991), Vol. XV, fasc. 13, pagg. 213-218

PIER MARIO GANDINI - ANDREANA ZUCCO (*)

A Nowhere Dense but not Porous Set in the Space of Convex Bodies (**)

ABSTRACT. — We give an example of a subset which is nowhere dense but not porous in the space of all convex bodies.

Un insieme raro ma non poroso nello spazio dei corpi convessi

Riassunto. — La nozione di insieme poroso (σ-poroso) fu estesa ad uno spazio metrico qualsiasi nel 1976 da Zajíček. Tale nozione rappresenta un raffinamento della nozione di insieme raro (magro) in tutti quegli spazi in cui è possibile dare esempi di insiemi rari, ma non porosi (σ-porosi). Questo problema, risolto in uno spazio di Banach, è ancora aperto nello spazio C dei corpi convessi dotato della topologia indotta dalla metrica di Hausdorff. Nel presente lavoro si contribuisce alla soluzione di tale problema con un esempio in C di un insieme raro, ma non poroso.

The notion of porous set on the real line R was introduced by Dolženko in 1967 [2] and was generalized to a general metric space by Zajíček in 1976 [3]. In this paper we shall use the following definition of porous set [5].

Let (X, d) be a metric space and $B(x, \varepsilon)$ denotes the ball of center $x \in X$ and radius ε . A subset M of X is porous (with coefficient α) if there is a real number $\alpha > 0$ such that for each $x \in X$ and for each ball $B(x, \varepsilon)$ there exists an element $y \in B(x, \varepsilon)$ such that:

$B(y,\alpha d(x,y))\cap M=\emptyset.$

A countable union of porous sets (all with coefficient α) is called σ -porous (with coefficient α).

It is obvious that a porous set is also nowhere dense and that a σ-porous set is mea-

(*) Indirizzo degli Autori: Dipartimento di Matematica dell'Università di Torino; Via Carlo Alberto 10; I-10123 Torino.

(**) Nota presentata il 17 ottobre 1991 da Giuseppe Scorza Dragoni, uno dei XL.

ger. The problem of finding nowhere dense sets which are not σ -porous is solved in the euclidean d-dimensional space E^d and more generally in a Banach space but «it is not known at which more general metric space» such a problem can be solved ([4], page 322).

In this paper we give a contribution to the solution of this problem by showing an example of a subset which is nowhere dense but not porous in the space C of all convex bodies endowed with the Hausdorff metric.

Eventually we recall that a convex body is a compact convex subset of E^d with nonempty interior and that if $C, D \in C$ their Hausdorff distance $\delta(C, D)$ is defined in the following way:

$$\delta(C, D) = \max \left\{ \sup_{x \in C} \inf_{y \in D} d(x, y), \quad \sup_{y \in D} \inf_{x \in C} d(x, y) \right\},$$

where d is the usual euclidean distance.

If for $F \in \mathbb{C}$ and for each positive real number ρ , we put

$$F_{\rho} = \{x \in E^d : d(x, F) \leq \rho\}$$

we have also that

$$\delta(C,D)=\inf\left\{\,\rho\colon C_{\rho}\supset D\ \text{ and }\ D_{\rho}\supset C\right\}\,.$$

Notations: The ball of E^d of center a point x and radius ε will be denoted by $B(x, \varepsilon)$ while the ball of C of center an element C of C and radius ε will be denoted by $B(C, \varepsilon)$.

The abbreviations bd, int and conv stand for boundary, interior and convex hull.

THE EXAMPLE

Choose on a straightline R of the euclidean d-dimensional space E^d a nowhere dense but not porous subset M of real numbers and define:

$$\pmb{M} = \{C \in \pmb{C} \colon (\text{bd } C) \cap M \neq \emptyset\} \; .$$

1. - M is not porous in C

Since M is not porous in R, for each real number α , $0 < \alpha \le 1$, there are an element $x \in R$ and a positive ε such that, for each $z \in B(x, \varepsilon)$,

$$B(z, \alpha d(x, z)) \cap M \neq \emptyset$$
.

Let C be a ball with center in a point c of R, radius ρ greater than $(5+3\sqrt{2})\varepsilon$ and such that $x \in \text{bd } C$.

We shall show that, for each $D \in B(C, \varepsilon)$,

(1)
$$B(D, \alpha\delta(D, C)) \cap M \neq \emptyset.$$

Firstly we prove that, if z is the point of $(bd D) \cap \mathbb{R}$ belonging also to the interval $(x - \varepsilon, x + \varepsilon)$ of \mathbb{R} , then

(2)
$$d(x,z) \le \delta(C,D).$$

Indeed, if $z \notin \text{int } C$ we have easily:

$$d(z, x) = d(z, C) \le \delta(D, C)$$
.

If $z \in \text{int } C$ we take a support hyperplane π to D at the point z. Afterwards we consider the hyperplane π' parallel to π , tangent to C such that the point v common to C and π belongs to the halfspace bounded by π and not containing c. Therefore:

$$d(z, x) \le d(v, \pi) \le d(v, D) \le \delta(D, C)$$

and again (2) follows.

Now let q be an element of $B(z, \alpha d(x, z)) \cap M$.

a) If $q \notin \text{int } D$, we set

$$F = \operatorname{conv} \{D \cup \{q\}\} \ .$$

Since $q \in (bd F) \cap M$ it follows that $F \in M$.

Moreover, using also (2):

$$\delta(F, D) \le d(q, D) \le d(q, z) < \alpha d(x, z) \le \alpha \delta(D, C)$$
.

Therefore $F \in B(D, \alpha\delta(D, C))$ and (1) holds.

b) Let us assume now that $q \in \operatorname{int} D$. Then we can choose a point m of $\operatorname{bd} D$ such that $d(q,\operatorname{bd} D)=d(q,m)$. Afterwards we consider the hyperplane π through q and parallel to a support hyperplane π' to D at m. Then if P is the closed halfspace bounded by π and not containing m, we set

$$F = D \cap P$$
.

We shall prove that

$$\delta(F, D) \leq d(q, m) .$$

If we put $d(q, m) = \gamma$, we have obviously that $D_{\gamma} \supset F$. So there is only to prove that a point a of D but not of F belongs also to F_{γ} .

Let a' be the point of π such that the straightline aa' is perpendicular to π . We claim that

$$a' \in (\mathrm{bd}\ F) \cap \pi.$$

Indeed, if otherwise $a' \notin (\operatorname{bd} F) \cap \pi$, we can choose a straightline S of π through a' which meets $(\operatorname{bd} F) \cap \pi$. We put $S \cap (\operatorname{bd} F) \cap \pi = [b, e]$ and we choose the points b and e in such a way that d(a', b) < d(a', e).

Now we observe that from the definition of the points m, q and z we have that

$$d(\pi, \pi') \leq d(q, m) < d(q, z) < \alpha d(x, z) < \alpha \varepsilon < \varepsilon$$
.

Therefore, since π' does not intersect the ball of center c and radius $\rho - \varepsilon$, the hyperplane π does not intersect the ball C' of center c and radius $\rho - 2\varepsilon$. Since $\rho > (5 + 4 + 3\sqrt{2})\varepsilon$, it follows then that the straightline through b and parallel to the straightline aa' cuts the boundary of C' in two points. If f is one of them,

$$conv\{b,e,f\}$$

is a convex set of the plane spanned by the points a, a', b and its interior points are also interior points of D.

Then the straightline through the points a and b would contain the point b of bd D, points of int D on one of the two half-lines bounded by b and points of D on the other one, which is a contradiction.

Then (4) holds.

Therefore:

$$d(a, F) \leq d(a, a') \leq d(\pi, \pi') \leq \gamma$$
,

hence $a \in F_{\gamma}$ and also (3) holds.

Now, from (3) and (2), we can obtain that

$$\delta(D, F) \le d(m, q) \le d(q, z) < \alpha d(x, z) \le \alpha \delta(D, C)$$

i.e.

$$F \in \mathcal{B}(D, \alpha\delta(D, C))$$
.

Since moreover $q \in (bd\ F) \cap M$, we have that (1) is fulfilled and M is not porous in C.

2. - M is nowhere dense in C

We shall show that for each nonempty open set $B(D, \varepsilon)$ of $C(D \in C)$ it is possible to find another non empty open set $B(E, \eta)$ contained in $B(D, \varepsilon)$ and disjoint from M. There are three cases.

i) $(bd D) \cap \mathbb{R} = \emptyset$.

Let a be a positive real number such that

$$2\alpha < \min(\varepsilon, d(D, \mathbb{R}))$$
.

Since $D \in D_{\alpha} \in (D_{\alpha})_{\alpha}$, from Lemma 12.9.13 of [1], vol. 3 page 139, there exists a positive η such that, if $S \in C$ and $\delta(D_{\alpha}, S) \leq \eta$, then $D \in S \in (D_{\alpha})_{\alpha}$. Therefore

 $(bd S) \cap R = \emptyset$ and

$$B(D_{\alpha}, \eta)$$

is an open set contained in $B(D, \varepsilon)$ and disjoint from M.

ii) (bd D) $\cap \mathbb{R} = \{x_1, x_2\}$ i.e. two points of \mathbb{R} .

Since $D \in D_{\epsilon/2}$ also bd $D_{\epsilon/2}$ intersects R in exactly two points y_1 and y_2 . We can assume that the two open intervals of R, (y_1, x_1) and (x_2, y_2) , are disjoint from int D.

Since M is nowhere dense there are two closed intervals $[b_1, a_1] \subset (y_1, x_1)$ and $[a_2, b_2] \subset (x_2, y_2)$ disjoint from M. We assume $b_1 \notin (a_1, x_1)$ and $b_2 \notin (x_2, a_2)$.

Afterwards we put

$$F = \operatorname{conv} \{D \cup \{a_1\} \cup \{a_2\}\}\$$

and we choose a positive real number a such that

$$2\alpha < \min(d(a_1, b_1), d(a_2, b_2), d(b_1, F), d(b_2, F))$$
.

Obviously $\alpha < \varepsilon/4$.

Moreover since $D \subset F \subset F_{\alpha} \subset (F_{\alpha})_{\alpha}$; from the same Lemma used in (i) there is a positive η such that if $S \in C$ and $\delta(S, F_{\alpha}) \leq \eta$, then $F \subset S \subset (F_{\alpha})_{\alpha}$. We claim that

$$\boldsymbol{B}(F_{\alpha},\eta)$$

is the open set we are looking for.

Firstly we observe that $b_1 \notin (F_\alpha)_\alpha$, since, otherwise, there would exist a point $y \in F$ such that $b_1 \in B(y, 2\alpha)$ and then $d(b_1, y) \le 2\alpha < d(b_1, F)$, which is a contradiction.

Then $b_1 \notin (F_\alpha)_\alpha$, $a_1 \in \text{bd } F$ and analogously for b_2 and a_2 .

Since, for each $S \in B(F_{\alpha}, \eta)$, we have that $F \subset S \subset (F_{\alpha})_{\alpha}$, it follows that

$$(bd S) \cap \mathbb{R} \subset [b_1, a_1] \cup [a_2, b_2]$$

and therefore $S \notin M$.

In order to show that $B(F_{\alpha}, \eta) \subset B(D, \varepsilon)$ we put

$$\sigma = \max (d(a_1, D), d(a_2, D)).$$

Then, from $\sigma < \varepsilon/2$ and $F \subset D_{\sigma}$, it follows that

$$D \subset S \subset (F_{\alpha})_{\alpha} \subset (D_{\sigma})_{2\alpha} = D_{\sigma+2\alpha} \subset D_{\varepsilon}.$$

iii) If \mathbb{R} is a support straightline of D, i.e. (bd D) $\cap \mathbb{R}$ is either a single point either a line segment, we can consider in the neighbourhood $B(D, \varepsilon)$ the convex body $D_{\varepsilon/2}$. Then there is only to apply to the neighbourhood $B(D_{\varepsilon/2}, \varepsilon/4)$ the procedure used in (ii).

REFERENCES

- [1] M. Berger, Géométrie, Cedic/Fernand Nathan, Paris (1977).
- [2] E. P. Dolženko, The boundary properties of arbitrary functions, Russian, Izv. Akad. Nauk. SSSR. Mat., 31 (1967), pp. 3-14.
- [3] L. Zayı́ček, Sets of σ-porosity and sets of σ-porosity (q), Casopis Pest. Mat., 101 (1976), pp. 350-359.
- [4] L. Zaríček, Porosity and σ-porosity, Real Analysis Exchange, Vol. 13(2) (1987/88), pp. 314-350.
- [5] T. Zamfirescu, How many sets are porous?, Proc. Amer. Math. Soc., 100 (1987), pp. 383-387.