Rendiconti

Accademia Nazionale delle Scienze detta dei XL
Memorie di Matematica

109° (1991), Vol. XV, fasc. 13, pagg. 213-218

PIER MARIO GANDINI - ANDREANA ZUCCO (*)

A Nowhere Dense but not Porous Set
in the Space of Convex Bodies (**)

AsstracT. — We give an example of a subset which is nowhere dense but not porous in the
space of all convex bodies.

Un insieme raro ma non poroso nello spazio dei corpi convessi

Riassunto. — La nozione di insieme poroso (s-poroso) fu estesa ad uno spazio metrico
qualsiasi nel 1976 da Zaji¢ek. Tale nozione rappresenta un taffinamento della nozione di insie-
me raro (magro) in tutti quegli spazi in cui & possibile dare esempi di insiemi rari, ma non poro-
si (o-porosi). Questo problema, risolto in uno spazio di Banach, & ancora aperto nello spazio C
dei corpi convessi dotato della topologia indotta dalla metrica di Hausdorff. Nel presente lavo-
ro si contribuisce alla soluzione di tale problema con un esempio in C di un insieme raro, ma
non poroso.

The notion of porous set on the real line R was introduced by DolZenko in
1967 [2] and was generalized to a general metric space by Zaji¢ek in 1976 [3].

In this paper we shall use the following definition of porous set [5].

Let (X, d) be a metric space and B(x, ¢) denotes the ball of center x € X and radius
e. A subset M of X is porous (with coefficient a) if there is a real number >0 such

that for each x € X and for each ball B(x, ¢) there exists an element y € B(x, ) such
that:

B(y,ad(x,y)) nM=0.

A countable union of porous sets (all with coefficient a) is called s-porous (with
coefficient «).
Tt is obvious that a porous set is also nowhere dense and that a o-porous set is mea-
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ger. The problem of finding nowhere dense sets which are not o-porous is solved in
the euclidean d-dimensional space E¢ and more generally in a Banach space but «it is
not known at which more general metric space» such a problem can be solved ([4],
page 322).

In this paper we give a contribution to the solution of this problem by showing an
example of a subset which is nowhere dense but not porous in the space C of all con-
vex bodies endowed with the Hausdorff metric.

Eventually we recall that a convex body is a compact convex subset of E¢ with
nonempty interior and that if C, D € C their Hausdorff distance 6‘( C, D) is defined in
the following way:

8(C, D) = max {sup inf d(x,y), sup 1nf d(x, y)}

xeC y€D yeDx€eC

where d is the usual euclidean distance.
If for Fe C and for each positive real number p, we put

F,={xeE* d(x,F)<p}
we have also that

8(C,D)=inf{p: G, >D and D, >C}.

Notations: The ball of E¢ of center a point x and radius ¢ will be denoted by
B(x, ) while the ball of C of center an element C of C and radius ¢ will be denoted by
B (C,¢).

The abbreviations bd, int and conv stand for boundary, interior and convex

hull.

THE EXAMPLE

Choose on a straightline R of the euclidean d-dimensional space E¢ a nowhere
dense but not porous subset M of real numbers and define:

M={CeC: (bd C)nM+0}.

1. - M 1s NnoT porous IN C

Since M is not porous in R, for each real number «, 0 <a < 1, there are an element
x € R and a positive ¢ such that, for each z € B(x, ¢),

B(z,ad(x,2)) "M #0.

Let C be a ball with center in a point ¢ of R, radius p greater than (5 +3V/2) ¢ and
such that xebd C.
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We shall show that, for each D € B(C,¢),
(1) B(D,as(D,C))"nM+*0.

Firstly we prove that, if z is the point of (bd D) nR belonging also to the interval
(x —e,x+¢) of R, then

2) d(x,2) <8(C,D).
Indeed, if z ¢ int C we have easily:
d(z,x) =d(z,C)<é(D,C).

If 7 € int C we take a support hyperplane = to D at the point z. Afterwards we consider
the hyperplane =’ parallel to =, tangent to C such that the point » common to Candn
belongs to the halfspace bounded by = and not containing c. Therefore:

d(z,x) <d(v,n)<d(v,D)< (D, ()
and again (2) follows.
Now let g be an element of B(z,ad(x,2)) N M.
a) If g¢int D, we set

F=conv{Du{g}}.

Since g€ (bd F) n M it follows that Fe M.
Moteover, using also (2):

8(F,D) <d(g,D) < d(g,2) <ad(x,2) <a3(D,C).
Therefore F € B(D,«é(D,C)) and (1) holds.

b) Let us assume now that ¢ € int D. Then we can choose a point 7 of bd D such
that d(g,bd D) = d(g, m). Afterwards we consider the hyperplane = through ¢ and par-
allel to a support hyperplane =’ to D at 7. Then if P is the closed halfspace bounded
by = and not containing 7z, we set

F=DnP.
We shall prove that
3) 8(F,D)=d(g,m).

If we put d(g,7) =y, we have obviously that D, > F. So there is only to prove that a
point 2 of D but not of F belongs also to F,.

Let 4’ be the point of x such that the straightline a2’ is perpendicular to . We
claim that

(4) adebdF)nrx.

Indeed, if otherwise 4’ ¢ (bd F) N, we can choose a straightline § of = through 4’
which meets (bd F) nr. We put Sn(bd F)n==1[b,e] and we choose the points &
and ¢ in such a way that d(d’,b) <d(d',e).
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Now we observe that from the definition of the points 7, ¢ and z we have
that

dr,n')<d(g,m)<d(q,2) <ad(x,2) <ac<e.

Therefore, since =’ does not intersect the ball of center ¢ and radius p — ¢, the hy-
perplane = does not intersect the ball C’ of center ¢ and radius p — 2¢. Since p> (5 +
+3 \/5) ¢, it follows then that the straightline through 4 and parallel to the straightline
aa' cuts the boundary of C' in two points. If f is one of them, -

conv {b, e, f}

is a convex set of the plane spanned by the points 4, 2', b and its interior points are also
interior points of D.

Then the straightline through the points 4 and 4 would contain the point 5 of
bd D, points of int D on one of the two half-lines bounded by 4 and points of D on the
other one, which is a contradiction.

Then (4) holds.

Therefore:

d(a,F)<d(a,d')<d(r,7') <Yy,

hence 2 € F, and also (3) holds.
Now, from (3) and (2), we can obtain that

&(D,F)<d(m,q) <d(q,2z) < ad(x,2) <ad(D,C)
ie.
FeB(D,ad(D,C)).

Since moreover g € (bd F) "M, we have that (1) is fulfilled and M is not porous
in C.

2. - M 1s NOWHERE DENSE IN C

We shall show that for each nonempty open set B(D, ) of C(D € C) it is possible to
find another non empty open set B (E, ) contained in B (D, ¢) and disjoint from M.
There are three cases.

i) (bd D)NnR=4.

Let « be a positive real number such that
2a <min (¢,d(D,R)).

Since Dc D, c(D,),, from Lemma 12.9.13 of [1], vol. 3 page 139, there exists
a positive » such that, if S€ C and 8(D,,S)<n, then DcSc(D,),. Therefore
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(bd S)"R =0 and
B(D,,n)

is an open set contained in B(D,¢) and disjoint from M.

ii) (bd D)NnR={x,x,} ie. two points of R.

Since D ¢ D,/ also bd D, , intersects R in exactly two points y; and y,. We can as-
sume that the two open intervals of R, (y;,%) and (x;,7,), are disjoint from
intD.

Since M is nowhere dense there are two closed intervals [;,4,1¢ (y;,% ) and
(4,51 (%,7,) disjoint from M. We assume b, ¢ (4;,%;) and b, ¢ (x;,4).

Afterwards we put

F=conv{Du{a}u{a}}
and we choose a positive real number « such that
2“ < mln (d(al ] bl )) d(aZ ) bZ )1 d(bl ) F); d(bz ) F)) .

Obviously a<¢/4.
Moreover since D ¢ F c E, c (F,),; from the same Lemma used in (i) there is a posi-
tive n such that if S€ C and (S, F,)<n, then FcSc (F,),. We claim that

B(F,,n)

is the open set we are looking for.
Firstly we observe that &; ¢ (F,),, since, otherwise, there would exist a point y € F
such that b, € B(9,2«) and then d(b;,y) <22 <d(b,,F), which is a contradiction.
Then b, ¢ (F,)., 4, €bd F and analogously for &, and 4,.
Since, for each S € B(F,,), we have that FcSc (F,),, it follows that

(bds)nRC[bbﬁ]U[ﬂz»bz]

and therefore S ¢ M.
In order to show that B(F,,n) c B(D,¢) we put

¢ = max (d(ﬂl,D),d(dz ;D)) o
Then, from c<¢/2 and Fc D,, it follows that
DCSC (Fa)a c (Da-)Zu =LUs42a CDE'

iii) If R is a support straightline of D, i.e. (bd D) NR is either a single point ei-
ther a line segment, we can consider in the neighbourhood B(D, ¢) the convex body
D,/;. Then there is only to apply to the neighbourhood B(D,/;,¢/4) the procedure
used in (ii).



— 218 —
REFERENCES

[1] M. BerGer, Géométrie, Cedic/Fernand Nathan, Paris (1977).

[2] E. P. DovZenko, The boundary properties of arbitrary functions, Russian, Izv. Akad. Nauk.
SSSR. Mat., 31 (1967), pp. 3-14.

(31 L. ZayiCexk, Sets of a-porosity and sets of a-porosity (g), Casopis Pest. Mat., 101 (1976), pp.
350-359.

[4] L. Zayicex, Porosity and o-porosity, Real Analysis Exchange, Vol. 13(2) (1987/88), pp.
314-350.

[51 T. Zamrescu, How many sets are porous?, Proc. Amer. Math. Soc., 100 (1987), pp.
383-387.

Drrettore responsabile: Prof. A. Barrio - Autorizz. Trib di Roma n. 7269 dell’8-12-1959
«Monograf» - Va Collamarini, 5 - Bologna



