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Weak Weighted Reverse Integral Inequalities (**) (***)

Summary. — In this paper a weak reverse integral inequality is considered. From this high-
er integrability is deduced using reduction to one dimension and Muckenhoupt lemma.

Disuguaglianze integrali deboli alla rovescia pesate

Ruassunto. — In questo lavoro si prende in considerazione una disuguaglianza integrale al-
la rovescia di tipo debole. A partire da questa disuguaglianza si deduce un risultato di maggiore
integrabilita passando al caso unidimensionale ed usando un classico lemma di Mucke-
nhoupt.

1. - INTRODUCTION

The aim of the paper is to consider a reverse integral inequality of weak type that
generalize in some sense the classical one introduced by Gehring. In particular some
asymptotic properties relative to the higher integrability deduced from this inequality
are proved.

We consider the inequality:

(WRH) p|lxeQy: sup J(:fzdp.— J:fdy2>)\2 <
x€Q o o

2
Sv({erO: M, £ (x)> kz)\—l})

A>0, k> 1 independent of . For the notations see section 2. We emphasize that con-
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dition (WRH) in the case p=v is weaker than Gehring condition:
©G) fr (x)zauskz( f 1w d#)z~
Q Q

The main result is that if f verifies (WRH), then f belongs to L? (Qp, ) for 1<p<y(k)
and if £ tends to one, then y(k) tends to infinity like ¢/\/#? — 1, where c is a dimen-
sional constant.

The main step in the proof is a bound for the decreasing rearrangement of f in
terms of the decreasing rearrangement of the Fefferman-Stein sharp function of £
Using this bound, we prove that the weighted rearrangement of £, in the hypothesis
(WRH), is an A; weight of Muckenhoupt, and from this we deduce the higher integra-
bility result.

2. - SOME NOTATIONS AND HYPOTHESES

Let Q, be a cube of R” parallel to the axes, w, v two nonnegative weights belong-
ing to L'(Q,). For any subset E of Q, Lebesque measurable, we set:

w(E)=[wide;  WE) = [v(x) dx
E

E

and for any fe L'(Qy,u) nL1(Qy,v) =L!:

E]Lf =$dey; Effdvv(lE)Effdv.

We indicate with |E| the Lebesgue measure of E and suppose that a constant A> 1
there exists such that, for any cube Qc Q, and parallel to Q, and for any
EcQ,

HQ W@ _,l0l
2.1) max{#(E), V(E)]sA B
2.2) WE) <Au(E).

For any x € Q, we set:

Mf(x) = sup ijd#; M, f(x) = sup ]Lfa'v;
erQ erQ

f;‘*(x>=sup{]‘
x€Q 0

f—ffdu|2¢u]‘“,
Q

where Q is the generic subcube of Q, parallel to Q,.
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For a nonnegative f belonging to L! the following condition is considered:

(WRH) xEQO:,SCI:;Q)k ]szciu—(]tfdy)zl>)\2 <
Q Q

2
Sv({ero: (va)z(x)> E)\T_—l})’

where £>1 is a constant independent of A>0.
Moreover, we define, for #> 0, the weighted decreasing rearrangements:

for () =inf (> 0: w({x € Qo: F0) > ) <1},
frr(e)=inf {{A>0: v(xe Qp: flx) >2}) <t}.
If »=v then (WRH) becomes:

23) w|lxeQy: sug{ ]szdu.—( ][’fdy)z]>)\2 <
Q Q

2
Sy({xe Qo: (M, £ (x)> k}_ : })

Condition (2.3) is obviously weaker than «Gehring condition»:
{fﬂm@s%(fﬂw@y,
Q Q

k independent of the cube Q¢ Q.

3. - A BOUND FOR THE DECREASING WEIGHTED REARRANGEMENT
We prove first the following:

Lemma 3.1: Let f belongs to LY, f=0. If f verifies (WRH) then, for any
A>0,

‘u({xeQozf:‘(x)>)\})Sv({x€Qo:va(x)> k)l‘ ID
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Proor: We note that:

f

Q

-4 fdft’ du=f f%—( ffdu)z
Q Q Q
and then:

(fF () = sup[ f 7 du -( f fdu)z}
B ko g

for any x € Q,.
From this we have for any A>0 such that f#(x)>1, using condition
(WRH)

Q

Wl e Qo: 219> 1)) < [ero:sug[ fdeu—( ffdu)zJMZJ <
X € Q

2
sv({xEQoi(va)z(x)> kz)\—l})

for any A>0. m
From Lemma 3.1. and the definition of rearrangement we obtain:

Lemma 3.2: Left f be a nonnegative function belonging to L!. If f verifiess
(WRH), then:

(fEY* ) <SVE — 1M, f)*> (1),

for any £>0.

Later on, we shall also need the following lemma, which is a weighted version of a
covering lemma in [DBS].

Lemma 3.3: Let G¢ Q, be an open subset such that:

KOS~z ().
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Then a sequence of cubes (Q,);cn there exists, with pairwise disjoint interiors such

that:
w(Q) <24u(G“nQ),
(3.1) > Q) <271 AM(G),

7

Gec U Q.
7

Proor: The proof is like that in [BDS], and is obtained using property (2.1)
of p.

Now we can prove:

Tueorem 3.1: For any 0<#<u(Qp)/32"*'A?, we have:

% f Frr(s)ds — fre (5) <327 P LA QA+ D)(fF )2 (9).

0

Proor: For 0<t<u(Q,)/32" 1 A2, we set:

E={xeQ:f0)>f* )}, F={xeQ:fl©>f**@)}.

By well-known properties of decreasing rearrangements ([S], [FM]), we have
w(EU F)<2¢, and then an open subset G of Qp there exists, such that u(G) <3¢,
EUFcGc Q.

Since u(G)<wm(Qy)/2"*1A?, Lemma 3.3 implies the existence of a covering
(Q))jen of G verifying (3.1.).

We have:

t

62 [(Frr)—Frr ) ds< [(f0) = (1) du=

0 E

fo) —f faul du+

=2 j(f(x)—f*’“(t))d#SZf
J Q;

EnQ o

+ S uEn Q,-)(]L fdo <t>) .
Q]v
Obviously:

j

S WENQ) ( § fdu—prr <t>) <S'u(Q) ( § fdu—por m) ,
Q f Q
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where the summation )’ estends to the 7 such that »f' fdu—f**(#) =0. Then by (3.1)
since G°NQ;NE is empty, Q

b

63) S'WEnQ) ( f fduspro m) <
’ Q;

<u3 | (ffdu—f*’“(t))dpsle i f(x)—ffféu’ da.
" 6no\g 79 Q
From (3.2) and (3.3) we can deduce:
Jifes @ =@l ds<a+ S [| fo)~f fa do.
0 ij Q

But (Q;) # 0 for any /, and then, by (3.1), F¢n Qjis not empty for any ;. Let x; belong
to Fn Q,. Then:

fEr* 0 =f2F (%)
and using Hélder inequality:
|
7
Q;

From this:

du < u(Q)fF () s§ w(Q)(FE)* ().
“

f(x) —]L fayu
Q;

t

Jrme©) - o) ds< @A+ D@1 42) 32y )

0

Now we state the following useful result due to Herz ([H)):

Lemma 3.4 ([H], [S]): Let f be a nonnegative function belonging to L (Qy,x).
Then, for any 0<z<v(Q,),

¢
a1 0<L [ o0 ds<ann oo,
0
where ¢;, ¢, are constants depending only on v and 7.

Proor: See [S].

From Theorem 3.1., using Lemmas 3.1 and 3.4. we are now able to state the
following:
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Tueorem 3.2: Let f be nonnegative and belonging to L'. Then, if f verifies
(WRH), we have:

%ff*"‘(s)ds—f*'“(t)s %(2A+1)(2"“A2)\//e2— 1%[;‘*"(:)(1:
0 0

for any 0<t<uw(Qp)/32"*1A%

4. - HiGHER INTEGRABILITY FROM coNDITION (WRH)
We use the following famous Muckenhoupt lemma:

Lemma 4.1 ([M], [BSW1): Let b be a real function defined in the interval 10, a[,

nonnegative and decreasing. If:
t
. f b(s) ds <Dh(2)
0

for 0<¢<a/2, where D> 1 is independent of ¢, then, for any 1< r<D/(D—1), we
have:

i 1 [
1 rwds< D'_I(D+r_rD)(;J’b(x)ds) :
0 0

We note that, starting from the definition of weighted decreasing rearrangement, and
using (2.2), we can obtain from Theorem 3.2.:

Tueorem 4.1: Let f be nonnegative and belonging to L'. If f verifies (WRH),
with:

a
4.1 1<k<.[1+
S \F 32"t 12A+ 1) A°

then, for any 0<#<u(Q,)/32"*!A? we have:

a
aq—3RA+ 1)A22%+! \//e2 i §

Using Lemma 4.1. and Theorem 4.1. a higher integrability result for f is easily de-
duced if (WRH) and (4.1) hold.

%jf*'“(x)ds$ frE@).
0
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Tueorem 4.2: Let f be nonnegative and belonging to L'. We suppose that
(WRH) and (4.1) are satisfied. Then fe L' (Q,,u) for any:

41

3A+ 1) A2 2"\ -1

(4.2) 1sp<

and:

(4] 32" A2

Pl
a=3QA+1) A2 VK -1 )

a-3pRA+ 1) A2\ -1
; 39n+1 2 ffd.“
a-3A+ A7V -1 |\,

Remark 4.1: If £ tends to one, the higher integrability exponent in (4.2) tends to

infinity like y/\/#* — 1, where y is a constant depending only on g, v and #.
It is easy to prove (see e.g. [B]) that the result is optimal. Moreover the majorita-
tion constant in (4.3) tends to one if f tends to one.

43) fﬂ@s(
Qo

o

0

Remark 4.2: Condition (WRH) is not puntual and is not a condition on every
subcube Q of Q,, like condition (G), but is a condition on the measure of the level
sets of the maximal function.

Proor or Treorem 4.2: We note that in our hypotheses, Theorem 4.1. works
and then we can apply Lemma 4.1 to f**,

Remark 4.3: In the above hypotheses, a more general condition can be consid--
ered. Namely, if we set:

P2 =sf |1~ | rad da
Q Q
then, from the condition:

,u({xeQoil?f(x)>)~})$"({x€Q°: M.f(x)> A})

&

for any A>0, 0<s<\/cl /(32"*1(2A+1) A%, higher integrability is deduced for £
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